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ABSTRACT. We study the existence of the numéraire portfolio under predictable
convex constraints in a general semimartingale model of a financial market. The
numéraire portfolio generates a wealth process, with respect to which the rel-
ative wealth processes of all other portfolios are supermartingales. Necessary
and sufficient conditions for the existence of the numéraire portfolio are ob-
tained in terms of the triplet of predictable characteristics of the asset price
process. This characterization is then used to obtain further necessary and suf-
ficient conditions, in terms of an arbitrage-type notion. In particular, the full
strength of the “No Free Lunch with Vanishing Risk” (NFLVR) is not needed,
only the weaker “No Unbounded Profit with Bounded Risk” (NUPBR) con-
dition that involves the boundedness in probability of the terminal values of
wealth processes. We show that this notion is the minimal a-priori assumption
required, in order to proceed with utility optimization. The fact that it is ex-
pressed entirely in terms of predictable characteristics makes it easy to check,
something that the stronger NFLVR condition lacks.

0. INTRODUCTION

0.1. Background and Discussion of Results. The branch of Probability The-
ory that goes by the name “Stochastic Finance” is concerned, amongst other
things, with finding adequate descriptions of the way financial markets work.
There exists a huge literature of such models by now, and we do not attempt
to give a history or summary of all the relevant work. There is, however, a broad
class of models that have been used extensively: those for which the price processes
of certain financial instruments (stocks, bonds, indices, currencies, etc.) are con-
sidered to evolve as semimartingales. The concept of semimartingale is a very
intuitive one: it connotes a process that can be decomposed into a finite vari-
ation term that represents the “signal” or “drift”, and a local martingale term
that represents the “noise” or “uncertainty”. Discrete-time models can be embed-
ded in this class, as can processes with independent increments and many other
Markov processes, such as solutions to stochastic differential equations. Models
that are not included and have received attention are, for example, those where
price processes are driven by fractional Brownian motion.

There are at least two good reasons for the choice of semimartingales in mod-
eling financial asset price-processes. The first is that semimartingales constitute
the largest class of stochastic processes which can be used as integrators, in a
theory that resembles as closely as possible the ordinary Lebesgue integration. In
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2 I. KARATZAS AND C. KARDARAS

economic terms, integration with respect to a price process represents the wealth
of an investment in the market, the integrand being the strategy that an investor
uses. To be more precise, let us denote the price process of a certain tradeable
asset by S = (S¢)ter,; for the time being, S could be any random process. An
investor wants to invest in this asset. As long as simple “buy-and-hold strategies”
are being used, which in mathematical terms are captured by an elementary inte-
grand 0, the “stochastic integral” of the strategy 6 with respect to S is obviously
defined: it is the sum of net gains or losses resulting from the use of the buy-and-
hold strategy. Nevertheless, the need arises to consider strategies that are not of
that simple and specific structure, but can change continuously in time. If one
wishes to extend the definition of the integral to this case, keeping the previous
intuitive property for the case of simple strategies and requiring a very mild “dom-
inated convergence” property, the Bichteler-Dellacherie theorem (see for example
the book [5]) states that S has to be a semimartingale.

A second reason why semimartingale models are ubiquitous, is the pioneering
work on no-arbitrage criteria that has been ongoing during the last decades. Cul-
minating with the works [8] and [12] of F. Delbaen and W. Schachermayer, the
connection has been established between the economic notion of no arbitrage —
which found its ultimate incarnation in the “No Free Lunch with Vanishing Risk”
(NFLVR) condition — and the mathematical notion of existence of equivalent
probability measures, under which asset prices have some sort of martingale prop-
erty. In [8] it was shown that if we want to restrict ourselves to the realm of locally
bounded stock prices, and agree that we should banish arbitrage by use of simple
strategies, the price process again has to be a semimartingale.

In this paper we consider a general semimartingale model and make no further
mathematical assumptions. On the economic side, it is part of the assumptions
that the asset prices are exogenously determined — in some sense they “fall from
the sky”, and an investor’s behavior has no effect whatsoever on their movement.
The usual practice is to assume that we are dealing with small investors and whistle
away all the criticism, as we shall do. We also assume a frictionless market, in the
sense that transaction costs for trading are non-existent or negligible.

Our main concern will be a problem which can be cast in the mold of dynamic
stochastic optimization, though of a highly static and deterministic nature, since
the optimization is being done in a path-by-path, pointwise manner. We explore
a specific strategy whose wealth appears “better” when compared to the wealth
generated by any other strategy, in the sense that the ratio of the two processes
is a supermartingale. If such a strategy exists, it is essentially unique and we call
it the numéraire portfolio.

We derive necessary and sufficient conditions for the numéraire portfolio to
exist, in terms of the triplet of predictable characteristics of the returns of stock-
price processes. These are direct analogues of the drift and volatility coéfficients
in continuous-path models. Since we are working here in a more general setting,
where jumps are also allowed, it becomes necessary to introduce a third charac-
teristic that measures the intensity of these jumps.

Sufficient conditions for the existence of the numéraire portfolio have already
been established in Goll and Kallsen [16], who focused on the (almost equivalent)
problem of maximizing expected logarithmic utility. These authors went on to
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show that their conditions are also necessary, under the following assumptions:
the problem of maximizing the expected log-utility from terminal wealth has a
finite value, no constraints are enforced on strategies, and NFLVR holds. Becherer
[4] also discussed how under these assumptions the numéraire portfolio exists, and
coincides with the log-optimal one. In both these papers, deep results of Kramkov
and Schachermayer [26] on utility maximization had to be invoked in order to
obtain necessary and sufficient conditions.

Here we follow a bare-hands approach which enables us to obtain stronger re-
sults. First, the assumption of finite expected log-utility is dropped entirely; there
should be no reason for it anyhow, since we are not working on the problem of
log-utility optimization. Secondly, general closed convex constraints on portfolio
choice can be enforced, as long as these constraints unfold in a predictable manner.
Thirdly, and perhaps most controversially, we drop the NFLVR assumption: no
normative assumption is imposed on the model. It turns out that the numéraire
portfolio can exist, even in cases where the classical No Arbitrage (NA) condition
fails.

In the context of stochastic portfolio theory, we feel there is no need for no-
arbitrage assumptions to begin with: if there are arbitrage opportunities in the
market, the role of optimization should be to find and utilize them, rather than
ban the model. It is actually possible that the optimal strategy of an investor is not
the arbitrage (an example involves the notorious 3-dimensional Bessel process).
The usual practice of assuming that we can invest unconditionally on the arbitrage
breaks down because of credit limit constraints: arbitrages are sure to generate,
at a fixed future date, more capital than initially invested; but they can do pretty
badly in-between, and this imposes an upper bound on the money the investor
can bet on them. If the previous reasoning for not banning arbitrage does not
satisfy the reader, here is a more severe problem: in very general semimartingale
financial markets there does not seem to exist any computationally feasible way
of deciding whether arbitrages exist or not. This goes hand-in-hand with the fact
that the existence of equivalent martingale measures — its remarkable theoretical
importance notwithstanding — is a purely normative assumption and not easy to
check, at least by looking directly at the dynamics of the stock-price process.

Our second main result comes hopefully to shed some light on this situation.
Having assumed nothing about the model when initially trying to decide whether
the numéraire portfolio exists, we now take a step backwards and in the opposite-
than-usual direction: we ask ourselves what the existence of the numéraire portfolio
can tell us about arbitrage-like opportunities in the market. Here, the necessary and
sufficient condition for existence, is the boundedness in probability of the collection
of terminal wealths attainable by trading. Readers acquainted with arbitrage
notions will recognize this as one of the two conditions that comprise NFLVR; what
remains of course is the NA condition. One can go on further, and ask how severe
this assumption (of boundedness in probability for the set of terminal wealths)
really is. The answer is simple: when this condition fails, one cannot do utility
optimization for any utility function; conversely if this assumption holds, one can
proceed with utility maximization as usual. The main advantage of not assuming
the full NFLVR condition is that, for the weaker condition of boundedness in
probability, there is a direct way of checking its validity in terms of the predictable
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characteristics (dynamics) of the price process. No such characterization exists
for the NA condition, as we show by example in subsection 3.3. Furthermore, our
result can be used to understand the gap between the concepts of NA and the
stronger NFLVR;; the existence of the numéraire portfolio is exactly the bridge
needed to take us from NA to NFLVR. This has already been understood for the
continuous-path process case in the paper [9]; here we do it for the general case.

0.2. Synopsis. We offer here an overview of what is to come, so the reader does
not get lost in technical details and little detours. After this short subsection, the
remainder of this section will set up some general notation and reminders of some
probabilistic concepts to be used throughout.

Section 1 introduces the financial model, the ways that a financial agent can
invest in this market, and the constraints that are faced.

In section 2 we introduce the numéraire portfolio. We discuss how it relates to
other notions, and conclude with our main Theorem 2.15; this provides necessary
and sufficient conditions for the existence of the numéraire portfolio in terms of
the predictable characteristics of the stock-price processes.

Section 3 deals with the connections between the numéraire portfolio and free
lunches. The main result there is Theorem 3.12 that can be seen as another version
of the Fundamental Theorem of Asset Pricing.

Some of the proofs are not given in sections 2 and 3, as they tend to be quite
long; instead, they occupy the next four sections. In section 4 we describe nec-
essary and sufficient conditions for the existence of wealth processes that are in-
creasing and not constant. Section 5 deals with the proof of our main Theorem
2.15. Section 6 contains the proof of a result on the rate of convergence to zero of
positive supermartingales; this result is used to study the asymptotic optimality
property of the numéraire portfolio. Then, section 7 contains the backbone of the
proof of our second main Theorem 3.12.

In an effort to keep the paper as self-contained as possible, we have included
Appendices that cover useful results on three topics: (A) measurable random
subsets and selections; (B) semimartingales up to infinity and the corresponding
“stochastic integration up to infinity”; and (C) o-localization. These results do
not seem to be as widely known as perhaps they deserve to be.

0.3. General notation. A vector p of the d-dimensional real Euclidean space
RY is understood as a d x 1 (column) matrix. The transpose of p is denoted by
p', and the usual Euclidean norm is |p| := /p' p. We use superscripts to denote
coordinates: p = (p!,...p%) ". By R, we denote the positive real half-line [0, c0).
The symbol “A” denotes minimum: fAg = min{f, g}; for a real-valued function
f its negative part is f~ := —(f A 0) and its positive part is f := max(f,0).
The indicator function of a set A is denoted by I4. To ease notation and the
task of reading, subsets of R? such as {z € R? | |z| < 1} are “schematically”
denoted by {|z| < 1}; for the corresponding indicator function we write If;<13-
A measure v on R? (endowed with its Borel o-algebra) is called a Lévy measure,
if v({0}) = 0 and [(1 A |z|?)v(dz) < +00. A Lévy triplet (b,c,v) consists of a
vector b € R?, a (d x d) symmetric, non-negative definite matrix ¢, and a Lévy
measure v on R?. Once we have defined the price processes, the elements ¢ and
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v of the Lévy triplet will correspond to the instantaneous covariation rate of the
continuous part of the process, and to the instantaneous jump intensity of the
process, respectively. The vector b can be thought of as an instantaneous drift
rate; one has to be careful with this interpretation, though, since b ignores the
drift coming from large jumps of the process. In this respect, see Definition 1.4.

Suppose we have two measurable spaces (£2;,F;), ¢ = 1,2, a measure p; on
(Q1,F1), and a transition measure pg : 1 X Fo — Ry ; this means that for every
wy € £, the set function pg(wi, ) is a measure on (€9, F3); and for every A € Fy
the function pg(-, A) is Fi-measurable. We shall denote by p; ® po the measure
on the product space (1 x Qy, F1 ® F2) defined for E € F; ® Fy as

00 e @)= [ ([ ) ni)

0.4. Remarks of probabilistic nature. For results concerning the general the-
ory of stochastic processes described below, we refer the reader to the book [18]
of Jacod and Shiryaev (especially the first two chapters).

We are given a stochastic basis (2, 7, F,P), where the filtration F = (F),cp .
is assumed to satisfy the usual hypotheses of right-continuity and augmentation
by the P-null sets. The probability measure P will be fixed throughout and will
receive no special mention. Every formula, relationship, etc. is supposed to be
valid P-a.s. (again, no special mention will be made). The expectation of random
variables defined on the measure space (2, F,P) will be denoted by E.

The set 2 x R, is the base space; a generic element will be denoted by (w,t).
Every process on the stochastic basis can be seen as a function from € x Ry
with values in R? for some d € N. The predictable o-algebra on Q x R, is
generated by all the adapted, left-continuous processes; we denote it by P — if
7 is a d-dimensional predictable process we write 7 € P(R?). For any adapted,
right-continuous process Y that admits left-hand limits, its left-continuous version
Y_ is defined by setting Y_(0) := Y (0) and Y_(t) := lims Y (s) for ¢ > 0; this
process is obviously predictable, and we define its jump process AY :=Y —Y_.

For a d-dimensional semimartingale X and 7 € P(R%), we shall denote by - X
the stochastic integral process, whenever this makes sense, in which case we shall
be referring to m as being X-integrable. Let us note that we are assuming vector
stochastic integration; a good account of this can be found in [18] as well as in
Cherny and Shiryaev [6]. Also, for two semimartingales X and Y, we define their
quadratic covariation process by [X,Y]:=XY - X_-YV -Y_ - X.

Finally, by £(Y") we shall denote the stochastic exponential of the scalar semi-
martingale Y; £(Y) is the unique solution Z of the stochastic integral equation
Z =14 Z_-Y and is given by the formula

1
02 e = e {v - Jre v} TTHO+ av) ep(-AY.).
s<-
where Y¢ denotes the continuous martingale part of the semimartingale Y. The
stochastic exponential Z = £(Y) satisfies Z > 0 and Z_ > 0 if and only if
AY > —1. Given a process Z which satisfies Z > 0 and Z_ > 0, we can invert the

stochastic exponential operator and get the stochastic logarithm L£(Z), which is
defined as £(Z) := (1/Z_) - Z and satisfies AL(Z) > —1. In other words, we have
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a one-to- one correspondence between the class of semimartingales Y that satisfy
AY > —1, and the class of semimartingales Z that satisfy Z > 0 and Z_ > 0.

1. THE MARKET, INVESTMENTS, AND CONSTRAINTS

1.1. The stock-prices model. On the given stochastic basis (Q,F,F,P) we
consider d strictly positive semimartingales S L S that model the prices of d
assets; we shall refer to these as stocks. There is also another process SO which
we regard as representing the money market or bank account. The only difference
between the stocks and the money market is that the latter plays the role of a
“benchmark”, in the sense that wealth processes will be quoted in units of SO and
not nominally. We also consider the discounted price processes S* := S / SO for
i =0,...,d and denote the d-dimensional vector process (S',...,S%) by S. In
this discounted world S° = 1; in economic language, the interest rate is zero.

Since S?is strictly positive for alli = 1, ..., d, there exists another d-dimensional
semimartingale X = (X!,..., X%) with Xg = 0, AX? > —1 and S* = S} £(X?) for
i1=1,...,d. Weinterpret X as the process of discounted returns that generate
the asset prices .S in a multiplicative way.

The infinite time-horizon R} = [0, 00[ is certainly sufficient for our purposes,
since any finite time horizon can be easily embedded in it. Nevertheless, in many
cases it is much more natural to think of finite time-horizons, and many of our
examples will be given in this setting; for this reason we shall be working on
[0,7] := {(w,t) € @ xRy | t < T(w)} where T is a possibly infinite-valued
stopping time. All processes then will be considered as being constant and equal
to their value at T for all times after T', i.e., every process Z is equal to the stopped
process at time T that is defined via ZtT := Zyar for all t € Ry. Further, we can
assume without loss of generality that Fy is P-trivial (thus all Fp-measurable
random variables are constants) and that F = Fp := VteR+ FinT-

Remark 1.1. Under our model we have S* > 0 and S* > 0; one can argue that this
is not the most general semimartingale model, since it does not allow for negative
prices (for example, prices of forward contracts can take negative values). This
will be most relevant when we consider arbitrage in section 3, to be in par with the
earlier work of Delbaen and Schachermayer [8, 12]. The general model should be
an additive one: S = Sy + Y, where now Y represents the cumulative discounted
gains of S* after time zero and can be any semimartingale (without having to
satisfy AY? > —1fori=1,...,d).

In our discussion we shall be using the returns process X, not the stock-price
process S directly. All the work we shall do carries to the additive model almost
vis-a-vis; if there is a slight change we trust that the reader can spot it. We
choose to work under the multiplicative model since it is somehow more intu-
itive and more applicable: almost every model used in practice is written in this
way. Nevertheless, if one aims at utmost generality, the additive model is more
appropriate. To remove all doubt, there will be a follow-up to this discussion in
subsection 3.8.
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The predictable characteristics of the returns process X will be important in our
discussion. To this end, we fix the canonical truncation function® z zlyz <1y
and write the canonical decomposition of the semimartingale X:

(1.1) X =X+ B+ [aljp<iy] * (0 —n) + [#lgapny] * o

Some remarks on this representation are in order. First, p is the jump measure of
X, i.e., the random counting measure on R, x (R?\ {0}) defined by

(1.2) p([0,8] x A) := > T4(AX,), forte Ry and A CR?\{0}.
0<s<t

Thus, the last process in (1.1) is just [ac]I{‘x|>1}] $ 1= e AXlax,>1y 5 the
sum of the “big” jumps of X; throughout the paper, the asterisk denotes inte-
gration with respect to random measures. Once this term is subtracted from X,
what remains is a semimartingale with bounded jumps, thus a special semimartin-
gale. This, in turn, can be decomposed uniquely into a predictable finite variation
part, denoted by B in (1.1), and a local martingale part. Finally, this last local
martingale part can be decomposed further: into its continuous part, denoted by
X€in (1.1); and its purely discontinuous part, identified as the local martingale
[ﬂﬂx\g}] * (u—mn). Here, n is the predictable compensator of the measure p, so
the purely discontinuous part is just a compensated sum of “small” jumps.

We introduce the quadratic covariation process C' := [X, X¢] of X¢ . Then
we call (B,C,n) the triplet of predictable characteristics of X, and set G :=
Z?Zl (C™" + Var(B") + [1 A|z'|?] * 1), This G is a predictable increasing scalar
process, and B, C,n are all absolutely continuous with respect to G, thus

(1.3) B=b-G,C=c-G,andn=GRv.

Here b, ¢ and v are predictable, b is a vector process, ¢ is a positive-definite
matrix-valued process and v is a process with values in the set of Lévy measures;
for the product-measure notation G®v (see formula (0.1)) we consider the measure
induced by G. Let us remark that any G with dét ~ dGy can be used in place
of G; the actual choice of increasing process G reflects the notion of operational
clock (as opposed to the natural time flow, described by t): a rough idea of how
fast the market is moving. In an abuse of terminology, we shall refer to (b, ¢, v)
also as the triplet of predictable characteristics of X; this depends on G, but the
validity of all results not.

Remark 1.2. In quasi-left-continuous models (in which the price process does not
jump at predictable times), G can be taken to be continuous. Nevertheless, if we
want to include discrete-time models in our discussion, we must allow for G to
have positive jumps. Since C' is a continuous increasing process and (1.1) gives
E[AX; I ax, <1} | Fr—] = AB; for every predictable time 7, we have

(14) ¢=0 and b= /x}lﬂxq}y(dx), on the predictable set {AG > 0}.

n principle one could use any bounded Borel function h such that h(z) = z in a neighborhood
of z = 0; the use of this specific choice facilitates some calculations and notation.
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Remark 1.3. We make a small technical observation. The properties of ¢ being a
symmetric positive-definite predictable process and v a predictable process taking
values in the set of Lévy processes, in general hold P ® G-a.e. We shall assume
that they hold everywhere, i.e., for all [0,T]; we can always do this by changing
them on a predictable set of P ® G-measure zero to be ¢ = 0 and v = 0. This
point is also made in Jacod-Shiryaev [18].

The following concept of drift rate will be used throughout the paper.

Definition 1.4. Let X be any semimartingale with canonical representation (1.1),
and consider an operational clock G such that the relationships (1.3) hold. On
{ ' |2[L{jzj>13v(dz) < oo}, the drift rate (with respect to G) of X is defined as the
expression b + [ x|, >1yv(dz).

The range of definition { [ |z|If,>13v(dz) < oo} for the drift rate does not
depend on the choice of operational clock G, though the drift rate itself does.
Whenever the increasing process [|z|Lgz>13] ¥ = ([ [2[Lgz>137(dx)) - G is finite,
(this happens if and only if X is a special semimartingale), the predictable process
B+ [x]I{|x|>1}} *x1 = (b+ fxﬂ{|x|>1}u(da:)) - G is called the drift of X. If drifts
exist, drift rates exist too; the converse is not true. Semimartingales that are
not special might have well-defined drift rates; for instance, a o-martingale is
a semimartingale with drift rate identically equal to zero. See Appendix C on
o-localization, for further discussion and intuition.

1.2. Portfolios and Wealth processes. A financial agent starts with some
strictly positive initial capital, which we normalize to Wy = 1, and can invest
in the assets described by the process S by choosing a predictable, d-dimensional
and X-integrable process w, which we shall refer to as portfolio. The number
7l represents the proportion of current wealth invested in stock i at time t; the

remaining proportion 79 := 1 — Zgzl 7} of wealth is invested in the money market.

Some restrictions have to be enforced, so that the agent cannot use so-called
doubling strategies. The assumption prevailing in this context is that the wealth
process should be uniformly bounded from below by some constant. This has the
very clear financial interpretation of a credit limit that the agent has to face. For
convenience, we shall set this credit limit at zero.

The above discussion leads to the following definition: a wealth process will be
called admissible, if it and its left-continuous version stay strictly positive. Let us
denote the wealth process generated from such a portfolio by W™; we must have
W™ >0 as well as W™ > 0. From the previous interpretation, we get:

AWF d

wr i
t— =0 St—

a linear stochastic differential equation that describes the dynamics od W™ It is
much easier (and cleaner) to write this equation in terms of the discounted wealth

process W7 := wr / 50; as the reader can check, W7 satisfies the similar-looking
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linear stochastic differential equation

s _ Zﬂ’ d.St = Z?TdeZ = 7r)dX;,
i=0 i=1

wE e
where everything is now written in terms of discounted quantities. The second

equality above holds simply because S° = 1 and S* = S} £(X?), while the last is
just a matter of cleaner notation. It follows then that

(1.5) WT=&(r-X).
From now on we shall only consider discounted wealth processes.

1.3. Further constraints on portfolios. We start with an example in order to
motivate Definition 1.6 below.

Ezample 1.5. Suppose that the agent is prevented from selling stock short. In
terms of the portfolio used, this means 7! > 0 for alli = 1,...,d, or that 7(w,t) €
(R;)? for all (w,t) € [0,T]. If we further prohibit borrowing from the bank, then
also 70 > 0; setting € := {p € R? | p’ > 0 and Z?Zl p’ < 1}, the prohibition
of short sales and borrowing translates into the requirement 7(w,t) € € for all
(w,t) € [0,T].

The example leads us to consider all possible constraints that can arise this way;
although in this particular case the set € was non-random, we shall encounter very
soon situations, where the constraints depend on both time and the path.

Definition 1.6. Consider an arbitrary set-valued process € : [0,7] — B(R?).
The predictable process m will be called €-constrained, if m(w,t) € €(w,t) for all
(w,t) € [0,T]. We denote by Ilg the class of all €-constrained, predictable and
X-integrable processes that satisfy 7' AX > —1.

The requirement 7' AX > —1 is there to ensure that we can define the admis-
sible wealth process W7, i.e., that the wealth will remain strictly positive.

Let us use this requirement to give other constraints of this type. Since these
actually follow from the definitions, they will not constrain the wealth processes
further; the point is that we can always include them in our constraint set.

Example 1.7. NATURAL CONSTRAINTS. An admissible strategy generates a wealth
process that starts positive and stays positive. Thus, if W™ = E(7 - X), then we
have AW™ > —W7™, or 1 AX > —1. Recalling the definition of the random
measure v from (1.3), we see that this requirement is equivalent to

vin'e < 1) =v[{z eR? | 7'z < —1}] =0, P® G-almost everywhere;
Define now the random set-valued process (the randomness comes through v)
(1.6) Coi={peR?|v[p'z< -1 =0},
which we shall call the set-valued process of natural constraints. Since 7' X > —1,
whenever 7 € Ilg, we always have 7 € Ilgng, as well.

Note that €; is not deterministic in general. It is now clear that we are not
considering random constraints just for the sake of generality, but because they
arise naturally in portfolio choice settings. Eventually, in subsection 2.3, we shall
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impose more structure on the set-valued process €: namely, convexity, closedness
and predictability. The reader can check that the above examples have these
properties; the “predictability structure” should be clear for €y, which involves
the predictable process v.

2. THE NUMERAIRE PORTFOLIO: DEFINITIONS, GENERAL DISCUSSION, AND
PREDICTABLE CHARACTERIZATION

2.1. The numéraire portfolio. The following is a central notion of the paper.

Definition 2.1. A process p € Ilg will be called numéraire portfolio, if for every
m € Ilg the relative wealth process W™ /WP is a supermartingale.

The term “numéraire portfolio” was first introduced by Long [29]; he defined it
as a portfolio p that makes W™ /W? a martingale for every portfolio m, then went
on to show that this requirement is equivalent, under some additional assumptions,
to absence of arbitrage for discrete-time and It6-process models. Definition 2.1 in
this form first appears in Becherer [4], where we send the reader for the history
of this concept. A simple observation from that paper is that the wealth process
generated by numéraire portfolios is unique: if there are two numéraire portfolios
p1 and po in I, then both W /WP2 and Wr2 /WP are supermartingales and
Jensen’s inequality shows that they are equal.

Observe that W7 is always well-defined, even on {T' = oo}, since 1/W” is a
positive supermartingale and the supermartingale convergence theorem implies
that W7 exists, thought it might take the value +oco on {T' = oo}. A condition of
the form W:’,'? < 400 will be essential when we consider free lunches in section 3.

Remark 2.2. The numéraire portfolio is introduced in Definition 2.1 as the solution
to some sort of optimization problem. It has at least four more such optimality
properties. If p is the numéraire portfolio, then:

e it is growth-optimal in the sense that it maximizes the growth rate over all
portfolios (see subsection 2.5);

e it maximizes the asymptotic growth of the wealth process it generates over
all portfolios (see Proposition 2.23);

e it is also the solution of a log-utility mazimization problem. In fact, if this
problem is defined in relative (as opposed to absolute) terms, the two are
equivalent. For more infomation, see subsection 2.7; and

e (W?)~1 it minimizes the reverse relative entropy among all supermartin-
gale deflators, i.e., strictly positive semimartingales D with Dy = 1 such
that DW™ is a supermartingale for all 7 € Il¢ (see subsection 3.4).

We now state the basic problem that will occupy us in this section; its solution
will be the content of Theorem 2.15.

Problem 2.3. Find necessary and sufficient conditions for the existence of the
numéraire portfolio in terms of the triplet of predictable characteristics of the stock-
price process S (equivalently, of the returns process X ).



THE NUMERAIRE PORTFOLIO IN SEMIMARTINGALE FINANCIAL MODELS 11

2.2. Preliminary necessary and sufficient conditions for existence of the
numéraire portfolio. In order to decide whether p € Il¢ is the numéraire port-
folio, we must check whether W7 /W is a supermartingale for all 7 € II¢. Let us
then derive a convenient expression for the ratio W™ /W?.

Consider a baseline portfolio p € Ilg that generates a wealth W, and any other
portfolio m € Il¢; their relative wealth process is given by the ratio W™ /W? =
E(m-X)/E(p - X), which can be further expressed as follows.

Lemma 2.4. Suppose that Y and R are two scalar semimartingales with AY > —1
and AR > —1. Then E(Y)/E(R) = E(Z), where

c c C ARS
(2.1) Z=Y - R—[Y°— R RY| ;{A(YS R5)1+ARS}'

Proof. The process £(R)~! is bounded away from zero, so the stochastic loga-
rithm of Z = £(Y)/E(R) exists. Furthermore, the process on the right-hand-
side of (2.1) is well-defined and a semimartingale, since > . |AR,|*> < oo and
e |AY;AR,| < 00, Now, E(Y) = E(R)E(Z) = E(R+ Z + [R, Z]), by Yor’s
formula. The uniqueness of the stochastic exponential implies Y = R+ Z +[R, Z].

This is an equation for the process Z; by splitting it into continuous and purely
discontinuous parts, one can guess, then easily check, that it is solved by the
process on the right-hand side of (2.1). O

It is obvious from this last lemma and (1.5) that we have

wr . plx
mzé’((ﬂ—p)'){(p)), with X®) .= X — (¢p) -G — {Hp—rx x} * LU

here p is the jump measure of X in (1.2), and G is the operational clock of (1.3).

We are interested in ensuring that W7 /W7 is a supermartingale. This relative
wealth process is strictly positive, so the supermartingale property is equivalent to
the o-supermartingale one, which is in turn equivalent to requiring that its drift
rate be finite and negative®. Since W™ /W? =& ((m — p) - X(p)), the condition of
negativity on the drift rate of W™ /W? is equivalent to the requirement that the
drift rate of the process (m —p) - X (P) be negative. Straightforward computations
show that, when it exists, this drift rate is

@2) ] )= (m-p) b (r—p) e+ [ dn(o)v(do).
The integrand in this expression is defined as
(2.3)
(r—p)'= T l+nla T
197r|p(93) = m —(m—p) zlfg<1y| = m —1—(m—p) zlijzi<1y s

it is v-bounded from below by —1 on the set {|z| > 1}, while on {|z| < 1} (near
x = 0) it behaves like (p — 7) "22 " p, which is comparable to |z|?. It follows that
the integral in (2.2) always makes sense, but can take the value +o00; thus the drift
rate of W7 /WP either exists (i.e., is finite) or takes the value +o00. In any case,

2For drift rates, see Definition 1.4. For the o-localization technique, see Kallsen [20]; an
overview of what is needed here is in Appendix C, in particular, Propositions C.2 and C.3.
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the quantity vel(w | p) of (2.2) is well-defined. The point of the notation vel(w | p)
is to serve as a reminder that this quantity is the rate of return of the relative
wealth process W™ /W?.

The above discussion shows that if 7 and p are two portfolios, then W7 /W7 is a
supermartingale if and only if vel(7 | p) < 0, P® G-almost everywhere. Using this
last fact we get preliminary necessary and sufficient conditions needed to solve
Problem 2.3. In a different, more general form (involving also “consumption”)
these have already appeared in Goll and Kallsen [16].

Lemma 2.5. Suppose that the constraints € imply the natural constraints of (1.6)
(i.e., € C &), and consider a process p with p(w,t) € €(w,t) for all (w,t) € [0,T].
In order for p to be the numéraire portfolio in the class Illg, it is necessary and
sufficient that the following hold:

(1) tel(m | p) €0, P® G-a.e. for every m € P(RY) with w(w,t) € E(w,t);
(2) p is predictable; and
(3) p is X-integrable.

Proof. The three conditions are clearly sufficient for ensuring that W7 /W7 is a
supermartingale for all m € Ilg.

The necessity is trivial, but for the fact that we ask condition (1) to hold not
only for all m € Ilg, but for any predictable process 7 (which might not even
be X-integrable) such that m(w,t) € €(w,t). Suppose condition (1) holds for all
7 € Ig; as a first step, take any £ € P such that £(w,t) € €(w,t) and £TAX >
—1. Then, &, := €H{|£|§n} + pﬂ{‘£|>n} belongs to Ilg, so that vel( | p)ﬂ{mgn} =
vel(&n | p)lfjej<ny < 0; sending n to infinity we get vel(¢ | p) < 0. Now pick any
¢ € P(R?) such that &(w,t) € €(w,t); we have ETAX > —1 but not necessarily
ETAX > —1. Then, for n € N, &, := (1 — n~1)¢ also satisfies &, € P(RY) and
En(w,t) € €(w,t) and further & AX > —1; it follows that vel(&, | p) < 0. An
application of Fatou’s lemma now will give tel(¢ | p) < 0. O

In order to obtain necessary and sufficient conditions for the existence of the
numéraire portfolio in terms of predictable characteristics, the conditions of Lemma
2.5 will be tackled one by one. For condition (1), it will turn out that one has
to solve pointwise (for each fixed (w,t) € [0,77]) a convex optimization problem
over the set €(w,t). It is obvious that if (1) above is to hold for €, then it must
also hold for the closed convex hull of €, so we might as well assume that € is
closed and convex. For condition (2), in order to prove that the solution we get is
predictable, the set-valued process € must have some predictable structure. We
describe in the next subsection how this is done. After that, a simple test will
give us condition (3), and we shall be able to provide the solution of Problem 2.3
in Theorem 2.15, all in terms of predictable characteristics.

2.3. The predictable, closed convex structure of constraints. Let us start
with a remark concerning degeneracies that might appear in the market. These
have to do with linear dependence that some stocks might exhibit at some points
of the base space, causing seemingly different portfolios to produce the exact same
wealth processes; such portfolios should then be treated as equivalent.
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To formulate this notion, consider two portfolios m; and my with W™ = W7™2,
The uniqueness of the stochastic exponential implies that m - X = m - X, so
the predictable process ( := mo — 7 satisfies ( - X = 0; this is easily seen to be
equivalent to ¢ - X¢ = 0, ('AX = 0 and ¢ - B = 0, and makes the following
definition plausible.

Definition 2.6. For a Lévy triplet (b,c,v) define the linear subspace of null
investments It to be the set of vectors

(2.4) Ni={CeR|(Te=0, v[("w#0]=0and ('b=0}
for which nothing happens if one invests in them.

Two portfolios m and my satisfy ma(w,t) — m(w,t) € N(w, t) for P ® G-almost
every (w,t) € [0,T7], if and only if W™ = W™2; we consider such m; and 7y to be
the same. Here are the predictability, closedness and convexity requirements for
our set-valued process of constraints.

Definition 2.7. The R¢%set-valued process ¢ will be said to impose predictable
closed convex constraints, if
(1) N(w,t) C C(w,t) for all (w,t) € [0,T7],
(2) €(w,t) is a closed convex set, for all (w,t) € [0,7], and
(3) ¢ is predictably measurable, in the sense that for any closed F' C R?, we
have {ENF # 0} := {(w,t) € [0,T] | €(w,t)NF #0} € P.

Note the insistence that (1), (2) must hold for every (w,t) € [0,T], not just in
an “almost every” sense. The first requirement in this definition can be construed
as saying that we are giving investors at least the freedom to do nothing; that is,
if an investment is to lead to absolutely no profit or loss, one should be free to do
it. In the non-degenerate case this just becomes 0 € €(w,t) for all (w,t) € [0,T7] .

One can refer to Appendix A for more information about the measurability
requirement {€ N F # ()} € P for all closed F' C R%, where the equivalence with
other definitions of measurability is discussed.

The natural constraints €y of (1.6) can be easily seen to satisfy the requirements
of Definition 2.7; the proof of the predictability requirement is very plausible from
the definition. Indeed, one just has to write

—\2
¢ = {p e R? ’ /n(l +p 2)v(de) = 0}, where k(x) := l(—i—x(:v)_)Q ,
then use Lemma A.4 in conjunction with Remark 1.3 which provides a version of
the characteristics, such that the integrals in the above representation of €y make
sense for all (w,t) € [0,T]. In view of this, we can — and certainly will — always
assume € C &, since otherwise we can replace € by €N &y (and use the fact that
intersections of closed predictable set-valued processes are also predictable — see
Lemma A.3 of Appendix A).

2.4. Unbounded Increasing Profit. We proceed with an effort to obtain a
better understanding of condition (1) in Lemma 2.5. In this subsection we state a
sufficient predictable condition for its failure; in the next subsection, when we state
our first main theorem about the predictable characterization for the existence of
the numéraire portfolio, we shall see that this condition is also necessary. The
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failure of that condition is intimately related to the existence of wealth processes
that start with unit capital, manage to make some wealth with positive probability,
and are furthermore increasing. The existence of such a possibility in a financial
market amounts to the most egregious form of arbitrage.

Definition 2.8. The predictable set-valued process ¢ := Naso @€ is called the
cone points (or recession cone) of €. A portfolio 7 € Il will be said to generate
an unbounded increasing profit (UIP), if the wealth process W7 is increasing
(PWI <W[I Vs<t<T]=1),andif PIWJ > 1] > 0. If no such portfolio exists,
then we say that the No Unbounded Increasing Profit (NUIP) condition holds.

The qualifier “unbounded” stems from the fact that since m € Ilg, an agent has
unconstrained leverage on the position m and can invest unconditionally; by doing
so, the agent’s wealth will be multiplied accordingly. It should be clear that the
numéraire portfolio cannot exist, if such strategies exist. To obtain the connec-
tion with predictable characteristics, we also give the definition of the immediate
arbitrage opportunity vectors in terms of the Lévy triplet.

Definition 2.9. Let (b, c,v) be any Lévy triplet. The set J of immediate arbitrage
opportunities is defined as the set of vectors & € R?\ 9 for which the following
three conditions hold:

(1) €'e=0,

(2) v[gTz < 0] =0,

(3) £Tb— [&Talfjy<yyv(dz) > 0.

Vectors in the set O of (2.4) satisfy these three conditions, but cannot be con-
sidered “arbitrage opportunities” since they have zero returns. One can see that
J is a cone with the whole “face” 91 removed. When we want to make explicit the
dependence of the set J on the chosen Lévy triplet (b, ¢, v), we write J(b, ¢, v).

Assume, for simplicity only, that X is a Lévy processes; and that we can find
a vector £ € J. The significance of conditions (1) and (2) in Definition 2.9 for
the process £ - X are obvious: the first implies that there is no diffusion part; the
second, that there are no negative jumps; and the third condition turns out to
imply that & - X has finite first variation (though this is not as obvious). Using
also the fact that £ ¢ M, we get that - X is actually non-zero and increasing, and
the same will hold for W& = £(¢- X); see subsection 4.1 for a thorough discussion.

Proposition 2.10. The NUIP condition of Definition 2.8 is equivalent to the
requirement that the predictable set {3 N € # 0} be P ® G-null. Here,

[I0E £ 0} = {(w,8) € [0,T] | 3 (b(e, 1), c(w,8), v(w, £)) N E(w, 1) # 0},
and € := ﬂaeﬂh al s the set of cone points of €.
Section 4 is devoted to the proof of this result. The reader should should go over
at least subsection 4.1, which contains one side of the argument: if there exists an
unbounded increasing profit, then the set {JN € # (0} cannot be P ® G-null. The

other direction, though it follows from the same idea, has a “measurable selection”
flavor and the reader might wish to skim it.

Remark 2.11. The reader might wonder what connection the previous result has
with our original Problem 2.3. We attempt here a quick answer in a Lévy process
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setting, so everything is deterministic. We shall show that if we have 3N € % 0
(i.e., if the set of cone points of our constraints € exposes some immediate arbitrage
opportunities), then one cannot find a process p € € such that vel(w | p) < 0 holds
for all 7 € Ilg.

To this end, let us pick a vector & € JN € # () and suppose that p satisfies
vel(m | p) <0, for all 7 € €. Since £ € €, we have né € € for all n € N, as well as
(1 —n"1Y)p+ £ € € from convexity; but € is closed, so p + ¢ € €. Now from (2.2)
and the definition of J 3 ¢, we see that

'l

te[(p+€ | P) == gTb - /ngH{|Z§1}V(dx) + m

is strictly positive, which leads to a contradiction: there cannot exist any p satis-
fying vel(m | p) <0 for all w € €.

The converse holds as well; namely, if 3N & = (), then one can find a p that
satisfies the previous requirement. But the proof of this part is longer and will be
discussed in section 5 (a complete argument for the deterministic case of a Lévy
triplet can be found in Kardaras [25]).

v(dx)

Example 2.12. Suppose that X is a semimartingale with continuous paths. Then
the jump-measure v is identically equal to zero, and an immediate arbitrage op-
portunity is a vector & € R with ¢ = 0 and €7b > 0. It follows that immediate
arbitrage opportunities do not exist, if and only if b lies in the range of ¢, i.e., if
there exists a d-dimensional process p with b = cp; of course, if ¢ is non-singular
this always holds and p = ¢~'b. It is easy to see that this “no immediate arbitrage
opportunity” condition is equivalent to dB; < d[X, X];. We refer the reader to
Karatzas, Lehoczky and Shreve [22], Appendix B of Karatzas and Shreve [23], and
Delbaen and Schachermayer [9] for a more thorough discussion.

Remark 2.13. Let us write X = A 4+ M for the unique decomposition of a special
semimartingale X into a predictable finite variation part A and a local martingale
M, which we further assume is locally square-integrable. Denoting by (M, M) the
predictable compensator of [M, M], Example 2.12 shows that the condition for ab-
sence of immediate arbitrage opportunities in continuous-path models is the very
simple dA; < d (M, M),. This should be compared with the more complicated
way we have defined this notion for general markets in Definition 2.9.

One wonders whether this simple criterion might work in more general situa-
tions. It is easy to see that dA; < d (M, M), is then necessary for absence of im-
mediate arbitrage opportunities; nevertheless, it is not sufficient — it is too weak.
Take for example X to be the standard scalar Poisson process. In the absence of
constraints on portfolio choice, any positive portfolio is an immediate arbitrage
opportunity. Nevertheless, A; =t and M; = X; —t with (M, M), =t = Ay, so
that dA; < d (M, M), holds trivially.

2.5. The growth-optimal portfolio and connection with the numéraire
portfolio. We hinted in Remark 2.11 that if {JN € # @} is P ® G-null, then one
can find a process p € Ilg such that vel(w | p) < 0 for all 7 € Ilg. It is actually
also important to have an algorithmic way of computing this process p.

For a portfolio m € Ilg, its growth rate is defined as the drift rate of the log-
wealth process log W7™. One can use the stochastic exponential formula (0.2) and
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formally (since this will not always exist) compute the growth rate of W™ as
1
(25)  o(m)=nb—gnlent / [log(1 +772) — T el 1y | v(da).

It is well-understood by now that the numéraire portfolio and the portfolio
that maximizes in an (w,t)-pointwise sense the growth rate over all portfolios in
Il are essentially the same. Let us describe this connection somewhat informally.
Consider the case of a deterministic triplet: a vector p € € maximizes this concave
function g if and only if the directional derivative of g at the point p in the direction
of m — p is negative for any m € €. This directional derivative can be computed as

T

(Vln=p) = (5= b=(=p) Teot [ | T2 (5= ) alien | vido)

which is exactly vel(7 | p).

Of course, we do not know if we can differentiate under the integral appearing
in equation 2.5; even worse, we do not know a priori whether the integral is well-
defined. Both its positive and negative parts could lead to infinite results. We

now describe a class of Lévy measures for which the concave growth rate function
g(-) of (2.5) is well-defined.

Definition 2.14. A Lévy measure v will be said to integrate the log, if

/log(l + |2]) Ifjz>13v(dx) < oco.

Consider any Lévy measure v; a sequence (v, )nen of Lévy measures that integrate
the log with v, ~ v, whose densities f, := dv,/dv satisfy 0 < f, <1, fp(zx) =1
for |x| <1, and lim,,— T fr = I, will be called an approximating sequence.

There are many ways to choose the sequence (v, )nen, or equivalently the den-
sities (fn)nen; as a concrete example, take f,(z) = Iy <1y + ]x\_l/”]l{|m|>1}.

The integral in (2.5) is well defined and finite, when the Lévy measure v in-
tegrates the log. When the growth-optimization problem has infinite value, our
strategy will be to solve the optimization problem concerning g(-) for a sequence
of problems using the approximation described in Definition 2.14, then show that
these solutions converge to the solution of the original problem.

2.6. The first main result. We are now ready to state the main result of this
section, describing the existence of the numéraire portfolio in terms of predictable
characteristics. We already discussed condition (1) of Lemma 2.5 and its pre-
dictable characterization: there exists a predictable process p with p(w,t) € €(w,t)
such that vel(m | p) < 0 for all # € g, if and only if {INE # B} has zero
P ® G-measure (Remark 2.13). If this holds, we construct such a process p; the
only thing that might keep this p from being the numéraire portfolio is failure of
X-integrability. To deal with this, define for a given predictable p the process

p'b+ /ﬂTw(H{x|>1} — a1y v(de)

Here is the statement of the main theorem; its proof is given in section 5.

PP =vp'z > 1]+

Theorem 2.15. Consider a financial model described by a semimartingale returns
process X and predictable closed convex constraints €.
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(1) e If the predictable set {3 N & # O} has zero P ® G-measure, then there
exists a unique p € P(R?) with p(w,t) € ENN(w, t) for all (w,t) € [0,T]
such that vel(m | p) <0 for all m € Tg.

e On the predictable set { [log(1 + |x|)I{z>13v(dx) < oo}, this process p
1s obtained as the unique solution of the concave optimization problem

= ar max ).
p g max, g(m)

In general, p can be obtained as the limit of solutions to corresponding
problems, where one replaces v by v, an approximating sequence) in the
definition of g.
e Furthermore, if the process p € P(R?) constructed above is such that
(¢ - G), < +o00, P-a.s., for all finite t € [0,T], then p is X -integrable and
it 1s the numéraire portfolio.

(2) Conversely, if the numéraire portfolio p exists in ¢, then the predictable
set {INC # 0} has zero P ® G-measure, and p satisfies (V° - G), < +0oo,
P-a.s., for all finite t € [0,T], as well as vel(m | p) <0 for all m € Ilg.

Remark 2.16. Let us pause to comment on the predictable characterization of
X-integrability of p, which amounts to G-integrability of both processes

(2.6) ¥ :=v[p'x>1] and o5 :=p b+ /pTx(H{|x>1} — Ifjpra>1y)v(de).

The integrability of ¢{ simply states that the process p- X cannot make an infinite
number of large positive jumps in finite time; but this must obviously be the case
if p- X is to be well-defined. The second term ¢4 is exactly the drift rate of the
part of p - X that remains when we subtract all large positive jumps (more than
unit in magnitude). This part has to be a special semimartingale, so its drift rate
must be G-integrable, which is exactly the requirement (|¢5] - G); < oo, for all
finite ¢ € [0, T7.

Remark 2.17. The conclusion of Theorem 2.15 can be stated succinctly as follows:
the numéraire portfolio holds if and only if we have ¥(B, C,n) < oo for all (w,t) €
[0,T], for the deterministic, increasing functional

U(B,C,n) = (OOH{smé;A@} +¢pﬂ{3ﬂé:@}> G

of the triplet of predictable characteristics (B, C,n). This is easily seen not to
dependent on the choice of the operational clock G.

Remark 2.18. The requirement (¢*-G), < 400, P-a.s., for all finite ¢t € [0,7]
does not imply (¢*-G)p < 400 on {T" = oo}. It is nevertheless easy to see
that the stronger requirement (¢ -G); < oo (equivalently, ¥ (B,C,n) < oo
in the notation of Remark 2.17) means that p is X-integrable up to time 7, in
the terminology of Appendix B. This, in turn, is equivalent to the fact that the
numéraire portfolio exists and that W1 < oo, a constraint that only makes sense
at infinity. We shall return to this when we study arbitrage in the next section.

Example 2.19. Remember the situation with continuous-time semimartingale price
process of Example 2.12. Consider the unconstrained case € = R?. The derivative
of the growth rate is (Vg)r = b — e¢m = ¢p — cm, which is trivially zero for m = p,
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and so p will be the numéraire portfolio as long as ((p'cp) - G), < oo or, in the
case where ¢! exists, when ((b7c1b) - G)T < 0.

2.7. Relative log-optimality. In this and the next subsection we give two opti-
mality properties of the numéraire portfolio. Here we show that it exactly the log-
optimal portfolio in the relative sense, a more restrictive notion of log-optimality.

We proceed with the definition of relative log-optimality where we take into ac-
count the fact that we might be in a infinite-time horizon setting.

Definition 2.20. A portfolio p € Il will be called relatively log-optimal, if

E

W’Tl'
lim sup <log tp> < 0 holds for every 7 € Ilg.
T Wi
Here the limsup is clearly superfluous on {T' < oo} but we include it to also
cover the infinite time-horizon case. If p is relatively log-optimal, the lim sup is
actually a finite limit; this is an easy consequence of the followings result.

Proposition 2.21. A numéraire portfolio exists if and only if a relatively log-
optimal problem portfolio exists, in which case the two are the same.

Proof. In the course of the proof, whenever we write W' /W7? for two portfolios
71 and g, we tacitly imply that on {T" = oo} the limit of this ratio exists, and we
take W' /Wr? to be exactly that limit.

Suppose p is a numéraire portfolio. For any 7 € IIg we have E[W]/W7£] < 1, and
Jensen’s inequality gives Eflog(W7/WF)] <0, so p is also relatively log-optimal.

Let us now assume that the numéraire portfolio does not exist; we shall show
that a relative log-optimal portfolio does not exist either. By way of contradiction,
suppose that p was a relatively log-optimal portfolio.

First, we observe that {JN € # 0} must have zero P ® G-measure. To see why,
suppose the contrary. Then, by Proposition 2.10, we could select a portfolio & € Ilg
that leads to unbounded increasing profit. According to Remark 2.11 (actually,
the “pathwise” version of the argument we used for the Lévy process setting), we
would have p+¢ € Ilg and vel(p | p+&) < 0, with strict inequality on a predictable
set of positive P ® G-measure; this would mean that the process W7 / WPte is a
non-constant positive supermartingale, and Jensen’s inequality again would give
Ellog(W2/ W£+£)] < 0, contradicting the relative log-optimality of p.

Continuing, since the numéraire portfolio does not exist and we already showed
that {JN € = @} has full P ® G-measure, we must have that p (the candidate
in Theorem 2.15 (1) for being the numéraire portfolio) is not X-integrable. In
particular, the predictable set {p # p} must have non-zero P ® G-measure. But
then we can find a predictable set ¥ C {p # p} such that ¥ has non-zero P ® G-
measure and such that ply € Ilg. This implies 7 := pljo s + pls € Il¢, and
since vel(p | m) = vel(p | p)Iy < 0, with strict inequality on ¥, the same discussion
as in the end of the preceding paragraph shows that p cannot be the relatively
log-optimal portfolio. O

Ezample 2.22. Take a one-stock market model with S; = exp(Brat), where
is a standard, 1-dimensional Brownian motion and 7 is an a.s. finite stopping
time with E [ﬁ;f] = +00. Then, E[logSr| = +o0o and the classical log-utility
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optimization problem does not have a unique solution (one can find a multitude
of portfolios that achieve infinite expected log-utility). In this case, Example 2.12
shows that p = 1/2 is both the numéraire and the relative log-optimal portfolio.

2.8. An asymptotic optimality property. In this subsection we deal with a
purely infinite time-horizon case T = oo and describe an “asymptotic growth
optimality” property of the numéraire portfolio. Note that if p is the numéraire
portfolio, then for the positive supermartingale W7 /W? the lim;_ o (W /W)
exists in [0,400) for every 7 € IIg. Consequently, for any increasing process H
with Ho, = 400 (H does not even have to be adapted), we have

) 1 wr

(2.7) h?isololp (Ht log Wf) <0.
This version of “asymptotic growth optimality” was first observed and proved (for
H; =t, but this is not too essential) in Algoet and Cover [1] for the discrete-time
case; see also Karatzas and Shreve [23] and Goll and Kallsen [16] for a discussion
of (2.7) in the continuous-path and the general semimartingale case, respectively.

Our next result, Proposition 2.23, separates the cases when limy_, . (W /W/) is
(0, 00)-valued and when it is zero, and finds a predictable characterization of this
dichotomy. Also, in the case of convergence to zero, it quantifies how fast does
this convergence takes place. The proof of Proposition 2.23 is given in section 6,
actually in a more general and abstract setting.

Proposition 2.23. Assume that the numéraire portfolio p exists for the infinite
time-horizon [0,00]. For any other m € Ilg, define the positive, predictable process

1 1+7'a
h™ = —vel(m | p) + 5(% —p)le(m—p)+ /qa <1+pTx> v(dz).
Here, qq(y) := [—loga+ (1 —a™")y] Ip0)(y) + [y — 1 —1og Y] L4 4o0) (y) for some
a € (0,1) is a positive, convex function. Consider the increasing, predictable
process H™ := h™ - G. Then we have:

™

on {HY, < +oo}, tliglo % € (0, +00); while
¢

1 s
on {H}, = +oo}, limsup < log VVt) < -1

Remark 2.24. Some comments are in order. We begin with the “strange looking”
function ¢,(-), that depends also on the (cut-off point) parameter a € (0,1). Ide-
ally we would like to define qo(y) = y — 1 — logy for all y > 0, since then the
predictable increasing process H™ would be exactly the negative of the drift of the
semimartingale log(W™/W?). Unfortunately, a problem arises when the positive
147"
1+p'Tx
to saying that log(W™/WP?) is not a special semimartingale; the problem comes
from the fact that go(y) explodes to +00 as y | 0. For this reason, we define g, (y)
to be equal to qo(y) for all y > a, and for y € [0,a) we define it in a linear way
so that g4(-) is continuously differentiable at the “gluing” point a. The functions
¢a(+) all are finite-valued at y = 0 and satisfy g4(-) T go(-) as a | 0.

predictable process [ qo ( ) v(dx) fails to be G-integrable which is equivalent
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Let us now study A™ and H™. Observe that h™ is predictably convex in ,
namely, if 7 and 7o are two portfolios and A is a [0, 1]-valued predictable process,
then pPAmH=Nm2 < Ap™1 1 (1 — \)h™2. This, together with the fact that h™ = 0
if and only if m — p is a null investment, implies that h™ can be seen as a measure
of instantaneous deviation of m from p; by the same token, H can be seen as the
total (cumulative) deviation of 7 from p. With these remarks in mind, Proposition
2.23 says in effect that, if an investment deviates a lot from the numéraire portfolio
p (i.e., if HY = +00), its performance will lag considerably behind that of p. Only
if an investment tracks very closely the numéraire portfolio for the whole amount
of time (i.e., if HI, < +00) will the two wealth processes have comparable growth
over the whole time-period. Also, in connection with the previous paragraph,
letting a | 0 in the definition of H™ we get equivalent measures of distance of a
portfolio 7 from the numéraire portfolio, in the sense that the event { HZ = 400}
does not depend on the choice of a; nevertheless we get ever sharper results, since
h™ is increasing for decreasing a € (0,1).

3. UNBOUNDED PROFITS WITH BOUNDED RISKS, SUPERMARTINGALE
DEFLATORS AND THE NUMERAIRE PORTFOLIO

In this section we proceed to investigate how the existence or non-existence of
the numéraire portfolio relates to some concept of “free lunch” in the financial
market. We shall eventually prove a version of the Fundamental theorem of Asset
Pricing; this is our second main result, Theorem 3.12.

3.1. Arbitrage-type definitions. There are two widely-known conditions relat-
ing to arbitrage in financial markets: the classical “No Arbitrage” and its stronger
version “No Free Lunch with Vanishing Risk”. We recall them below, together
with yet another notion; this is exactly what one needs to bridge the gap between
the previous two, and it will actually be the most important for our discussion.

Definition 3.1. For the following definitions we consider our financial model with
constrains € on portfolios. When we write W7 for some 7 € Il we tacitly assume
that limy_.o W/ exists on {T' = oo}, and set W] equal to that limit.

(1) A portfolio 7 € Il¢ is said to generate an arbitrage opportunity, if it sat-
isfies P[WT > 1] = 1 and P[W7 > 1] > 0. If no such wealth process exists
we say that the €-constrained market satisfies the no arbitrage condition,
which we denote by NAg.

(2) A sequence (mp)nen of portfolios in Il¢ is said to generate an unbounded
profit with bounded risk (UPBR), if the collection of positive random
variables (W7")nen is unbounded in probability, i.e., if

lim | sup P[W7" > m] > 0.
m—00  peN
If no such sequence exists, we say that the constrained market satisfies the
no unbounded profit with bounded risk (NUPBR¢) condition.

(3) A sequence (m,)nen of portfolios in Ilg is said to be a free lunch with
vanishing risk (FLVR), if there exist an ¢ > 0 and an increasing sequence
(0n)nen of real numbers with 0 < 6, T 1, such that P[W7™ > 6,] =1 as
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well as P[W7™ > 14 €] > e. If no such sequence exists we say that the
market satisfies the no free lunch with vanishing risk (NFLVR) condition.

The NFLVR condition was introduced by Delbaen and Schachermayer [8] in
a slightly different way. With the above definition of free lunch with vanishing
risk and the convexity lemma A 1.1 from that last paper we can further assume
that there exists a [1, +00]-valued random variable f with P[f > 1] > 0 such that
P-lim,, oo W™ = f, and this brings us back to the usual definition.

If UPBR exists, one can find a sequence of wealth processes, each starting
with less and less capital (converging to zero) and such that the terminal wealths
are unbounded with a fixed probability. Thus, UPBR can be translated as “the
possibility of making (a considerable) something out of almost nothing”; it should
be contrasted with the classical notion of arbitrage, which can be translated as
“the certainty of making something more out of something”.

Observe that NUPBR¢ can be alternatively stated by using portfolios with
bounded support, so the requirement of a limit at infinity for the wealth processes
on {T = oo} is automatically satisfied. This is relevant because, as we shall see,
when NUPBRe holds every wealth process W™ has a limit on {T" = oo} and is a
semimartingale up to 7" in the terminology of section B of the Appendix.

None of the two conditions NAg and NUPBR implies the other, and they are
not mutually exclusive. It is easy to see that they are both weaker than NFLVR,
and that in fact we have the following result which gives the exact relationship
between these notions under the case of cone constraints. Its proof can be found
in [8] for the unconstrained case; we include it here for completeness.

Proposition 3.2. Suppose that € enforces predictable closed convexr cone con-
straints. Then, NFLVR¢ holds if and only if both NAg and NUPBR¢ hold.

Proof. It is obvious that if either NAgs or NUPBR fail, then NFLVR fails too.
Conversely, suppose that NFLVR¢ fails. If NA¢ fails there is nothing more to say,
so suppose that NAg holds and let (7"),cn generate a free lunch with vanishing
risk. Since we have no arbitrage, the assumption P[W7" > §,] = 1 results in the
stronger P(W/™ > 6, for all t € [0,T]) = 1. Construct a new sequence of wealth
processes (W), cn by requiring Wé» = 1+ (1 —6,) "1 (W™ —1). The reader can
readily check that W > 0 and then that &, € Il (here it is essential that ¢ be
a cone). Furthermore, P[Wr™ > 1 + €] > € becomes IP’[W:,Q" >1+(1—-6,) "t >
€, meaning that (&,)nen generates an unbounded profit with bounded risk, so
NUPBRg fails. O

3.2. The Fundamental Theorem of Asset Pricing. The NFLVR¢ condition
has proven very fruitful in understanding cases when we can change the original
measure P to some other equivalent probability measure such that the stock-price
processes (or, at least the wealth processes) has some kind of martingale (or maybe
only supermartingale) property under Q. The following definition puts us in the
proper context for the statement of Theorem 3.4.

Definition 3.3. Consider a financial market model described by a semimartingale
discounted stock price process S and predictable closed convex constraints € on
portfolios. A probability measure Q will be called a €-equivalent supermartingale
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measure (ESMMg¢ for short), if Q ~ P on Fp, and every W™ for m € Ilg is a
Q-supermartingales. The class of ESMMg is denoted by Q.

Similarly, define a €-equivalent local martingale measure (ELMMg¢ for short) Q
by requiring Q ~ P on Fr and that every W™ for 7 € Il¢ is a Q-local martingale.

In this definition we might as well assume that € are cone constraints. The
reason is that if ESMMg¢ holds, the same holds for the market under constraints
cone(C€), the closure of the cone generated by €.

The following theorem is one of the most well-known in mathematical finance;
we give the “cone-constrained” version.

Theorem 3.4. (FTAP) For a financial market model with stock-price process S
and predictable closed convex cone constraints €, NFLVR¢ is equivalent to Qg # ().

In the unconstrained case, one can prove further that there exists a Q ~ P
such that the stock prices S become o-martingales under @Q — this version of
the theorem is what is called the “Fundamental Theorem of Asset Pricing”. The
concept of o-martingale is just a natural equivalent of local martingales for pos-
sibly locally unbounded processes; for positive processes, o-martingale and local
martingale is the same thing, so the reader can somehow discard this subtle dif-
ference. Nevertheless, it should be pointed out that Theorem 3.4 holds for any
stock-price process, and then the local martingale concept is not sufficient. In any
case, we know in particular that Q will be an equivalent local martingale measure
according to Definition 3.3.

As a contrast to the preceding paragraph, let us note that because we are
working under constraints, we cannot hope in general for anything better than
an equivalent supermartingale measure in the statement of Theorem 3.4. One
can see this easily in the case where X is a single-jump process which jumps at
a stopping time 7 with AX, € (—1,0) and we are constrained in the cone of
positive strategies. Under any measure Q ~ P, the process S = £(X) = W1, an
admissible wealth process, will be non-increasing and not identically equal zero,
which prevents it from being a local martingale.

The implication Q¢ # ) = NFLVRg is easy; the reverse is considerably harder
for the general semimartingale model. There is a plethora of papers devoted to
proving some version of this result. In the generality assumed here, a proof appears
in Kabanov [19], although all the crucial work has been done by Delbaen and
Schachermayer in [8] and the theorem is certainly due to them. To make sure that
Theorem 3.4 can be derived from Kabanov’s statement, observe that the class of
wealth processes (W™)cr, is convex and closed in the semimartingale (also called
“Emery”) topology. A careful inspection in Mémin’s work [30], of the proof that
the set of all stochastic integrals with respect to the d-dimensional semimartingale
X is closed under this topology, will convince the reader that one can actually pick
the limiting semimartingale from a convergent sequence (W7™),cn, with m, € Ilg
for all n € N, to be of the form W™ for some 7 € Il¢.

3.3. Beyond the Fundamental Theorem of Asset Pricing. Let us study a
little more the assumptions and statement of the FTAP 3.4. We shall be concerned
with three questions, which will turn out to have the same answer; this answer
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will be linked with the NUPBR condition and — as we shall see in Theorem 3.12
— with the existence of the numéraire portfolio.

3.3.1. Convex but non-conic constraints. Slightly before the statement of the Fun-
damental Theorem of Asset Pricing 3.4 we discussed that we have to assume that
the constraint set is a cone. This is crucial — the theorem is no longer true if we
drop the “cone” assumption. Of course, Q¢ # ) = NFLVR still holds, but the
reverse implication fails, as shown in the example below; this is a raw version of a
similar example from Kardaras [25].

Ezample 3.5. Consider a simple discrete-time model with one time-period: there
exist only day zero and day one. We have two stocks with discounted stock prices
S and S? that satisfy S§ = S2 = 1, while S| = 1+ e and S? = f. Here ¢
and f are two independent, exponentially distributed random variables. Using
the independence of e and f, the class of portfolios is easily identified with all
(p,q) € €& =Ry x [0,1]. Since X{ = S} — S} = e > 0, P-a.s., we have that NA
fails for this (non-constrained) market. In other words, for the non-constrained
case there can be no ESMM.

Consider now the non-random constraint set € = {(p, q) € € | p?> < ¢}. Observe
that cone(€) = R4y x R and thus no ESMMg exists; for otherwise an ESMM
would exist already for the unconstrained case. We shall nevertheless show in the
following paragraph that NFLVR¢ holds for this constrained market.

Start with a sequence of portfolios 7, = (pn, ¢n)nen in €. The wealth at day one
will be W™ = 1—qpn+qn f +prne; obviously P[W[™ > 1—g¢,] = 1, since 1 —g, is the
essential infimum of W{™. It then turns out that in order for (7, ),en to generate
a free lunch with vanishing risk we must require g, | 0 and P[W™ > 1+4¢] > € for
some € > 0. Observe that we must have g, > 0, otherwise p,, = 0 as well (because
of the constraints) and then W™ = 1. Now, because of the constraints again we
have |p,| < \/qn; since Ple > 0] = 1 the sequence of strategies &, := (\/n, ¢n) Will
generate a sequence of wealth processes (W), oy that will dominate (W™),,cn:
PW;™ > W]"] = 1; this will of course mean that (Wé"),cy is also a free lunch
with vanishing risk. We should then have P[1 — ¢, +/qne+qnf > 1+4¢€] > € using
¢n > 0 and some algebra we get Ple > /g (1 — f) + €//qn] > €. Since (gn)nen
goes to zero this would imply that Ple > M] > € for all M > 0, which is clearly
ridiculous. We conclude that NFLVR¢ holds, although as we have seen Q¢ = ().

What can we say then in the case of convex — but non necessarily conic —
constraints? It will turn out that for the equivalent of the Fundamental Theorem
of Asset Pricing, the assumptions from both the economic and the mathematical
side should be relaxed. The relevant economic notion will be NUPBR and the
mathematical one will be the concept of supermartingale deflators — more on this
in subsections 3.4 and 3.5.

3.3.2. Predictability of free lunches. The reason why “free lunches” are considered
economically unsound stems from the following reasoning: if they exist in a market,
many agents will try to take advantage of them; then, usual supply-and-demand
arguments will imply that some correction on the prices of the assets will occur,
and remove these kinds of opportunities. This is a very reasonable line of thought,
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provided that one can discover the free lunches that are present. But is it true that,
given a specific model, one is in a position to decide whether free lunches exist
or not? In other words, mere knowledge of the existence of a free lunch may
not be enough to carry the previous economic argument — one should be able to
construct the free lunch. This goes somewhat hand in hand with the fact that
the FTAP is an existential result, in the sense that it provides knowledge that
some equivalent (super)martingale measure exists; in some cases we shall be able
to spot it, in others not.

Here is a natural question that almost poses itself at this point: when free
lunches exist, is there a way to construct them from observable quantities in the
market? Of course there are many ways to understand what “observable quan-
tities” means, but here is a partial answer: if NUPBRg¢ fails, then there exists
a way to construct the unbounded profit with bounded risk using the triplet of
predictable characteristics (B, C,n). The detailed statement will be given later on
in subsection 3.6, but let us quickly say here that the deterministic positive func-
tional ¥ of Remark 2.17 is such that on the event {Up(B,C,n) = oo} NUPBRe¢
fails (and then we can construct free lunches using the triplet of predictable char-
acteristics and an algorithm), while on {¥7(B,C,n) < co} NUPBR¢ holds. As a
result of this, we get that NUPBR¢ is somehow a pathwise notion.

What we described in the last paragraph for the NUPBR¢ condition does not
apply to the NA¢ condition as we shall soon show, but not before we recall a
famous example where the model admits arbitrage opportunities.

Example 3.6. Consider a one-stock market, where the price process satisfies
dS; = (1/Sy)dt +dB, So=1.

Here, 3 is a standard, 1-dimensional Brownian motion, so S is the 3-dimensional
Bessel process. We work on the finite time horizon [0, 1].

For future reference, observe that by using the natural operational clock Gy =t
we get b= 572 and ¢ = S~2; this follows from dS;/S; = (1/S?)dt + (1/S;)dB3; =:
dX;. Thus, the numéraire portfolio for the unconstrained case exists and is p =
¢~ 'b = 1 according to Example 2.19.

This market admits arbitrage. To wit, with the notation

z L —u?/2 J1 —
= eidu, F(t,x):M, forr e Rand 0 <t <1,
oo V2T

o(1)
consider the process Wy = F\(t,S;). Obviously Wy =1, W > 0 and

dW, = g%(t,st)dst, and thus dMV/[Zt = F(;St)gi(t’ Si) | dSt
by It6’s formula. We conclude that W = W™ for m; := (0log F'/0x)(t, S¢), and we
clearly have W* = 1/®(1) > 1, i.e., there exists arbitrage in the market.

There is also an indirect way to show that arbitrage exists, proposed by Delbaen
and Schachermayer [11]. One has to assume that the filtration F is the one gener-
ated by S (equivalently, by /3), and recall that 1/S is a strict local martingale; i.e.,
E[1/S;] < 1 for all ¢ > 0. Using the strong martingale representation property of
B, it can be seen that 1/S] is the only candidate for the density of an equivalent
supermartingale measure. Since 1/S5] fails to integrate to one, ESMM fails. The

o(z)




THE NUMERAIRE PORTFOLIO IN SEMIMARTINGALE FINANCIAL MODELS 25

Fundamental Theorem of Asset Pricing 3.4 implies that NFLVR fails. In fact, it
is actually NA which fails; this will become clear after our main Theorem 3.12.

We note that this is one of the rare occasions, when one can compute the arbi-
trage portfolio concretely. We were successful in this, because of the very special
structure of the 3-dimensional Bessel process; every model has to be attacked in
a different way and there is no general theory that will spot the arbitrage. Never-
theless, we refer the reader to Fernholz, Karatzas and Kardaras [14] and Fernholz
and Karatzas [13] for many examples of arbitrage relatively to the market portfolio
(whose wealth process that follows exactly the index Z?Zl S in proportion to the
initial investment). This is done under conditions on market structure that are
easy to check and descriptive — as opposed to normative, such as ELMM. o

We now show that there cannot exist a deterministic positive functional ¥
that takes for its arguments triplets of predictable characteristics such that NA
holds whenever P[V7 (B, C,n) < oo] = 1. Actually, we shall construct in the next
paragraph two stock-price processes on the same stochastic basis and with the
same predictable characteristics and such that NA fails with respect to the one
but holds with respect to the other.

FEzample 3.7. NON-PREDICTABILITY OF ARBITRAGE. Assume that (Q,F,P) is
rich enough to accommodate two independent standard 1-dimensional Brownian
motions  and +; the filtration will be the (usual augmentation of the) one gen-
erated by the pair (3,7). We use again the finite time-horizon [0, 1]. Let R be
the 3-dimensional Bessel process that satisfies the stochastic differential equation
dR; = (1/R)dt + df, with Ry = 1. As R is adapted to the filtration gen-
erated by (, it is independent of ~. Start with the market described by the
stock-price S = R; the triplet of predictable characteristics (B, C,n) consists of
B, =Cy = fg(l/Ru)Qdu and 17 = 0. According to Example 3.6, NA fails for this
market. R

With the same process R, define now a new stock S following the dynamics
dS,/S; = (1/R))%dt + (1/Ry)dv; with Sy = 1. Observe that the new dynamics
involve ~, so S is not a 3-dimensional Bessel process; nevertheless, it has exactly
the same triplet of predictable characteristics as S. But now NA holds for the
market that consists only of the stock S , and we can actually construct an ELMM.
The reason is that the exponential local martingale Z defined by

zi= e (= (/R ~ 3 [(1/RP0)

is a true martingale; this follows from the independence of R and =, as Lemma
3.8 below will show. We can then define Q ~ PP via dQ/dP = Z;, and Girsanov’s
theorem will imply that S is the stochastic exponential of a Brownian motion
under Q — thus a true martingale.

Lemma 3.8. On a stochastic basis (Q, F,F = (}-t)teRJr ,IP) let B be a standard 1-
dimensional F-Brownian motion, and o a predictable process which is independent
of B and satisfies fg | |?du < oo, P-a.s. Then, the exponential local martingale
7Z = E(a- B) satisfies BE[Zy] = 1, i.e., it is a true martingale on [0,t].
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Proof. We begin by enlarging the filtration to G with G; := F; V o(ay;t € Ry),
i.e., we throw the whole history of a up to the end of time in F. Since a and (3
are independent, it is easy to see that § is a G-Brownian motion. Of course, o
is a G-predictable process and thus the stochastic integral a - § is the same seen
under F or G. Then, with 4, :={n -1 < fg low|?du < n} € Gy we have

E[Zi] = E[E[Z; | Gol ] = iE[Zt | An]P[An] =1,

the last equality holding in view of E[Z;| A,] = 1, since on A, the quadratic
variation of a - 8 is bounded by n. O

3.3.3. Connection with utility maximization. A central problem of mathematical
finance is the maximization of expected utility of an economic agent who can invest
in the market. To start, let us formalize preference structures. We assume that
the agent’s preferences can be described by a utility function: namely, a concave
and strictly increasing function U : (0,00) — R. We also define U(0) = U(0+) by
continuity. Starting with initial capital w > 0, the objective of the investor is to
find a portfolio p = p(w) € Ilg such that

(3.1) E[U(wW2)] = sup E[UwWF)] = u(w).
melle

Probably the most important example of a utility function is the logarithmic
U(w) = logw. Then, due to this special structure, the optimal portfolio (when
it exists) does not depend on the initial capital, or on the given time-horizon T
(“myopia”). The relationship between the numéraire and the log-optimal portfolio
is well-known and established by now — in fact, we saw in subsection 2.7 that
under a suitable reformulation of log-optimality the two notions are equivalent.

The case we have just described is the one of utility maximization from terminal
wealth when utilities are only defined in the positive real line (in other words,
U(w) = —oo for w < 0). This problem has a long history; let us just mention
that it has been solved in a very satisfactory manner for general semimartingale
models using previously-developed ideas of martingale duality by Kramkov and
Schachermayer [26, 27], where we send the reader for further details.

A common assumption in this context is that the class of equivalent local mar-
tingale measures is non-empty, i.e., that NFLVR holds. The 3-dimensional Bessel
process Example 3.6 clearly shows that this is not necessary; indeed, since the
numéraire portfolio p = 1 exists and E(log S1) < oo, Proposition 2.21 shows that
p = 1 is the solution to the log-utility optimization problem. Nevertheless, we
have seen that NA fails for this market, thus NFLVR fails as well. To recap: an
investor with logarithmic utility will choose to hold the stock as the optimal invest-
ment and, even though arbitrage opportunities exist in the market, the investor’s
optimal choice is clearly not an arbitrage.

In the mathematical theory of economics, the equivalence of no free lunches,
equivalent martingale measures, and existence of optimal investments for utility-
based preferences, is somewhat of a “folklore theorem”. The Fundamental The-
orem of Asset Pricing 3.4 deals with the equivalence of the first two of these
conditions, but the 3-dimensional Bessel process example shows that this does not
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necessarily fit well with minimal conditions for utility maximization. In the con-
text of that example, although NA fails, the numéraire and log-optimal portfolios
exist. As we shall see in Theorem 3.12, the existence of the numéraire portfolio is
equivalent to the NUPBR condition. Then, we shall show in subsection 3.7 that
NUPBR is actually the minimal “no free lunch” notion needed to ensure existence
of solution to any utility maximization problem. In a loose sense (to become pre-
cise there) the problem of maximizing expected utility from terminal wealth, for
a rather large class of utility functions, is solvable if and only if the special case
of the logarithmic utility problem has a solution — which is exactly in the case
when NUPBR holds.

Accordingly, the existence of an equivalent (local) martingale measure will have
to be substituted by the weaker requirement, the existence of a supermartingale
deflator. This notion is the subject of the next subsection.

3.4. Supermartingale deflators. We hope to have made it clear up to now
that the NUPBR condition of Definition 3.1 is interesting. In the spirit of the
Fundamental Theorem of Asset Pricing, we would like also to find an equivalent
mathematical condition. The next concept, closely related to that of equivalent
supermartingale measures but weaker, will be exactly what we shall need.

Definition 3.9. The class of equivalent supermartingale deflators is defined as
De:={D>0| Dy=1, Dp >0, and DWT™ is supermartingale Vr € Ilg}.

If there exists an element D* € D¢ of the form D* = 1/W? for some p € Ilg, we
call D* a tradeable supermartingale deflator.

If a tradeable supermartingale deflator D* = 1/W? exists, then the wealth
process W is such that the relative wealth process W™ /W? is a supermartingale
for all 7 € Ilg, i.e., p is the numéraire portfolio. We conclude that a tradeable
supermartingale deflator exists, if and only if a numéraire portfolio p exists and
WZ‘Z < 00, P-a.s., and that if it exists it is unique.

An equivalent supermartingale measure QQ generates an equivalent supermartin-
gale deflator through the positive martingale D; = (dQ/dP) | £,; we have then have
Q¢ € D¢, and thus Q¢ # 0 = D¢ # 0. In general, the elements of D¢ are just
supermartingales, not martingales, and the inclusion Q¢ C D¢ is strict; more
importantly, the implication D¢ # ) = Q¢ # () does not hold, as we now show.

Example 3.10. Consider the the 3-dimensional Bessel process Example 3.6 on the
finite time-horizon [0, 1]. Since p = 1 is the numéraire portfolio, D* = 1/S is a
tradeable supermartingale deflator, so D¢ # 0. As we have already seen, NA
fails, thus we must have Q¢ = 0.

The set D¢ of equivalent supermartingale deflators appears as the range of
optimization in the “dual” of the utility maximization problem (3.1) in Kramkov
and Schachermayer [26]. As we shall see soon, it is the condition D¢ # 0, rather
than Q¢ # 0, that is needed in order to solve (3.1).

The existence of an equivalent supermartingale deflator has some consequences
for the class of admissible wealth processes

Proposition 3.11. If D¢ # (0, then for all © € Ilg the wealth process W™ is a
semimartingale up to time T. In particular, limy_..o W] exists on {T = oo}.
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Proof. Pick D € ®¢ and w € Ilg. Since DWT is a positive supermartingale,
Lemma B.2 from the Appendix gives that DW™ is a semimartingale up to T.
Now, D is itself a positive supermartingale with Dy > 0 and again Lemma B.2
gives that 1/D is a semimartingale up to 7. We conclude that W7 = (1/D)DW™
is a semimartingale up to 7. O

In order to keep the discussion complete, let us mention that if a tradeable su-
permartingale deflator D* exists, the supermartingale property of DW? = D/D*
for all D € D¢ easily gives that the tradeable supermartingale deflator satisfies

E[—log D}] = Dienif)@ E[—log D).

This result can be seen as an optimality property of the tradeable supermartin-
gale deflator, dual to the log-optimality of the numéraire portfolio in subsection
2.7. Also, we can consider it as a minimal reverse relative entropy property of D*
in the class ®¢. Let us explain: in case an element D € D¢ is actually a probability
measure Q, i.e., dQ = DydP, then the quantity H(P | Q) := EQ [D;1 log (D;l)] =
E[—1log D] is the relative entropy of P with respect to Q. Thus in general, even
when Dy is not a probability density, we could regard E[— log Dr] as the relative
entropy of P with respect to D. The qualifier “reverse” comes from the fact that
one usually considers minimizing the entropy of another equivalent probability
measure Q with respect to the original P called minimal entropy measure). We
refer the reader to Example 7.1 of Karatzas and Kou [21] for further discussion.

3.5. The second main result. Here is our second main result, which places the
numéraire portfolio in the context of arbitrage.

Theorem 3.12. For a financial model described by the stock-price process S and
the predictable closed convex constraints &€, the following are equivalent:

(1) The numéraire portfolio exists and W} < oc.
(2) The set D¢ of equivalent supermartingale deflators is non-empty.
(3) The NUPBR condition holds.

The proofs of (1) = (2) and (2) = (3) are very easy; we do them right now.

The implication (1) = (2) is trivial: (W?)~!is an element of D¢ (observe that
we need W7 < oo to get (W7)~! > 0 as required in the definition of D¢).

For the implication (2) = (3), start by assuming that D¢ # () and pick D €
D¢. We wish to show that the collection of terminal values of positive wealth
processes that start with unit capital is bounded in probability. Since Dr > 0,
this is equivalent to showing that the collection {D7W7T | 7 € Il¢} is bounded in
probability. But this is obvious, since every process DW™ for w € Ilg is a positive
supermartingale and so, for all a > 0,

K s
P[DTWYTE > a] < E[DTWT] < E[DOWD] _ l :
a a a
this last estimate does not depend on 7 € Il¢, and we are done.

It remains to prove the implication (3) = (1). This is considerably harder; one
will have to analyze what happens when the numéraire portfolio fails to exist. We
do this in the next subsection, but the major result that we use will be proved
much later, in section 7.
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Theorem 3.12 gives a satisfactory answer to the first question we posed in
subsection 3.3 regarding the equivalent of the Fundamental Theorem of Asset
Pricing when we only have convex, but not necessarily conic, constraints. Further,
since the existence of a numéraire portfolio p with W7 < oo is equivalent to
Ur(B,C,n) < oo according to Remark 2.17, we have a partial answer to our
second question from subsection 3.3 regarding predictability of free lunches; the
full answer will be given in the next subsection 3.6. Finally, the third question on
utility maximization will be tackled in subsection 3.7.

Remark 3.13. Conditions (2) and (3) of Theorem 3.12 remain invariant by an
equivalent change of probability measure. Thus, the existence of the numéraire
portfolio remains unaffected also, although the numéraire portfolio itself of course
will change. Although this would have been a pretty reasonable conjecture to have
been made from the outset, it does not follow directly from the definition of the
numéraire portfolio by any trivial considerations.

Note that the discussion of the previous paragraph does not remain valid if we
only consider absolutely continuous changes of measure (unless the price process
is continuous). Even though one would rush to say that NUPBR would hold,
let us remark that non-equivalent changes of measure might change the structure
of admissible wealth processes, since now it will be easier for wealth processes
to satisfy the positivity condition (in effect, the natural constraints set €, can
be larger). Consider, for example, a finite time-horizon case where, under P, X
is a driftless compound Poisson process with v({—1/2}) = v({1/2}) > 0. It is
obvious that €y = [-2,2] and X itself is a martingale. Now, consider the simple
absolutely continuous change of measure that transforms the jump measure to
vi(dz) == [zsoyv(dz); then, € = (-2, 00] and of course NUIP fails.

Remark 3.14. Theorem 3.12 together with Proposition 3.11 imply that under
NUPBRg¢ all wealth processes W™ for m € Ilg are semimartingales up to infinity.
Thus, under NUPBR¢ the assumption about existence of lim;_,oo W/ on {T' = oo}
needed for the NA and the NFLVR conditions in Definition 3.1 is superfluous.

3.6. Consequences of non-existence of the numéraire portfolio. In order
to finish the proof of Theorem 3.12, we need to describe what goes wrong if the
numeéraire portfolio fails to exist. This can happen in two ways. First, the set
{In ¢ # (0} may not have zero P ® G-measure; in this case, Proposition 2.10
shows that one can construct an unbounded increasing profit, the most egregious
form of arbitrage. Secondly, in case the P ® G-measure of {JN & # (}} is zero, the
constructed predictable process p can fail to be X-integrable (up to time 7). The
next definition prepares the ground for the statement of Proposition 3.16, which
describes what happens in this latter case.

Definition 3.15. Consider a sequence (f,)nen of random variables. Its superior
limit in the probability sense, P-lim sup,,_,, fn, is defined as the essential infimum
of the collection {g € F | lim, 00 P[fn, < g] = 1}.

It is obvious that the sequence (fy)nen of random variables is unbounded in
probability if and only if P-limsup,,_,, |fn| = +00 with positive probability.
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Of course, the P-liminf can be defined analogously, and the reader can check
that (fn)nen converges in probability if and only if its P-liminf and P-limsup
coincide, but these last facts will not be used below.

Proposition 3.16. Assume that the predictable set {3 N ¢ # ()} has zero P ® G-
measure, and let p be the predictable process constructed as in Theorem 2.15. Pick
any sequence (On)nen of [0, 1]-valued predictable processes with lim, o0 0, = I
holding P ® G-almost everywhere, and such that p, := 0,p has bounded support
and is X -integrable for all n € N. Then, W'F} = P-limsup,, Wﬁ" is a (0, 400]-
valued random variable, and does not depend on the choice of the sequence (0,)nen-
On the event {(¢* - G)r < +o0} the random variable W4 is an actual limit in
probability, and we have

{Wr = +oo} = {(u" - G)r = +oo};
in particular, ]P’[Wr'} = +o0] > 0 if and only if p fails to be X -integrable up to T.

Observe that there are many ways to choose the sequence (6,,)nen. A particular
example is 6, := Iy, with 3, := {(w,t) € [0,T An] | |p(w,t)] < n}.

The proof of Proposition 3.16 is the content of section 7. The above result says,
in effect, that closely following the numéraire portfolio, when it is not X -integrable
up to time T, one can make arbitrarily large gains with fized, positive probability.

Remark 3.17. In the context of the statement of Proposition 3.16 we suppose that
{3N¢& # (B} has zero P ® G-measure. The failure of p to be X-integrable up to
time T' can happen in two distinct ways. Define the stopping time 7 := inf{t €
0,7 | (¢*-G), = +oo} and in a similar fashion define a whole sequence (7,,)nen
of stopping times by 7, := inf{t € [0,T] | (¢* - G): > n}. We consider two cases.

First, let us suppose that 7 > 0 and (¢” - G); = +o00; then 7, < 7 for all
n € N and 7, T 7. By using the sequence p, := pljy ] it is easy to see that
lim,, oo WF™ = +00 almost surely — this is a consequence of the supermartingale
property of {(Wf)~1,0 <t < 7}. An example of a situation when this happens
in finite time (say, in [0, 1]) is when the returns process X satisfies the dynamics
dX; = (1— t)_l/ 2dt 4+ dB;, where 3 is a standard 1-dimensional Brownian motion.
Then p; = (1 —¢)~Y2 and thus (¥*-G), = fg(l —u)~tdu, which gives 7 = 1.

Nevertheless, this is not the end of the story. With the notation set-up above
we will give an example with (¢? - G), < 4o00. Actually, we shall only time-
reverse the example we gave before and show that in this case 7 = 0. To wit, take
the stock-returns process now to be dX; = t~/2d¢ + d; ; then pr = t~1/2 and
(WP - Q) = fot u~ldu = +oo for all ¢t > 0 so that 7 = 0. In this case we cannot
invest in p as before in a “forward” manner, because it has a “singularity” at t =0
and we cannot take full advantage of it. This is basically what makes the proof of
Proposition 3.16 non-trivial.

Let us remark further that in the case of a continuous-path semimartingale X
without portfolio constraints (as the one described in this example), Delbaen &
Schachermayer [9] and Levental & Skorohod [28] show that one can actually create
“instant arbitrage”: this is a non-constant wealth process that never falls below
its initial capital (almost the definition of an increasing unbounded profit, but
weaker, since the wealth process is not assumed to be increasing). For the case of
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jumps it is an open question whether one can still construct this instant arbitrage
— we could not. o

Proof of Theorem 8.12: Assuming Proposition 3.16, we are now in a position to
show the implication (3) = (1) of Theorem 3.12, completing its proof. Suppose
then that the numéraire portfolio fails to exist. Then, we either we have opportu-
nities for unbounded increasing profit, in which case NUPBR certainly fails; or p
exists but is not X-integrable up to time 7', in which case Proposition 3.16 gives
that NUPBR fails again. O

Remark 3.18. Proposition 3.16 gives the final answer to the question regarding
the predictability of free lunches raised in subsection 3.3: When NUPBRg fails
(equivalently, when the numéraire portfolio fails to exist, or exists but P[W/ =
oo] > 0), then there is an algorithmic way to construct the unbounded profit with
bounded risk (UPBR) using knowledge of the triplet of predictable characteristics.

3.7. Application to Utility Optimization. Here we tackle the third question
that we raised in subsection 3.3. We show that NUPBR (we drop the subscript
“€” in this subsection) is the minimal condition that allows one solve the utility
maximization problem (3.1).

Remark 3.19. The optimization problem (3.1) makes sense only if its value function
w is finite. Due to the concavity of U, if u(w) < 4oo for some w > 0, then
u(w) < 400 for all w > 0 and u is continuous, concave and increasing. When
u(w) = oo holds for some (equivalently, all) w > 0, there are two cases. Either the
supremum in (3.1) is not attained, so there is no solution; or, in case there exists
a portfolio with infinite expected utility, the concavity of U will imply that there
will be infinitely many of them.

We first state and prove the negative result: when NUPBR fails, there is no
hope in solving (3.1).

Proposition 3.20. Assume that NUPBR fails. Then, for any utility function U,
the corresponding utility maximization problem either does not have a solution, or
has an infinity of solutions.

More precisely: If U(oco) = 400, then u(w) = +oo for all w > 0, so we either
have no solution (when the supremum is not attained) or infinitely many of them
(when the supremum is attained); whereas, if U(oo) < 400, there is no solution.

Proof. Since NUPBR fails, pick an € > 0 and a sequence (m,)nen of elements of
II¢ such that, with A, := {W}r” > n}, we have P[A,] > ¢, for all n € N.

If U(o0) = +o00, then it is obvious that, for all w > 0 and n € N, we have
w(w) > E[U(wW7™)] > eU(wn); thus u(w) = 400 and we have the result stated
in the proposition in view of Remark 3.19.

Now suppose U(oco) < oo; then of course U(w) < u(w) < U(oo) < oo for all
w > 0. Furthermore, u is also concave, thus continuous. Pick any w > 0, suppose
that m € Ilg is optimal for U with initial capital w, and observe

u(w+n"t) > E[U(wWF +n 'Wir)] > E[U(wWE +14,)].

Pick M > 0 large enough so that PlwW] > M] < €/2; since U is concave we
know that for any y € (0, M] we have U(y + 1) —U(y) > UM + 1) — U(M).
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Set a:= (UM + 1) — U(M))e/2 - this is a strictly positive because U is strictly
increasing. Then, E[U(wW7 4 14,)] > E[U(wW7T) + a] = u(w) + a; this implies
u(w +n~1) > u(w) + a for all n € N, and contradicts the continuity of u. O

Having resolved the situation when NUPBR fails, let us now assume that it
holds. We shall have to assume a little more structure on the utility functions we
consider, so let us suppose that they are continuously differentiable and satisfy
the Inada conditions U’'(0) = +oo and U’(400) = 0.

The NUPBR condition is equivalent to the existence of a numéraire portfolio
p. Since all wealth processes become supermartingales when divided by W?*, we
conclude that the change of numéraire that utilizes W* as a benchmark produces
a market for which the original P is a supermartingale measure (see Delbaen
and Schachermayer [10] for this “change of numéraire” technique). In particular,
NFLVR holds and the “optional decomposition under convex constraints” results
of the Follmer and Kramkov [15] allow us to write down the superhedging duality,
valid for any positive, Fp-measurable random variable H:

inf {fw >0 |3 7w ellg with wW > H} = sup E[DrH]|.
De®¢
This “bipolar” relationship allows one to show that the utility optimization prob-
lems admit a solution (when their value is finite). We send the reader to the
papers [26, 27] of Kramkov and Schachermayer for more information and detail.

3.8. A word on the additive model. All the results stated in this and the
previous section 2 hold also in the case where the stock-price processes S* are not
necessarily positive semimartingales. Indeed, suppose that we start with initial
prices Sp, introduce Y := S — Sp, and define the admissible (discounted) wealth
processes class to be generated by strategies § € P(R?) via W = 1+60-S = 14+0-Y,
where we assume that W > 0 and W_ > 0. Here, 0 is the number of shares of
stocks we keep in our portfolio. But then, with 7 := (1/W_)6 it follows that
we can write W = E(7 - Y). Of course, we do not necessarily have AY > —1
anymore in general, but this fact was never used anywhere; the important thing
is that admissibility implies 77Y > —1. Observe that now = does not have a nice
interpretation as it had in the case of the multiplicative model.

A final note on constraints. One way to enforce them here is to require 6 €
W_¢€, which is completely equivalent to 7 € €, and we can continue as before.
Nevertheless, a more natural way would be to enforce them on the proportion
of investment, i.e., to require (§°S® /W_)1<;<q € €, in which case we get under
the additive model that 7 € €, where € := {z € R? | (2°S% ) 1<i<a € €} is still
predictable if € is and we can again proceed as before.

4. PROOF OF PROPOSITION 2.10 ON THE NUIP CONDITION

4.1. If {INC # () is P® G-null, then NUIP holds. Let us suppose that 7 is
a portfolio with unbounded increasing profit; we shall show that {J N ¢ # 0} is
not P ® G-null. By definition then {7 € ¢} has full P® G-measure, so we wish to
prove that {m € J} has strictly positive P ® G-measure.
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Now W™ has to be a non-decreasing process, which means that the same holds
for m- X. We also have 7 - X # 0 with positive probability. This means that the
predictable set {m ¢ 91} has strictly positive P ® G-measure, and it will suffice to
show that properties (1)—(3) of Definition 2.9 hold P ® G-a.e.

Because 7 - X is increasing, we get [ty * p = 0, so that virTz < 0] =0,
P® G-a.e. In particular, - X is of finite variation, so we must have 7- X¢ = 0, and
this translates into 7' ¢ = 0, P ® G-a.e. For the same reason, one can decompose

(4.1) T X = (7r -B— [WTxH{Izlﬁl}] * 17) + [ x] .

The last term |7 2] * g in this decomposition is a pure-jump increasing process,
while for the sum of the terms in parentheses we have from (1.4):

A<7r -B— [7rTa:}I{|z‘§1}] * n) = (wa - /WTxH{|m|§1}u(dm))AG =0.

It follows that the term in parentheses on the right-hand side of equation (4.1) is
the continuous part of 7- X (when seen as a finite variation process) and thus has to
be increasing. This translates into the requirement 7' b — fﬂ'Tl']I{mgl}l/(dx) >0,
P ® G-a.e., and ends the proof.

4.2. The set-valued process J is predictable. In order to prove the other half
of Proposition 2.10, we need to select a predictable process from the set {Jﬁé # 0}.
For this, we shall have to prove that J is a predictable set-valued process, and then
to make this selection. However, J is not closed, and it is usually helpful to work
with closed sets when trying to apply measurable selection results. For this reason
we have to go through some technicalities first.

Given a triplet (b, c,v) of predictable characteristics and a > 0, define 3% to be
the set of vectors of R? such that (1)-(3) of Definition 2.9 hold, and where we also
require that

T 3K 1
The following lemma sets forth properties of these sets that we shall find useful.

Lemma 4.1. With the previous definition we have:
(1) The sets 3% are increasing in a > 0; we have 3* € T and J = J,5(J%. In
particular, 3N E #£ O if and only if 3N E % O for all large enough a > 0.
(2) For all a > 0, the set 3% is closed and convez.

Proof. Because of conditions (1)—(3) of Definition 2.9, the left-hand-side of (4.2)
is well-defined (the integrand is positive since v[¢'x < 0] = 0) and has to be
positive. In fact, for £ € 7, it has to be strictly positive, otherwise we would have
¢ € M. The fact that J* is increasing for a > 0 is trivial, and part (1) of this
lemma follows immediately.

For the second part, we show first that J% is closed. It is obvious that the subset
of R consisting of vectors & such that £€'c = 0 and v[¢T2 < 0] = 0 is closed. On
this last set, the functions ¢ "2 are v-positive. For a sequence (&, )nen in J% with
limy,—o0 & = &, Fatou’s lemma gives

/ﬁTx]I{xKl}y(dx) < 1iminf/g§xﬂ{x|<1}y(dx) <liminf (¢0) = €7b,
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so that § satisfies (3) of Definition 2.9 also. The measure Iyj,~1yv(dz) (the “large
jumps” part of the Lévy measure v) is finite, and bounded convergence gives

T az) — tim {eTb+ [ 52y o)} > a?
£ b+ 1+&Tx {lo]>nyv(dz) = o §n b+ 1+éla {lzj>1pv(dz) o > a” .
This establishes that J% is closed. Convexity follows from the fact that the function
x +— z/(1+ z) is concave on (0, 00). O

For the remainder of this section, we shall use J to denote the R%set-valued
process J (b(w, 1), c(w,t),v(w,t)); same for 3. In view of J = (J, .y I" and Lemma
A.3, in order to prove the predictability of J we only have to prove that of J°.

To this end, we define the following real-valued functions, with arguments in
(2 x R,) x R? (suppressing their dependence on (w,t) € [0, T]):

_ _ ((p"a)7)?
z1(p) = PTQ z(p) = /l—k((pTx)_)?U(dx)’

z5(p) = pr—/pT:UH{n1<|zS1}1/(dx), for all n € N, and

T p'z
z4(p) = p b‘i‘/mﬂﬂxbl}”(dx)-

Observe that all these functions are predictably measurable in (w,t) € @ xR, and
continuous in p (follows from applications of the dominated convergence theorem).

In a limiting sense, consider formally 23(p) = 25°(p) =p'b— [ pTQZ]I{|m|§1}V(d1');
observe though that this function might not be well-defined, since both the positive
and negative parts of the integrand might have infinite v-integral. Consider also
the sequence of set-valued processes

A2 = {p eR? | 21(p) =0, 22(p) =0, 25(p) >0, z(p) >a '}
for n € N, of which the “infinite” version coincides with J¢:
Je =95 = {p e R? | z1(p) =0, z2(p) =0, 2z3(p) >0, z4(p) > a_l}.

Because of the requirement zo(p) = 0, the function z3 can be considered well-
defined (though not necessarily finite, since it can take the value —oc0). In any
case, it is seen that for any p with z2(p) = 0, we have lim,_.o | 25(p) = 23(p);
so the sequence (A%),en is decreasing, and lim,, o | A2 = J* But each ¢ is
closed and predictable (refer to Lemmata A.3 and A.4), and thus so is J%.

Remark 4.2. Since {IN € # 0} = J,cn{I" N € # 0} and the random set-valued
processes J" and ¢ are closed and predictable, Appendix A shows that the set
{J N € # 0} is predictable.

4.3. NUIP implies that {JN¢€ # ()} is P® G-null. We are now ready to finish
the proof of Proposition 2.10. Let us suppose that {J N ¢ £ 0} is not P ® G-null;
we shall construct an unbounded increasing profit.

Since J = J,,en({p € R? | |p| < n} NJ"), where J" is the set-valued process of
Lemma 3.1, there exists some n € N such that the convex, closed and predictable
set-valued process B" := {p € R? | |p| < n} NJI*N < has (P® G)({B" #
0}) > 0. According to Theorem A.5, there exists a predictable process m with
7(w,t) € B"(w,t) when B"(w,t) # 0, and 7(w,t) =0 if B"(w,t) = 0. This 7 is
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bounded, so m € Ilg. Using the reasoning of subsection 4.1 “in reverse”, we get
that 7 - X is a non-decreasing process, and the same is then true of W™. Now,
we must have P[WZ > 1] > 0, otherwise 7 - X = 0, which is impossible since

(P® G)({m ¢ N}) > 0 by construction.

5. PROOF OF THE MAIN THEOREM 2.15

5.1. The Exponential Lévy market case. We saw in Lemma 2.5 that if the
numéraire portfolio p exists, it has to satisfy vel(w | p) < 0 pointwise, P ® G-
a.e. In order to find necessary and sufficient conditions for the existence of a
(predictable) process p that satisfies this inequality, it makes sense first to consider
the corresponding static, deterministic problem. Since Lévy processes correspond
to constant, deterministic triplets of characteristics with respect to the natural
time flow G(t) = t, we shall regard in this subsection X as a Lévy process with
characteristic triplet (b, ¢, v); this means B; = bt, Cy = ct and n(dt, dz) = v(dz)dt
in the notation of subsection 1.1. We also take € to be a closed convex subset of
R?: recall that @ can be enriched, so as to accommodate the natural constraints
C={recR?|v[rTz < -1]=0}.
The following result in [25] is the deterministic analogue of Theorem 2.15.

Lemma 5.1. Let (b,c,v) be a Lévy triplet and € a closed convex subset of R.
Then the following are equivalent:
(1) 3ne€=0.
(2) There exists a unique vector p € € NN with v[p'z < —1] = 0 such that
vel(m | p) <0 for allm € €.

If the Lévy measure v integrates the logarithm, the vector p is characterized as
p = argmaX,cenml 9(7m). In general, p is the limit of a series of problems, in
which v is replaced by a sequence of approximating measures.

We have already shown that if (1) fails, then (2) fails as well (Remark 2.11).
The implication (1) = (2) is subtler. For the convenience of the reader we sketch
the steps of the proof. We first show the sufficiency of the condition 3N ¢ = @ in
solving vel(7 | p) < 0 for the case of a Lévy measure that integrates the log, then
extend to the general case.

Thus, let us start by assuming [log(1 + |z])I{,>13(dz) < co. We call g, the
supremum of the concave growth rate function

1
g(m)=n"b— §7TTC7T —|—/ [log(l +7la) — WT:B]I{WSH] v(dx)

over all m € € (the assumption that v integrates the log gives g(m) < oo for all
m € €, but we might have g(m) = —oo on the boundary of €). Let (pp)nen be a
sequence of vectors in € with lim, o g(pn) = g«. For any 7 € € and any ( € M
we have g(m + ¢) = g(n), so we can choose the sequence p, to be M*-valued.
It can be shown that this sequence is bounded in R%; otherwise one can find a
¢ € 3N ¢, contradicting our assumption J N € = (. Without loss of generality,
suppose that (p,)nen converges to a point p € €; otherwise, choose a convergent
subsequence. The concavity of g implies that g, is a finite number, and it is
obvious from continuity that g(p) = g«. Of course p satisfies v[p'z < —1] = 0,
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otherwise g(p) = —oo. Finally, since p is a point of maximum, the directional
derivative of g at p in the direction of m — p cannot be positive for any = € €; this
directional derivative is exactly vel(w | p).

Now we drop the assumption that v integrates the log, and pick a sequence of
approximating triplets (b, c,vy,) with v,(dz) = f,(x)v(dz) for n € N; all these
measures integrate the log. It is easy to see that J(b,c,v) N ¢ = () is equivalent
to J(b, ¢, ;) N € = () for all n € N; the discussion of the previous paragraph gives
then unique vectors p, € € NN+ such that vel, (7 | p,) < 0 for all 7 € €, where
vel,, is associated with the triplet (b,c,vy). As before, the constructed sequence
(pn)nen can be shown to be bounded, otherwise J N ¢ # (. Then one can assume
that (pn)nen converges to a point p € € N ML, picking a subsequence if needed;
and Fatou’s lemma gives tel(m | p) < 0 from vel, (7 | pp) < 0,V n € N. We
have thus shown vel(r | p) < 0, V m € € for the limit p of a subsequence of
(pn)nen. Nevertheless, carrying the previous steps we see that every subsequence
of (pn)nen has a further convergent subsequence, whose limit p € € NN+ satisfies
vel(m | p) <0 forall m € €. Tt is easy to see that the vector p € €N+ that satisfies
vel(m | p) <0 for all # € € must be unique; thus p = p. We finally conclude that
the whole sequence (py)nen converges to p.

5.2. Integrability of the numéraire portfolio. We are close to the proof of
our main result. We start with a predictable characterization of X-integrability
that the predictable process p, our candidate for numéraire portfolio, must satisfy.
The following general result is proved in Cherny and Shiryaev [7].

Theorem 5.2. Let X be a d-dimensional semimartingale with characteristic triplet
(b, ¢, v) with respect to the canonical truncation function and the operational clock
G. A process p € P(R?) is X -integrable, if and only if the condition (ysz]G)t < 00,
for allt € [0,T] holds for the predictable processes @f =plep,

g = /(1A|PTSU\2)V(dI)a and 1) := pr+/pTx(]I{x|>1}_H{|pTz|>1})V(dI)'

The process ﬁf controls the quadratic variation of the continuous martingale
part of p- X; the process 121\5 controls the quadratic variation of the “small-jump”
purely discontinuous martingale part of p- X and the intensity of the “large jumps”;
whereas zzg controls the drift term of p- X when the large jumps are subtracted (it
is actually the drift rate of the bounded-jump part). This theorem is very general.
We shall use it to prove Lemma 5.3 below, which provides a necessary and sufficient
condition for X-integrability of the candidate for numéraire portfolio.

Lemma 5.3. Suppose that p is a predictable process with v[p'z < —1] = 0 and
tel(0 | p) < 0. Then p is X -integrable, if and only if the condition (Y*-G)¢(w) < oo,
for all (w,t) € [0,T], holds for the increasing, predictable process

PP = vlple > 1]+

PTb+/PTUC(H{|x|>1} —Lpras1y)v(de)

Proof. According to Theorem 5.2, only the sufficiency has to be proved, since the
necessity holds trivially (recall v[p"2 < —1] = 0). Furthermore, from the same
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theorem, the sufficiency will be established if we can prove that the predictable
processes ¥] and 9§ are G-integrable (note that ¢4 is already covered by %).

43 77

Dropping the superscripts, we embark on proving the G-integrability of 121
and wQ, assuming the G-integrability of 11 and 3. The process 1 will certainly
be G-integrable, if one can show that the positive process

~ (p'2)? pla
’QZJQ = /Hp_l_xHHmeSl}I/(dﬂZ) + mﬂ{p‘r1>1}lj(dl‘)
is G—lntegrable Since both —tel(0 | p) and 11)1 are positive processes, we get that
Y1 and 95 will certainly be G-integrable, if we can show that ) + e — tel(0 | p)
is G-integrable. But one can compute this last sum to be equal to

T
T T Pz .
1% b +/p $(H{|m‘>1} —]I{|pTI|>})V(dl') + 2/1—|—pT:L']I{pTx>1}V(d$)’

the sum of the first two terms equals 19, which is G-integrable, and the last (third)
term is G-integrable because 11 = v[p'x > 1] is. ]

Remark 5.4. In the context of Lemma 5.3, if we wish p to be X-integrable up to T’
and not simply X-integrable we have to impose the condition ¢} < co. Of course,
this follows because from the equivalent characterization of X-integrability up to
T in Theorem 5.2 as proved in Cherny and Shiryaev [7].

Remark 5.5. Theorem 5.2 should be contrasted with Lemma 5.3, where one does
not have to worry about the large negative jumps of p - X, about the quadratic
variation of its continuous martingale part, or about the quadratic variation of its
small-jump purely discontinuous parts. This might look surprising, but follows
because in Lemma 5.3 we assume v[p'z < —1] = 0 and tel(0 | p) < 0: there are
not many negative jumps (none above unit magnitude), and the drift dominates
the quadratic variation.

5.3. Proof of Theorem 2.15. The fact that {JN& # (1} is predictable has been
shown in Remark 4.2. The claim (2) follows directly from Lemmata 2.5 and 5.3.

For the claims (1.1)-(1.iii), suppose that {J N & # 0} has zero P ® G-measure.
We first assume that v integrates the log, P® G-a.e. We set p =0 on {INC # 0}.
On the set {JN €& = 0}, according to Theorem 5.1, there exists a (uniquely
defined) process p with pT AX > —1 that satisfies vel(7 | p) < 0, and g(p) =
max, cenorl 9(7); by Theorem A.5, this process p is predictable and we are done.

Next, we drop the assumption that v integrates the log. By considering an
approximating sequence (v )nen and keeping every v, predictable (this is easy to
do, if all densities f, are deterministic), we get a sequence of processes (pp)nen
that take values in ¢ N9t and solve the corresponding approximating problems.
As was discussed in subsection 5.1, the sequence (py)nen Will converge pointwise
to a process p; this will be predictable and satisfy vel(7 | p) <0, V 7 € Ilg.

Now that we have our candidate p for numéraire portfolio, we only need to
check its X-integrability; according to Lemma 5.3 this is covered by the predictable
criterion (¢” - G), < 400 forallt € [0,77. Inlight of Lemma 2.5, we are done. [
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6. ON RATES OF CONVERGENCE TO ZERO FOR POSITIVE SUPERMARTINGALES

Every positive supermartingale converges as time tends to infinity. The follow-
ing result gives a predictable characterization of whether this limit is zero or not,
and estimates the rate of convergence to zero, if this is the case.

Proposition 6.1. Let Z be a local supermartingale with AZ > —1 and Doob-
Meyer decomposition Z = M — A, where A is an increasing, predictable process.
With C = [Z¢, Z9] the quadratic covariation of the continuous local martingale
part of Z and 7 the predictable compensator of the jump measure i, define the
increasing predictable process H := A+C’/2—|—q(1+x)*ﬁ , where ¢ : Ry — R, is the
convex function q(y) := [—loga+ (1 —a ™ )y| I (y) + [y — 1 —logy] [ 400) (¥)
for some a € (0,1).
Consider also the positive supermartingale Y = E(Z). Then we have,

on {Hy < 400}, tlim Y; € (0,400);
— 00

on {Hyx = +o00},  limsup (H;lloth) < -1.
t—00

Remark 6.2. This result can be seen as an abstract version of Proposition 2.23;
to obtain that Proposition from it, one has to notice that W7 /W? is a positive
supermartingale, and to identify the elements A, C' and ¢(1+z)*7 of Proposition

6.1 below with tel(7 | p) -G, (7 — p)Te(r — p) - G and (f da (iig:;) I/(d:c)) -G

Remark 6.3. If we further assume AZ > —1+6 for some § > 0, then by consider-
ing q(z) = z—log(14+z) in the definition of H we obtain lim]t_,oo(Ht_1 logV;) = -1
on the set { Hoo = +00}; i.e., we get the exact rate of convergence of log Y to —oo.

Remark 6.4. In the course of the proof, we shall make heavy use of the follow-
ing fact: for a locally square integrable martingale N with angle-bracket process
(N, N), then, on the event {(IN,N)_ < +oo} the limit Ny exists and is finite,
while on the event {(N,N)_ = +oo} we have lim; .o N;/ (N, N), = 0. Note
also that if N = v(z) * (4 — ), then (N, N) < v(z)? * 7 (equality holds if and
only if N is quasi-left-continuous). Combining this with the previous remarks
we get that on {(v(2)? * )se < +00} the limit N, exists and is finite, while on
{(v(2)? % 7)) 0o = +00} we have limy o, Ny/(v(x)? x7); = 0.

Proof. For the supermartingale Y = £(Z), the stochastic exponential formula
(0.2) gives logY = Z — [Z,Z°] /2 — 3, [AZs — log(1 + AZj)], or equivalently

(6.1) logY = —A+ (M~ C/2) + (zx (i — ) — [z — log(1 + x)] * ).

Let us start with the continuous local martingale part. We use Remark 6.4
twice: first, on {Cs < 400}, MS, exists and is real-valued; secondly, we get that
on {Coe = +00}, limy_oo(MF — Cy/2)/(Cy/2) = —1.

We now deal with the purely discontinuous local martingale part. Let us first
define the two indicator functions [ :=1_y _1 4y and 7 :=1[_1 ;4 1), where [ and
r stand as mnemonics for left and right. Define the two semimartingales

B = [i@)log(l+ )] i - [l(w)a] * 4,
F o= [r@)log(1+a)] * (i — ) + [r@)g(L + )] *
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and observe that z x (i — 7)) — [x —log(1 4+ z)]x = E+ F.

We claim that on {(¢(1+ ) *7),, < 400}, both Ey and Fy exist and are
real-valued. For F, this happens because ([[(x)q(1+ z)]*7%),, < +oo implies
that there will only be a finite number of times when AZ € (—1,—1 + a] so
that both terms in the definition of E will have a limit at infinity. Turning to
F', the second term in its definition is obviously finite-valued at infinity while
for the local martingale term [r(z)log(l + x)] * (it — 1) we need only observe
that it has finite predictable quadratic variation (because of the set inclusion
{([(2)a(1 +2)] # )., < +00} € {([r(z)log?(1+2)] #7) _ < +00}) and use Re-
mark 6.4.

Now we turn attention to the event {(q(1+ z) * 7)), = +oo}; there, at least
one of ([I(x)q(1 + )] * ), and ([r(x)q(1 + x)] * ), must be infinite.

On the event {([r(z)q(1+ x)] * 7)., = oo}, use of the definition of F' and Re-
mark 6.4 easily gives that limy .o Fi/ ([r(z)q(1 + )] *7), = —1.

Now let us work on the event {([I(x)q(1 + x)] * )., = co}. We know that the
inequality logy < y — 1 — ¢(y) holds for y > 0; using this last inequality in the
first term in the definition of E we get F < [l(x)(z — q(1 4+ x))] * o — [I(x)x] * 7, or
further that E < [I(z)(x — ¢(1 + 2))] * (s — 1) — [I(z)q(1 4+ 2)] * 7. From this last
inequality and Remark 6.4 we get limsup,_, . E¢/ ([I[(z)q(1 + z)] 7)), < —1.

Let us summarize the last paragraphs on the purely discontinuous part. On
the event {(¢(1 4+ x) * 7)), < +oo}, the limit (z * (4 — 1) — [z —log(1 + z)] * 1)
exists and is finite; on the other hand, on the event {(¢(1 + ) 7)), = +oo}, we

,From the previous discussion on the continuous and the purely discontinuous
local martingale parts of log Y and the definition of H, the result follows. O

7. PROOF OF PROPOSITION 3.16

7.1. The proof. Start by defining the two events Qg := {(¢¥? - G)r < co} and
Qa:={W* -G)r =00} =Q\ Q.

First, we show the result for Q. Assume that P[Qy] > 0, and call Py the
probability measure one gets by conditioning P on the set €2g. The process p of
course remains predictable when viewed under the new measure; and because we
are restricting ourselves on ), p is X-integrable up to 1" under Py.

By a simple use of the dominated convergence theorems for Lebesgue and for
stochastic integrals, all three sequences of processes p, - X, [pn - X, pn - X€] and
o< [pn AXs —log(1 + p, AX,)] converge uniformly (in ¢ € [0,77]) in Pp-measure
to three processes, that do not depend on the sequence ( Pn)nen. Then, the stochas-
tic exponential formula (0.2) gives that W1 converges in Py-measure to a random
variable, that does not depend on the sequence (p,)nen. Since the limit of the
sequence (Io, W, " ),en is the same under both the P-measure and the Pp-measure,
we conclude that, on €y, the sequence (Wff")neN converges in P-measure to a
real-valued random variable, independently of the choice of the sequence (py)nen-

Now we have to tackle the set {24, which is trickier. We shall have to further
use a “helping sequence of portfolios”. Suppose P[24] > 0, otherwise there is
nothing to prove. Under this assumption, there exist a sequence of [0, 1]-valued
predictable processes (hp)nen such that each m, := h,p is X-integrable up to
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T and such that the sequence of terminal values ((m, - X)7)nen is unbounded
in probability (readers unfamiliar with this fact should consult, for instance, the
book [5]: the result that we mention can be seen as a rather direct consequence of
Corollary 3.6.10, page 128 of that book. It is reasonable to believe (but wrong in
general, and a little tedious to show in our case) that unboundedness in probability
of the terminal values ((m, - X)7)nen implies that the sequence of the terminal
values for the stochastic exponentials (W7"),en is unbounded in probability as
well. We shall show this in Lemma 7.1 of the next subsection; for the time being,
we accept this as fact. Then P[limsup,, ., W™ = +00] > 0, where the limsup is
taken in probability and not almost surely (see Definition 3.15).

Let us return to our original sequence of portfolios (pn)nen With p, = Opp
and show that {limsup, ., Wi" = +oo} C {limsup, .., Wf" = +o0}. Both
of these upper limits, and in fact all the limsup that will appear until the end
of the proof, are supposed to be in P-measure. Since each 6, is [0, 1]-valued

and lim,, ., 0, = I, one can choose an increasing sequence (k(n)), oy of natural

0 n . .
numbers such that the sequence (WTM")F )n N 18 unbounded in P-measure on the

set {lim SUP, 0o Wi = —|—oo}. Now, each process WO m™ /JWPk(n) is a positive
supermartingale, since tel(Op)Tn | Prn)) = tel(Oxmyhnp | hnp) < 0, the last
inequality due to the fact that [0, 1] 5 u — g(up) is increasing, and so the sequence

0 n n . . -
of random variables (VVT}“(")7r / W;k( >)n N 18 bounded in probability. From the

last two facts follows that the sequence of random variables (W;M"))neN is also
unbounded in P-measure on {lim SUDP,, 0o W = —i—oo}.

Up to now we have shown that P[limsup,, ., W™ = +o0] > 0 and we also know
that {lim SUP,, 0 WA = +oo} C Qy4; it remains to show that the last set inclu-
sion is actually an equality (mod P). Set Qp := Q4 \ {limsup,_,,, W™ = +oo}
and assume that P[Qp] > 0. Working under the conditional measure on Qp (de-
note by Pp), and following the exact same steps we carried out two paragraphs ago,
we find predictable processes (hy)nen such that each m, := h,p is X-integrable
up to 7" under Pp and such that the sequence of terminal values ((m), - X )oo)nen
is unbounded in Pp-probability; then Pg[limsup,,_, ., Wq’i" = +4o00| > 0, which
contradicts the definition of 2 and we are done. O

7.2. Unboundedness for Stochastic Exponentials. We still owe one thing in
the previous proof: at some point we were presented with a sequence of random
variables ((m, - X)1),cy that was unbounded in probability, and wanted to show
that the sequence (£(7, - X)7)nen is unbounded in probability as well. One has
to be careful with statements like that because, as shown later in Remark 7.3, the
stochastic — unlike the usual — exponential is not a monotone operation.

We have to work harder to prove the following lemma and finish the proof
of Proposition 3.16. To make the connection, observe that with R,, := m, - X we
have that the collection (R, ),en is such that AR,, > —1 and £(R,,)~! is a positive
supermartingale for all n € N.

Lemma 7.1. Let R be a collection of 1-dimensional semimartingales such that
Ry = 0, AR > —1 and E(R)~! is a (positive) supermartingale for all R € R
(in particular, E(R)r exists and takes values in (0,00]). Then, the collection of
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processes R is unbounded in probability (see remark below) if and only if the col-
lection of positive random variables {E(R)r | R € R} is unbounded in probability.

Remark 7.2. A class R of semimartingales will be called “unbounded in probabil-
ity”, if the collection of random variables {supscjo 77|22 | R € R} is unbounded in
probability. Similar definitions will apply for (un)boundedness from above and be-
low, taking one-sided suprema. Without further comment, we shall only consider
boundedness notions “in probability” through the course of the proof.

Proof. Since R > log £(R) for all R € R, one side of the equivalence is trivial, and
we only have to prove that if R is unbounded then {€(R)r | R € R} is unbounded.
We split the proof of this into four steps.

As a first step, observe that since {£(R)™' | R € R} is a collection of posi-
tive supermartingales, it follows that it is bounded from above, and we get that
{logE(R) | R € R} is bounded from below. Since R > log £(R) for all R € R and
R is unbounded, it follows that it must be unbounded from above.

Let us now show that the collection of random wvariables {E(R)r | R € R} is
unbounded if and only if the collection of semimartingales {E(R) | R € R} is un-
bounded (from above, of course, since they are positive). One direction is trivial:
if the semimartingale class is unbounded, the random variable class is unbounded
too; we only need show the other direction. Unboundedness of {£(R) | R € R}
means that we can pick an € > 0 so that, for any n € N, there exists a semimartin-
gale R" € R such that for the stopping times 7, := inf {t € [0,T] | E(R"); > n}
(as usual, we set 7,, = oo where the last set is empty) we have P[r,, < oo] > e.
Each £(R™)~! is a supermartingale, so

PE(R™) ;' <n Y2 > PIE(RY L <n V2| 7, < o0] Plry, < 00] > (1 —n~Y2),

which shows that the sequence (£(R"™)r)nen is unbounded and the claim of this
paragraph is proved.

We want to prove now that, if R is unbounded, then {£(R) | R € R} is un-
bounded too. Define the class Z := {L (E(R)™') | R € R}; we have Zy = 0,
AZ > —1 and that Z is a local supermartingale for all Z € Z.

For our third step, we show that if the collection Z is bounded from below,
then it is also bounded from above. To this end, pick any € > 0. We can find
an M € Ry such that the stopping times 77 := inf{t € [0,7] | Z; < —M + 1}
(again, we set 7z = oo where the last set is empty) satisfy P[rz < oo] < €/2 for all
Z € Z. Since AZ > —1, we have Z;, > —M and so each stopped process Z77 is
a supermartingale (it is a local supermartingale bounded uniformly from below).
Then, with y. := 2M /e we have

IP’[ sup Z; > y} < (¢/2) +P| sup Z77 > y} < (e/2) + (1 +y /M) <,

t€[0,T7] t€[0,T]
and thus Z is bounded from above too.
Now we have all the ingredients for the proof. Suppose that R is unbounded;

we discussed that it has to be unbounded from above. Using Lemma 2.4 with
Y =0, we get that every Z € Z is of the form

|AR|?

1 Z=- <, R e
(7.1) R+[R,R]+;1+ARS
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When Z is unbounded from below, things are pretty simple, because log £(Z) < Z
for all Z € Z so that {log&(2Z) | Z € Z} is unbounded from below and thus
{E(R) | Re R} = {exp(—1log&(Z)) | Z € Z} is unbounded from above.

It remains to see what happens if Z is bounded from below. The third step (two
paragraphs ago) of this proof implies that Z must be bounded from above as well.
Then, because of equation (2.1) and the unboundedness from above of R, this
would mean that the collection { [RS,R] + Y _ [|AR|?/(1+ ARs)] | RER }
of increasing processes is also unbounded. Now, for Z € Z we have

log€(Z) = —logE(R) = —R + %[RC, R+ Y [AR, —log(1+ AR,)]

s<-

from (7.1) and the stochastic exponential formula, so that

1 AR

Z —1 Z)=—-|R% R" log(1+AR,) — ——=—1.
ou£(7) = 5l )+ 3 [l + AR — 10

The collection of increasing processes on the right-hand-side of this last equation
is unbounded because { [R, R + Y., [(ARs)?/(1+AR,)] | R € R } is un-

bounded too, as we discussed. Since we have Z being bounded, this means that
{logE(Z) | Z € Z} is unbounded from below, and we conclude again as before. [J

Remark 7.3. Without the assumption that {£(R)™! | R € R} consists of super-
martingales, this lemma is not longer true. In fact, take T' = 400 and R to have
only one element R with Ry = at + 3, where a € (0,1/2) and [ is a standard
1-dimensional Brownian motion. Then, R is bounded from below and unbounded
from above, nevertheless log £(R); = (a — 1/2)t + ¢ is bounded from above, and
unbounded from below.

APPENDIX A. MEASURABLE RANDOM SUBSETS

Throughout this section we shall be working on a measurable space (Q,P);
although the results are general, for us Q will be the base space Q x Ry and P
the predictable o-algebra. The metric of the Euclidean space R¢, its denoted by
“dist” and its generic point by z.

The proofs of the results below will not be given, but can be found (in greater
generality) in Chapter 17 of the excellent book by Border and Aliprantis [2]; for
shorter proofs of the specific results, see Kardaras [25]. The subject of measurable
random subsets and measurable selection is slightly gory in its technicalities, but
the statements should be intuitively clear.

A random subset of R? is just a random variable taking values in QRd, the
powerset (class of all subsets) of R?. Thus, a random subset of R? is a function
A: Q- 28 A random subset 2 of R? will be called closed (resp., convex) if the
set A(@) is closed (resp., convex) for every @ € Q.

We have to impose some measurability requirement on processes of this type,
so we must place some measurable structure on the space 9R? We endow it with
the smallest o-algebra that makes the mappings

2% 5 A dist(z, A) € Ry U {+o0}
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measurable for all z € R? (by definition, dist(z, ) = +00). The following equiva-
lent formulations are sometimes useful.

Proposition A.1. The constructed o-algebra on 2R is also the smallest o-algebra
that makes any of the following three classes of functions measurable.

(1) 2R ¢ A s L ank 20y, for every compact K C R?.
(2) 2R ¢ 4 L anrs0y, for every closed F' C R?.
(3) 2R ¢ A I anG0y, for every open G C R,

A mapping from Q x R% into some other topological space (with its Borel o-
algebra), measurable with respect to the first argument (keeping the second fixed)
and continuous with respect to the second (keeping the first fixed), will be called
a Carathéodory function. From the definition of the o-algebra on QRd, the random
subset 2 of R? is measurable, if and only if the function

QxR 3 (@, 2) — dist(z, A(@)) € Ry U {400}

is Carathéodory (continuity in z is evident from the triangle inequality).
.From Proposition A.1, a random subset 2 of R? is measurable if for any com-

pact K C RY, the set {ANK # 0} := {© € Q| A©) N K # 0} is P-measurable.

Remark A.2. Suppose that random subset 2 is a singleton A(w) = {a(®)} for
some a : Q +— R Then, A is measurable if and only if {a € K} € P for all closed
K CR% i.e., if and only if a is P-measurable.

We now deal with unions and intersections of random subsets of R%,

Lemma A.3. Suppose that (), cy is a sequence of measurable random subsets

of R®. Then, the union Unen &n is also measurable. If, furthermore, each random
subset A, is closed, then the intersection ﬂneN A, 15 measurable.

The following lemma gives a way to construct measurable, closed random sub-
sets of R, To state it, we shall need a slight generalization of the notion of
Carathéodory function. For a measurable closed random subset 2l of R?, a map-
ping f of © x R into another topological space will be called Carathéodory on
2, if it is measurable (with respect to the product o-algebra on Q x RY), and if
z — f(w, z) is continuous, for each @ € Q. Of course, if 2 = R%, we recover the
usual notion of a Carathéodory function.

Lemma A.4. Let E be any topological space, F' C E a closed subset, and 2 a
closed and convex random subset of R®. If f : Q x R — E is a Carathéodory
function on A, then €:={z e W | f(-,z) € F} is closed and measurable.

The last result focuses on the measurability of the “argument” process in ran-
dom optimization problems.

Theorem A.5. Suppose that € is a closed and convexr, measurable, non-empty
random subset of R%, and f: Q x R? — RU {—o0} is a Carathéodory function on
¢. For the optimization problem f.(@) = max,c¢ f(©,2), we have:
(1) The value function f. is P-measurable.
(2) Suppose that f.(@) is finite for all @, and that there exists a unique z,(®) €
C(@) satisfying f(@, z4(©)) = fou(©). Then & z.(®) is P-measurable.
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In particular, if € is a closed and convex, measurable, non-empty random subset
of RY, we can find a P-measurable h : Q — R? with h(@) € €(Q) for all & € Q.

For the “particular” case of the last theorem one can use for example the func-
tion f(x) = —|z| and the result first part of the theorem. In case the maximizer
is not unique, one can still measurably select from the set of maximizers. This
result is more difficult; in any case we shall not be using it.

APPENDIX B. SEMIMARTINGALES AND STOCHASTIC INTEGRATION UP TO 00
We recall here a few important concepts from [7] and prove a few useful results.

Definition B.1. Let X = (X;);cr, be a semimartingale such that X, :=

lim¢ oo Xt exists. Then X will be called a semimartingale up to infinity if the

process X defined on the time interval [0, 1] by X; = X% (of course, X7 = X)
—%

is a semimartingale relative to the filtration F = (]:—t)te[o,l] defined by

- {ft, for 0 <t <1,
t =

1-t

\/tERJr Ft, fOI‘ t = 1

We define similarly local martingales up to infinity, processes of finite variation
up to infinity, etc., if the corresponding process X has the property.

Until the end of this subsection, a “tilde” over a process, means that we are
considering the process of the previous definition, with the new filtration F.

To appreciate the difference between the concepts of (plain) semimartingale
and semimartingale up to infinity, consider the simple example where X is the
deterministic, continuous process X; := t~!sint; it is obvious that X is a semi-
martingale and that Xo = 0, but Var(X), = +oo and thus X cannot be a
semimartingale up to infinity (recall that a deterministic semimartingale must be
of finite variation).

Every semimartingale up to infinity X can be written as the sum X = A+ M,
where A is a process of finite variation up to infinity (which simply means that
Var(A)s < 00) and M is a local martingale up to infinity (which means that there
exists an increasing sequence of stopping times (7}, )nen with {7, = 400} T Q such
that each of the stopped processes M7 is a uniformly integrable martingale).

Here are examples of semimartingales up to infinity.

Lemma B.2. If Z is a positive supermartingale, then it is a special semimartin-
gale up to infinity. If furthermore Zoo > 0, then L(Z) is also a special semimartin-
gale up to infinity, and both processes Z~' and L(Z~') are semimartingales up to
infinity.

Proof. We start with the Doob-Meyer decomposition Z = M — A, where M is
a local martingale with My = Zy and A is an increasing, predictable process.
Since M is a positive local martingale, it is a supermartingale too, and we can
infer that both limits Z,, and M, exist and are integrable. This means that
A exists and actually E[As] = E[Ms] — E[Zx] < o0, so A is a predictable
process of integrable variation up to infinity. It remains to show that M is a
local martingale up to infinity. Set 7, := inf{t >0 | M; > n}; this obviously
satisfies {T,, = +oo} T Q (the supremum of a positive supermartingale is finite).
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Since supg<i<r, Mt < n + Mr,I1, <oo} and by the optional sampling theorem
E[Mr,Ii1, <o0y] < E[Mo] < o0, we get E[supg<;<p, M;] < oo. Thus, the local
martingale M™» is actually a uniformly integrable martingale and thus Z is a
special semimartingale up to infinity.

Now assume that Z,, > 0. Since Z is a supermartingale, this will mean that
both Z and Z_ are bounded away from zero. Since Z~! is locally bounded and Z is
a special semimartingale, C(Z ) = Z~1. Z will be a special semimartingale as well,
meaning that £(7) is a special semimartingale up to infinity. Furthermore, 1t6’s
formula applied to the inverse function (0,00) > z +— 2~! implies that Zlisa
semimartingale up to infinity and since Z_ is locally bounded, £(Z~ ') = Z_-Z~!
is a semimartingale, which finishes the proof. ([

Consider a d-dimensional semimartingale X. A predictable process H will be
called X -integrable up to infinity if it is X-integrable and the semimartingale H - X
is a semimartingale up to infinity.

Remark B.3. In the course of the paper we consider “semimartingales up to time
T” and “stochastic integration up to time T where T is a possibly infinite stopping
time rather than “semimartingales up to infinity” and “stochastic integration up
to infinity”. Of course, one can use all the results of this section applying them
to the processes stopped at time T — differences between the usual notion of
integrability appears only when P[T = oo] > 0.

APPENDIX C. 0-LOCALIZATION

A good account of the concept of o-localization is given in Kallsen [20]. Here
we recall briefly what is needed for our purposes. For a semimartingale Z and a
predictable set X, define Z* := Zylx(0) + Iy - Z.

Definition C.1. Let Z be a class of semimartingales. Then, the corresponding
o-localized class Z, is defined as the set of all semimartingales Z for which there
exists an increasing sequence (X, )nen of predictable sets, such that ¥, T Q x Ry
(up to evanescence) and Z>" € Z for all n € N.

When the corresponding class Z has a name (like “supermartingales”) we bap-
tize the class Z, with the same name preceded by “o-” (like “o-supermartingales”).

The concept of o-localization is a natural extension of the well-known concept
of localization along a sequence (7,,)nen Of stopping times, as one can easily see
by considering the predictable sets ¥, = [0,7,,] := {(w,t) | 0 <t < 7, (w) < o0}

Let us define the set U of semimartingales Z, such that the collection of random
variables {Z; | 7 is a stopping time} is uniformly integrable — also known in the
literature as semimartingales of class (D). The elements of U admit the Doob-
Meyer decomposition Z = A + M into a predictable finite variation part A with
Ap =0 and E[Var(A)] < oo and a uniformly integrable martingale M. It is then
obvious that the localized class U, corresponds to all special semimartingales;
they are exactly the ones which admit a Doob-Meyer decomposition as before,
but where now A is only a predictable, finite variation process with Ag = 0 and
M alocal martingale. Let us remark that the local supermartingales (resp., local
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submartingales) correspond to these elements of U, with A decreasing (resp.,
increasing). This last result can be found for example in Jacod’s book [17].

One can have very intuitive interpretation of some o-localized classes in terms
of the predictable characteristics of Z.

Proposition C.2. Consider a scalar semimartingale Z, and let (b,c,v) be the
triplet of predictable characteristics of Z relative to the canonical truncation func-
tion and the operational clock G. Then

(1) Z belongs to Ui if and only if the predictable process [ ||y s1yv(de) is
G-integrable;

(2) Z belongs to Uy if and only if [ |x|l{,>1yv(dz) < co; and

(3) Z is a o-supermartingale, if and only if [ |x|lfys1yv(de) < +oo and
b+ fx]l{|x|>1}1/(d:r) <0.

Proof. The first statement follows from the fact that a 1-dimensional semimartin-
gale Z is a special semimartingale (i.e., a member of Uioc) if and only if [|@] Iy 1y]*
7 is a finite, increasing predictable process (one can consult Jacod [17] for this fact).
The second statement follows easily from the first and o-localization. Finally, the
third follows for the fact that for a process in Uy the predictable finite variation
part is given by the process (b + f [$H{\x|>l}] I/(da:)) - G, using the last remark
before the proposition, the first part of the proposition, and o-localization. O

Results like the last proposition are very intuitive, because b+ [ ol |p>1yv(dT)
represents the infinitesimal drift rate of the semimartingale Z; we expect this
rate to be negative (resp., positive) in the case of o-supermartingales (resp., o-
submartingales). The importance of o-localization is that it allows us to talk
directly about drift rates of processes, rather than about drifts. Sometimes drift
rates exist, but cannot be integrated to give a drift process; this is when the usual
localization technique fails, and the concept of o-localization becomes useful.

The following result gives sufficient conditions for a o-supermartingale to be a
local supermartingale (or even plain supermartingale).

Proposition C.3. Suppose that Z is a scalar semimartingale with triplet of pre-
dictable characteristics (b, c,v).

(1) Suppose that Z is a o-supermartingale. Then, the following are equivalent:
(a) Z is a local supermartingale.
(b) The positive, predictable process [(—x)liy<_1yv(dx) is G-integrable.

(2) If Z is a o-supermartingale (resp., o-martingale) and bounded from below
by a constant, then it is a local supermartingale (resp., local martingale).
If furthermore E[Zy] < oo, it is a supermartingale.

(3) If Z is bounded from below by a constant, then it is a supermartingale if
and only if E[Z{] < 0o and b+ [ 2l >13v(dz) < 0.

Proof. For the proof of (1), the implication (a) = (b) follows from part (1) of
Proposition C.2. For (b) = (a), assume that [(—z)I;,<_1yv(dz) is G-integrable.
Since Z is a o-supermartingale, it follows from part (3) of Proposition C.2 that
[ #lsnyv(dz) < b+ [(—2)l{<_13v(dz). Now, this last inequality implies that
Sz L syv(de) < —b+ 2 [(—2)I<_13v(dz); the last dominating process is
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G-integrable, thus Z € U, (again, part (1) of Proposition C.2). The special semi-
martingale Z has predictable finite variation part equal to (b + / xﬂ{x>1}y(da§)) -G,
which is decreasing, so that Z is a local supermartingale.

For part (2), we can of course assume that Z is positive. We discuss the case
of a o-supermartingale; the o-martingale case follows in the same way. According
to part (1) of this proposition, we only need to show that [(—z)If,<_1yv(dz) is
G-integrable. But since the negative jumps of Z are bounded in magnitude by
Z_, we have that [(—z)l{,c_qyv(dz) < (Z-)v [z < —1], which is G-integrable,
because v [z < —1] is G-integrable and Z_ is locally bounded. Now, if we further
assume that E[Zy] < oo, Fatou’s lemma for conditional expectations gives us that
the positive local supermartingale Z is a supermartingale.

Let us move on to part (3) and assume that Z is positive. First assume that
Z is a supermartingale. Then, of course we have E[Zy] < oo and that Z is an
element of U, (and even of U,c) and part (3) of Proposition C.2 ensures that
b+ fx]I{|z|>1}V(da;) < 0. Now, assume that Z is a positive semimartingale with
E[Z] < oo and that b + [zlj,~13v(dez) < 0. Then, of course we have that
J #l=1yv(de) < co. Also, since Z is positive we always have that v [z < —Z_] =
0 so that [(—z)If;<_1yv(dz) < oo too. Part (2) of Proposition C.2 will give us
that Z € U,, and part (3) of the same proposition that Z is a o-supermartingale.
Finally, part (2) of this proposition gives us that Z is a supermartingale. O

Proposition C.3 has been known for some time and made its first appearance
in Ansel and Stricker [3]. The authors did not deal directly with o-martingales,
but with semimartingales Z which are of the form Z = Zy+ H - M, where M is a
martingale and H is M-integrable (a martingale transform). Of course, martingale
transforms are o-martingales and vice-versa. The corollary of Proposition C.3
when the o-martingale Z is bounded from below by a constant, is sometimes
called “The Ansel-Stricker theorem”. The case when Z is a o-supermartingale
bounded from below with E[Z]] < oo is proved in [20].
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