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Department of Mathematics

University of Southern California

Los Angeles, CA 90089

cvitanic@math.usc.edu

IOANNIS KARATZAS

Departments of Mathematics and Statistics

Columbia University

New York, NY 10027

ik@math.columbia.edu

June 2, 2007

Abstract

We extend the classical Neyman-Pearson theory for testing composite hypotheses ver-
sus composite alternatives, using a convex duality approach as in Witting (1985).
Results of Aubin & Ekeland (1984) from non-smooth convex analysis are employed,
along with a theorem of Komlós (1967), in order to establish the existence of a max-min
optimal test in considerable generality, and to investigate its properties. The theory is
illustrated on representative examples involving Gaussian measures on Euclidean and
Wiener space.

Key words: Hypothesis testing, optimal generalized tests, saddle-points, stochastic games,

Komlós theorem, non-smooth convex analysis, subdifferentials, normal cones.

AMS 1991 Subject Classifications: Primary 62C20, 62G10; secondary 49N15, 93E05.

Running Title: Neyman-Pearson theory via Convex Duality.

∗Research supported in part by the National Science Foundation, under Grant NSF-DMS-97-32810.

1



1 Introduction

On a measurable space (Ω,F), suppose that we are given two probability measures Q (“hy-

pothesis”) and P (“alternative”), and that we want to discriminate between them. We can

try to do this in terms of a (pure) test, that is, a random variable X : Ω → {0, 1}, which

rejects Q on the event {X = 1}. With this interpretation, Q(X = 1) is the probability of

rejecting Q when it is true (probability of type-I-error), whereas P (X = 0) = 1−P (X = 1)

is the probability of accepting Q when it is false (probability of type-II-error).

Ideally, one would like to minimize these error probabilities simultaneously, but typically

this will not be possible: a more sensitive radar decreases the chance of letting enemy aircraft

go undetected, but also makes false alarms more likely. The next best thing is then to fix a

certain number 0 < α < 1 (say α = 1% or α = 5%), and try to

maximize P (X = 1), subject to Q(X = 1) ≤ α. (1.1)

In other words, one tries to find a test that minimizes the probability of type-II-error, among

all tests that keep the probability of type-I-error below a given acceptable significance level

α ∈ (0, 1). This is the tack taken by the classical Neyman-Pearson theory of hypothesis

testing; see, for instance, Lehmann (1986), Ferguson (1967) or Witting (1985).

The basic results of this theory are very well known. Suppose that µ is a third probability

measure with

P << µ, Q << µ (1.2)

(for instance, µ = (P + Q)/2), and set

G :=
dP

dµ
, H :=

dQ

dµ
. (1.3)

Then the problem of (1.1) has a solution, namely

X̂ = 1{ẑH<G} , (1.4)

provided that

Q(ẑH < G) = α for some 0 < ẑ < ∞. (1.5)

In other words, the test X̂ of (1.4) rejects the hypothesis, if and only if the “likelihood ratio”

G/H = (dP/dµ)/(dQ/dµ) is sufficiently large.

When a number ẑ with the properties (1.5) cannot be found, one has to consider ran-

domized tests, that is, random variables X : Ω → [0, 1]. The new interpretation is that, if

the outcome ω ∈ Ω is observed, then the hypothesis Q is rejected (respectively, accepted)

with probability X(ω) (resp., 1−X(ω)), independently of everything else. This way,

EP (X) =
∫

X(ω)P (dω) (1.6)
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is then the power of the randomized test X, that is, the probability of rejecting the hypothesis

Q when it is false; and

EQ(X) =
∫

X(ω)Q(dω) (1.7)

is the probability of type-I-error for the randomized test X (i.e., of rejecting Q when it is

true). By analogy with (1.1), one seeks a randomized test X̂ which

{
maximizes EP (X), over all randomized tests

X : Ω → [0, 1] with EQ(X) ≤ α

}
. (1.8)

The advantage of this “randomized” formulation is that the problem of (1.8) has a solution

for any given significance level α ∈ (0, 1). In particular, the supremum

sup
X∈Xα

EP (X) , with Xα := {X : Ω → [0, 1] / EQ(X) ≤ α}, (1.9)

is attained by the randomized test

X̂ = 1{ẑH<G} + b · 1{ẑH=G} (1.10)

in Xα, where we have set (with the convention 0/0 = 0):

ẑ := inf{u ≥ 0 / Q(uH < G) ≤ α} , (1.11)

b :=
α−Q(ẑH < G)

Q(ẑH = G)
=

α−Q(ẑH < G)

Q(ẑH ≤ G)−Q(ẑH < G)
∈ [0, 1]. (1.12)

2 Composite hypotheses and alternatives

Let us suppose now that, on the measurable space (Ω,F), we have an entire family Q

of probability measures (composite “hypothesis”), which we want to discriminate against

another family P of probability measures (composite “alternative”). By analogy with (1.2),

we asssume

P ∩Q = ∅, (2.1)

P << µ , Q << µ ; ∀ P ∈ P, Q ∈ Q (2.2)

for some probability measure µ, and set

GP :=
dP

dµ
(P ∈ P) , HQ :=

dQ

dµ
(Q ∈ Q) (2.3)

Xα := {X : Ω → [0, 1] / EQ(X) ≤ α, ∀ Q ∈ Q} (2.4)
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as in (1.3), (1.9). Since we have now an entire family P of alternatives, we shall replace

(1.9) by the max-min criterion

V (α) := sup
X∈Xα

(
inf
P∈P

EP (X)
)

. (2.5)

In other words, we shall look for a randomized test X̂ that maximizes the smallest power

γ(X) := inf
P∈P

EP (X) (2.6)

attainable through measures of the family P, over all randomized tests X of size

s(X) := sup
Q∈Q

EQ(X) ≤ α. (2.7)

Definition 2.1 If such a randomized test X̂ ∈ Xα exists, it will be called max-min-optimal

for testing the (composite) hypothesis Q against the (composite) alternative P, at the given

level of significance α ∈ (0, 1).

Under appropriate conditions on the family P of alternatives, we shall see in the next

section that an optimal max-min randomized test exists and has a form reminiscent of (1.10),

namely

X̂ = 1{ẑĤ<Ĝ} + B · 1{ẑĤ=Ĝ} . (2.8)

Here B is a random variable with values in the interval [0, 1]; the random variable Ĝ is of

the form GP̂ = dP̂ /dµ of (2.3) for some P̂ ∈ P; the random variable Ĥ is chosen from a

suitable family that contains the convex hull

Co(H;Q) := {λHQ1 + (1− λ)HQ2 / Q1 ∈ Q, Q2 ∈ Q, 0 ≤ λ ≤ 1} (2.9)

of {HQ}Q∈Q ; and ẑ is a suitable positive number.

As we shall see, it is no longer possible to compute these quantities by means of for-

mulae as explicit as (1.11) and (1.12), which are valid in the simple-hypothesis-vs.-simple-

alternative case. However, methods of nonsmooth convex analysis and duality theory provide

both the existence of these quantities and algorithms that can lead to their computation, as

illustrated by several examples in Section 5. The main result of the present paper, namely

Theorem 4.1 (and its Corollaries 4.1 and 4.2), shows that the associated dual problem always

(that is, even with uncountably many hypotheses and/or alternatives) has a solution; that

there is never a duality gap; and that the optimal test always has the 0 − 1 representation

(2.8).

The idea of using convex duality methods in Hypothesis Testing is not new; it goes back

to the paper by Krafft & Witting (1967), and is developed to a considerable extent in Chapter

4



2 of the treatise by Witting (1985), particularly Sätze 2.80 and 2.81 on pp. 267-274. See also

the papers by Lehmann (1952), Baumann (1968) and Huber & Strassen (1973), as well as

pp. 361-362 in the book by Vajda (1989), for related results. The paper by Baumann (1968)

proves the existence of the max-min-optimal test using general duality results from the theory

of linear programming, as well as weak-compactness arguments. We provide a different,

self-contained proof for existence, using an almost-sure convergence argument based on the

theorem of Komlós (1967). In addition, our approach enables us to show that the optimal test

is always of the Neyman-Pearson form (2.8), thereby giving a characterization potentially

useful in finding algorithms for computing the optimal test. To the best of our knowledge,

the characterization (2.8) has only been known under stronger conditions on the null and

the alternative hypotheses. We obtain it here in a very general setting, using infinite-

dimensional nonsmooth convex optimization results of Aubin & Ekeland (1984), apparently

not used previously in the theory of hypothesis-testing. Our own inspiration came from

Heath (1993), who used the Neyman-Pearson lemma as a tool for solving a stochastic control

problem that can also be treated by methods of convex duality; for related work along this

line see Karatzas (1997), as well as Cvitanić & Karatzas (1999), Cvitanić (2000), Föllmer

& Leukert (1999, 2000) and Spivak (1998) for similar problems arising in the context of

Mathematical Finance.

3 Results: Analysis

Let us begin the statement of results by introducing the set of random variables

H := {H ∈ L1(µ) / H ≥ 0, µ− a.e. and Eµ(HX) ≤ α, ∀ X ∈ Xα}. (3.1)

As is relatively straightforward to check (cf. Section 6), this set is convex, bounded in L1(µ),

closed under µ−a.e. convergence, and contains the convex hull of (2.9), namely

Co(H;Q) ⊆ H. (3.2)

In a similar spirit, we shall impose the following assumption throughout.

Assumption 3.1 The set of densities

G := {GP}P∈P (3.3)

is convex and closed under µ−a.e. convergence. (From (2.3), the convexity of G is equivalent

to the convexity of the family P of alternatives.)
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The set G of (3.3) is obviously bounded in L1(µ), since Eµ(GP ) = P (Ω) = 1 for every

P ∈ P. We shall comment in Remark 4.1 below, on the necessity of imposing Assumption

3.1 and of considering the class H of (3.1), as we do. Now the key observation is that, for

arbitrary G ∈ G and H ∈ H, we have G = dP/dµ for some P ∈ P, and thus

EP (X) = Eµ(GX) = Eµ[X(G− zH)] + z · Eµ(HX)

≤ Eµ(G− zH)+ + αz ; ∀ z > 0, ∀ X ∈ Xα (3.4)

from (3.1) and 0 ≤ X ≤ 1 in (1.9). Furthermore, we have equality in (3.4) for some Ĝ ∈ G,

Ĥ ∈ H, ẑ ∈ (0,∞) and X̂ ∈ Xα, if and only if the conditions

Eµ(ĤX̂) = α (3.5)

X̂ = 1{ẑĤ<Ĝ} + B · 1{ẑĤ=Ĝ} , µ− a.e. (2.8)

both hold, for some random variable B : Ω → [0, 1]; and in this case, with P̂ :=
∫

Ĝdµ ∈ P,

we have

EP̂ (X̂) = Eµ(ĜX̂) = αẑ + Eµ(Ĝ− ẑĤ)+. (3.6)

Proposition 3.1 Suppose that there exists a quadruple (Ĝ, Ĥ, ẑ, X̂) ∈ (G×H×(0,∞)×Xα)

that satisfies (3.5), (2.8), and

Eµ[X̂(Ĝ−G)] ≤ 0 , ∀ G ∈ G. (3.7)

Then we have

EP̂ (X) ≤ EP̂ (X̂) ≤ EP (X̂); ∀ X ∈ Xα, P ∈ P. (3.8)

In other words, the pair (X̂, P̂ ) with P̂ =
∫

Ĝdµ, is then a saddle-point for the stochastic

game with lower-value V (α) as in (2.5), and upper-value

V (α) := inf
P∈P

(
sup

X∈Xα

EP (X)

)
, (3.9)

namely:

V (α) = V (α) = EP̂ (X̂) =
∫

ĜX̂dµ. (3.10)

We collect in Section 6 the proofs of all the results in the paper. The inequality of (3.4)

also points the way to a duality approach, that will lead eventually to the existence of a

quadruple (Ĝ, Ĥ, ẑ, X̂) with the properties (3.5)-(3.7) and (2.8), as follows. Let us introduce

the value function

Ṽ (z) ≡ Ṽ (z; α) := inf
(G,H)∈(G×H)

Eµ(G− zH)+ , 0 < z < ∞ (3.11)
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of an auxiliary dual problem, and observe from (3.4) the inequality

V (α) ≤ V∗(α) , (3.12)

where we have set

V∗(α) := inf
z>0

(G,H)∈(G×H)

[
αz + Eµ(G− zH)+

]
= inf

z>0
[αz + Ṽ (z)]. (3.13)

Proposition 3.2 Under the assumptions of Proposition 3.1, the following hold:

(i) The pair (Ĝ, Ĥ) attains the infimum in (3.11) with z = ẑ.

(ii) The triple (ẑ, Ĝ, Ĥ) attains the first infimum in (3.13).

(iii) The number ẑ ∈ (0,∞) attains the second infimum in (3.13).

(iv) There is no “duality gap” in (3.12); namely, V∗(α) = V (α) = V (α) = EP̂ (X̂).

We shall show in the next section how to select the “dual variables” (ẑ, Ĝ, Ĥ) ∈
((0,∞)×G ×H) in such a way, that the optimal “primal variable” (generalized test) X̂ is

then given in the form (2.8).

4 Results: Synthesis

We can follow now the above reasoning in reverse, and try to obtain the existence of the

quadruple (Ĝ, Ĥ, ẑ, X̂) postulated in Proposition 3.1, by characterizing its constituent ele-

ments in terms of the properties of Proposition 3.2. This is done in Lemmata 4.1-4.4 and in

Theorem 4.1 below, using nonsmooth convex analysis as our main tool; cf. Aubin & Ekeland

(1984), Chapters 1-4.

Lemma 4.1 The function Ṽ (·) of (3.11) is Lipschitz-continuous:

|Ṽ (z1)− Ṽ (z2)| ≤ |z1 − z2| , ∀ 0 < z1, z2 < ∞. (4.1)

Lemma 4.2 For any given z ≥ 0, there exists a pair (Ĝ, Ĥ) = (Ĝz, Ĥz) ∈ G × H that

attains the infimum in (3.11).

Lemma 4.3 For any given α ∈ (0, 1), there exists a number ẑ = ẑα > 0 that attains the

infimum V∗(α) = infz>0[αz + Ṽ (z)] of (3.13).

Lemma 4.4 Under the norm ‖(G, H, z)‖ := Eµ(|G|+ |H|) + |z| , the set

M := {(G,H, z) ∈ L / G ∈ G, H ∈ H, z ≥ 0} (4.2)
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is a closed, convex subset of L := L1(µ)× L1(µ)×<. Furthermore, the functional

L 3 (G, H, z) 7−→ Ũ(G,H, z) := αz + Eµ(G−H)+ ∈ (0,∞) (4.3)

is proper, convex and lower-semicontinuous on L; and (G,H, z) 7→ Ũ(G, zH, z) = αz +

Eµ(G− zH)+ attains its infimum over M at the triple (Ĝ, Ĥ, ẑ), with ẑ ≡ ẑα as in Lemma

4.3 and (Ĝ, Ĥ) ≡ (Ĝẑ, Ĥẑ) as in Lemma 4.2.

Let us consider now the dual L∗ := L∞(µ)×L∞(µ)×< of the space L = L1(µ)×L1(µ)×<,

the set M∗ := {(G, zH, z)/(G,H, z) ∈M}, the normal cone

N(Ĝ, ẑĤ, ẑ) := {(W,X, y) ∈ L∗ / Eµ(ĜW + ẑĤX) + ẑy ≥
≥ Eµ(GW + zHX) + zy, ∀ (G,H, z) ∈M} (4.4)

to this set M∗ at the point (Ĝ, ẑĤ, ẑ) ∈M∗, and the subdifferential at this point

∂Ũ(Ĝ, ẑĤ, ẑ) := {(W,X, y) ∈ L∗ / Ũ(Ĝ, ẑĤ, ẑ)− Ũ(G, Y, z) ≤
≤ Eµ[W (Ĝ−G) + X(ẑĤ − Y )] + y(ẑ − z), ∀ (G, Y, z) ∈ L} (4.5)

of the functional Ũ in (4.3). From Lemma 4.4 and non-smooth convex analysis, as in

Corollary 4.6.3 of Aubin & Ekeland (1984), we know that

(Ĝ, ẑĤ, ẑ) ∈M∗ is a solution of (0, 0, 0) ∈ ∂Ũ(Ĝ, ẑĤ, ẑ) + N(Ĝ, ẑĤ, ẑ).

In other words, there exists a triple (Ŵ , X̂, ŷ), such that (Ŵ , X̂, ŷ) ∈ N(Ĝ, ẑĤ, ẑ) and

(−Ŵ ,−X̂,−ŷ) ∈ ∂Ũ(Ĝ, ẑĤ, ẑ), or equivalently

Eµ[Ŵ (Ĝ−G)] + Eµ[X̂(ẑĤ − zH)] + ŷ(ẑ − z) ≥ 0; ∀ (G,H, z) ∈M (4.6)

Eµ[Ŵ (G−Ĝ)+X̂(Y −ẑĤ)+(G−Y )+−(Ĝ−ẑĤ)+] ≥ (α+ŷ)(ẑ−z); ∀ (G, Y, z) ∈ L. (4.7)

Sending z → ±∞, we observe that (4.7) can hold only if

ŷ = −α. (4.8)

Reading (4.6) with ŷ = −α and with G = Ĝ, H = Ĥ, z = ẑ ± δ for δ > 0, we obtain

Eµ(ĤX̂) = α (3.5)(a)

as postulated by (3.5). On the other hand, reading (4.6) with G = Ĝ, z = ẑ, we obtain

Eµ(HX̂) ≤ Eµ(ĤX̂) = α , ∀ H ∈ H (3.5)(b)

in conjunction with (3.5)(a); and reading (4.6) with H = Ĥ, z = ẑ leads to

Eµ[Ŵ (Ĝ−G)] ≥ 0 , ∀ G ∈ G. (3.7)′
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Theorem 4.1 The random variable X̂ belongs to Xα, and satisfies

X̂ = −Ŵ = 1{ẑĤ<Ĝ} + B · 1{ẑĤ=Ĝ} , µ− a.e. (4.9)

for a suitable random variable B : Ω → [0, 1].

Corollary 4.1 The stochastic game with lower- (resp., upper- ) value V (α) (resp., V (α)) as

in (2.5), (3.9) has saddle-point (X̂, P̂ ) with P̂ =
∫

Ĝdµ, and value V (α) = V (α) = EP̂ (X̂).

This follows from Proposition 3.1, since the conditions (3.5) and (2.8) are satisfied (recall

(4.9) and (3.5)(a)), and so is condition (3.7), because (3.7)′ and (4.9) imply

Eµ[X̂(Ĝ−G)] = Eµ[Ŵ (G− Ĝ)] ≤ 0 , ∀ G ∈ G.

Corollary 4.2 The randomized test X̂ ∈ Xα is max-min optimal for testing the composite

hypothesis Q against the composite alternative P in the sense of Definition 2.1; namely, it

maximizes the smallest value of the power γ(X) = infP∈P EP (X) attainable over alternatives

P ∈ P, against all generalized tests X ∈ Xα of size s(X) := supQ∈Q EQ(X) ≤ α.

Remark 4.1 If the convex set H̃ := Co(H;Q) of (2.9) is itself closed under µ−a.e. conver-

gence, there is no need to introduce the larger set H of (3.1) and (3.2), since the auxiliary

dual problem

Ṽ (z) := inf
(G,H)∈(G×H̃)

Eµ(G− zH)+ (3.11)′

has then a solution in G × H̃.

Similarly, it is well-known that an optimal test can often be found among “Bayesian tests”

(see Witting (1985), for example). More precisely, suppose that the set {HQ / Q ∈ Q} can

be represented in the form {Hθ / θ ∈ Θ} for some measurable space {Θ, E}, such that

(θ, ω) 7→ Hθ(ω) is an F ⊗ E − measurable function on Ω×Θ. Let S be a set of probability

measures (“prior distributions”) on {Θ, E}, and denote

HS :=
{∫

HθdS(θ) / S ∈ S
}

.

Again, if HS is convex and closed under µ−a.e. convergence, and if {HQ / Q ∈ Q} ⊆ HS ,

we can work with the set HS instead of H.

However, we cannot relax the convexity and closedness Assumption 3.1 on the set G of

(3.3); in particular, we cannot replace G by the larger, convex set

G̃ := {G ∈ L1(µ) / G ≥ 0, µ− a.e.; Eµ(GX) ≥ inf
P∈P

EP (X), ∀ X ∈ Xα}. (3.3)′

One reason why this might not work is that G̃ does not have to be closed under µ−a.e.

convergence, since Fatou’s lemma can then fail to produce the desired inequality in (3.3)′.
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5 Examples

We present in this section a few representative examples, involving hypothesis testing for

Gaussian measures on Euclidean and Wiener spaces. Most, if not all, of these examples are

probably well-known; they are developed here only insofar as they allow us to illustrate the

theory of Sections 3 and 4 in a transparent and direct way.

Let us consider first the case of the filtered measurable space {Ω,F}, F := {F(t)}0≤t≤1,

where Ω := C([0, 1];<d) is the set of all continuous functions ω : [0, 1] → <d, W (t, ω) := ω(t),

0 ≤ t ≤ 1 is the coördinate mapping process, F(t) := σ(W (s); 0 ≤ s ≤ t), and F = F(1).

Consider also the space Θ of F−progressively measurable processes θ : [0, 1] × Ω → K for

some given compact, convex subset K of <d with 0 /∈ K. We shall look at Wiener measure

µ on (Ω,F), as well as at the family of measures {µθ, θ ∈ Θ} given by

dµθ

dµ
= Zθ(1) , with Zθ(t) := exp

{∫ t

0
θ′(s)dW (s)− 1

2

∫ t

0
‖θ(s)‖2ds

}
(5.1)

for 0 ≤ t ≤ 1, θ(·) ∈ Θ. From the Girsanov theorem (e.g. Karatzas & Shreve (1991), p.

191) we know that under µθ, the process Wθ(·) := W (·)− ∫ ·
0 θ(s)ds is Brownian motion (or

equivalently, that W (·) is Brownian motion with random drift θ(·)).
Example 5.1 Simple Hypothesis Q = {µ} vs. Composite Alternative P = {µθ, θ ∈ Θ}. In

this case H = 1, Gθ := dµθ/dµ = Zθ(1), and the set G := {Gθ}θ∈Θ = {Zθ(1)}θ∈Θ is convex,

bounded in Lp(µ) for every p > 1, and closed under µ−a.e. convergence (see Beneš (1971),

pp. 463 and 469). Suppose that

inf
ϑ∈K

‖ϑ‖ = ‖ϑ̂‖ , for some ϑ̂ ∈ K. (5.2)

Then it can be shown (cf. Section 6 for details) that the value function of the auxiliary dual

problem in (3.11) is given by

Ṽ (z) = inf
θ∈Θ

Eµ(Zθ(1)− z)+ = Eµ(Zϑ̂(1)− z)+ (5.3)

=
∫

<d

(
eϑ̂ξ− 1

2
‖ϑ̂‖2 − z

)+ e−
1
2
‖ξ‖2

(2π)d/2
dξ.

Denoting by ẑ the unique number in (0,∞) where z 7→ αz + Ṽ (z) attains its minimum, we

obtain the optimal test of Theorem 4.1 in the (pure, non-randomized) form

X̂ = 1{Gϑ̂>ẑ} = 1{ϑ̂′W (1)> 1
2
‖ϑ̂‖2+log ẑ}. (5.4)

This test rejects the hypothesis Q = µ, if the inner product of W (1) with the vector ϑ̂ ∈ K

is sufficiently large. With Φ(x) ≡ (2π)−1/2
∫ x
−∞ e−u2/2du, we have then

α = Eµ(X̂) = µ[ϑ̂′W (1) > ‖ϑ̂‖2/2 + log ẑ] = 1− Φ


 log ẑ + 1

2
‖ϑ̂‖2

‖ϑ̂‖


 ,
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and thus

log
1

ẑ
=

1

2
‖ϑ̂‖2 + ‖ϑ̂‖ · Φ−1(α). (5.5)

Example 5.2 Composite Hypothesis Q = {µθ, θ ∈ Θ} vs. Simple Alternative P = {µ}.
Here G = 1 and Hθ := dµθ/dµ = Zθ(1), so that the set {Hθ}θ∈Θ is convex and closed under

µ−a.e. convergence (cf. Remark 4.1). It is shown in Section 6 that the auxiliary dual

problem of (3.11) has value function

Ṽ (z) = inf
θ∈Θ

Eµ(1− zZθ(1))+ = inf
θ∈Θ

Eµ
(
1− z · e

∫ 1

0
θ′(s)dW (s)− 1

2

∫ 1

0
‖θ(s)‖2ds

)+

= Eµ(1− zZϑ̂(1))+ = Eµ
(
1− z · eϑ̂′W (1)− 1

2
‖ϑ̂‖2)+

(5.6)

=
∫

<d

(
1− z · eϑ̂′ξ− 1

2
‖ϑ̂‖2)+ e−

1
2
‖ξ‖2

(2π)d/2
dξ

under the assumption (5.2). With ẑ = arg min0<z<∞[αz + Ṽ (z)] the number of Lemma 4.3,

we have now the optimal test of Theorem 4.1 in the (pure, non-randomized) form

X̂ = 1{ẑHϑ̂<1} = 1{ϑ̂′W (1)< 1
2
‖ϑ̂‖2−log ẑ}. (5.7)

This test rejects the hypothesis, if the inner product of W (1) with the vector ϑ̂ of (5.2) is

sufficiently small. In particular, we have

α = sup
θ∈Θ

Eµθ(X̂) = sup
θ∈Θ

µθ[ϑ̂
′W (1) < ‖ϑ̂‖2/2− log ẑ]

= sup
θ∈Θ

µθ

[
ϑ̂′

(
Wθ(1) +

∫ 1

0
θ(s)ds

)
< ‖ϑ̂‖2/2− log ẑ

]

= µϑ̂[ϑ̂
′(Wϑ̂(1) + ϑ̂) < ‖ϑ̂‖2/2− log ẑ] (5.8)

= µ[ϑ̂′W (1) < −‖ϑ̂‖2/2− log ẑ] = Φ

(
− log ẑ + ‖ϑ̂‖2/2

‖ϑ̂‖

)
,

provided that the vector ϑ̂ ∈ K of (5.2) satisfies

ϑ̂′(ϑ− ϑ̂) ≥ 0 , ∀ ϑ ∈ K. (5.9)

In this case, ẑ is given again by

log
1

ẑ
=

1

2
‖ϑ̂‖2 + ‖ϑ̂‖ · Φ−1(α). (5.5)

Example 5.3 Composite Hypothesis Q = {µθ, θ ∈ Θ1} vs. Composite Alternative P =

{µθ, θ ∈ Θ2}. Here Θi is the space of F−progressively measurable processes θ : [0, 1]×Ω →
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Ki, i = 1, 2, where K1 and K2 are closed, convex subsets of <d with K1 ∩K2 = ∅. We shall

assume that there exist vectors ϑ̂1 ∈ K1, ϑ̂2 ∈ K2 such that

inf
ϑ1∈K1
ϑ2∈K2

‖ϑ2 − ϑ1‖ = ‖ϑ̂2 − ϑ̂1‖ ; (5.10)

(ϑ̂2 − ϑ̂1)
′(ϑ1 − ϑ̂1) ≤ 0 , ∀ ϑ1 ∈ K1 .

In this case Hθ1 = Zθ1(1) for θ1(·) ∈ Θ1, and Gθ2 = Zθ2(1) for θ2(·) ∈ Θ2; both sets {Hθ}θ∈Θ1 ,

{Gθ}θ∈Θ2 are convex and closed under µ−a.e. convergence, so the auxiliary dual problem of

(3.11) has value function

Ṽ (z) = inf
θ1(·)∈Θ1
θ2(·)∈Θ2

Eµ(Zθ2(1)− zZθ1(1))+ = inf
θ1(·)∈Θ1
θ2(·)∈Θ2

Eµθ1

(
Zθ2(1)

Zθ1(1)
− z

)+

= inf
θ1(·)∈Θ1
θ2(·)∈Θ2

Eµθ1

(
e
∫ 1

0
(θ2(s)−θ1(s))′dWθ1

(s)− 1
2

∫ 1

0
‖θ2(s)−θ1(s)‖2ds − z

)+

= E
µϑ̂1

(
e
(ϑ̂2−ϑ̂1)′Wϑ̂1

(1)− 1
2
‖ϑ̂2−ϑ̂1‖2 − z

)+

=
∫

<d

(
e(ϑ̂2−ϑ̂1)′ξ− 1

2
‖ϑ̂2−ϑ̂1‖2 − z

)+ e−
1
2
‖ξ‖2

(2π)d/2
dξ

by analogy with (5.3), thanks to the first assumption of (5.10). Again, if we denote by ẑ the

unique arg min0<z<∞[αz + Ṽ (z)], the max-min optimal test of Theorem 4.1 has the form

X̂ = 1{Zϑ̂2
(1)>ẑZϑ̂1

(1)} = 1{(ϑ̂2−ϑ̂1)′W (1)> 1
2
(‖ϑ̂2‖2−‖ϑ̂1‖2)+log ẑ}. (5.11)

This test rejects the hypothesis, if the inner product of W (1) with ϑ̂2 is sufficiently larger

than its inner product with ϑ̂1. Under the second assumption of (5.10), we also have

α = sup
θ1(·)∈Θ1

Eµθ1 (X̂) = sup
θ1(·)∈Θ1

µθ1 [(ϑ̂2 − ϑ̂1)
′W (1) > (‖ϑ̂2‖2 − ‖ϑ̂1‖2)/2 + log ẑ]

= sup
θ1(·)∈Θ1

µθ1

[
(ϑ̂2 − ϑ̂1)

′Wθ1(1) + (ϑ̂2 − ϑ̂1)
′
∫ 1

0
θ1(s)ds >

1

2
(‖ϑ̂2‖2 − ‖ϑ̂1‖2) + log ẑ

]

= µϑ̂1
[(ϑ̂2 − ϑ̂1)

′Wϑ̂1
(1) + (ϑ̂2 − ϑ̂1)

′ϑ̂1 > (‖ϑ̂2‖2 − ‖ϑ̂1‖2)/2 + log ẑ] (5.12)

= µϑ̂1
[(ϑ̂2 − ϑ̂1)

′Wϑ̂1
(1) > ‖ϑ̂2 − ϑ̂1‖2/2 + log ẑ] ,

from which we deduce

log
1

ẑ
=

1

2
‖ϑ̂1 − ϑ̂2‖2 + ‖ϑ̂1 − ϑ̂2‖ · Φ−1(α). (5.13)
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For our next few examples, let us switch to a new setting with Gaussian probability

measures

ν(dξ) = (2π)−d/2e−
1
2
‖ξ‖2dξ , νϑ(dξ) = (2π)−d/2e−

1
2
‖ξ−ϑ‖2dξ (5.14)

on (<d,B(<d)); here again K is a compact, convex subset of <d with 0 /∈ K and such that

(5.2) holds. We shall denote by W the identity mapping on <d.

Example 5.4 Composite Hypothesis Q = {νϑ, ϑ ∈ K} vs. Simple Alternative P = {ν}. In

this new setting, we have G = 1, Hϑ = dνϑ/dν = eϑ′W− 1
2
‖ϑ‖2 for every ϑ ∈ K. From Remark

4.1, the auxiliary dual problem of (3.11) has now value function

Ṽ (z) = inf
ϑ1,ϑ2∈K
0≤λ≤1

Eν
(
1− z[λHϑ1 + (1− λ)Hϑ2 ]

)+

= inf
ϑ1,ϑ2∈K
0≤λ≤1

Eν
(
1− z[λeϑ′1W− 1

2
‖ϑ1‖2 + (1− λ)eϑ′2W− 1

2
‖ϑ2‖2 ]

)+
(5.15)

≥ inf
θ(·)∈Θ

Eµ
(
1− z · e

∫ 1

0
θ′(s)dW (s)− 1

2

∫ 1

0
‖θ(s)‖2ds

)+

= Eµ
(
1− z · eϑ̂′W (1)− 1

2
‖ϑ̂‖2)+

= Eν
(
1− z · eϑ̂′W− 1

2
‖ϑ̂‖2)+

,

thanks to Example 5.2. Thus, the first infimum in (5.15) is attained by, say, ϑ1 = ϑ̂, ϑ2 ∈ K

arbitrary, λ = 1, and we have

Ṽ (z) = Eν
(
1− z · eϑ̂′W− 1

2
‖ϑ̂‖2)+

=
∫

<d

(
1− z · eϑ̂′ξ− 1

2
‖ϑ̂‖2)+ e−

1
2
‖ξ‖2

(2π)d/2
dξ

as in (5.6). The test

X̂ = 1{ẑHϑ̂<1} = 1{ϑ̂′W< 1
2
‖ϑ̂‖2−log ẑ}

of (5.7) rejects the hypothesis if the inner product of W with the vector ϑ̂ ∈ K of (5.2) is

sufficiently small. Here ẑ is given once again by (5.5).

Example 5.5 Composite Hypothesis Q = {νϑ, ϑ ∈ K1} vs. Composite Alternative P =

{νϑ, ϑ ∈ K2}, where K1, K2 are two disjoint, closed and convex subsets of <d that satisfy

the conditions of (5.10) for some ϑ̂1 ∈ K1, ϑ̂2 ∈ K2. (For instance, these conditions hold if

d = 1 and if K1, K2 are two disjoint, closed intervals of the real line.)

It is easy to see from the analysis of Example 5.3, that the test

X̂ = 1{(ϑ̂2−ϑ̂1)W> 1
2
(‖ϑ̂2‖2−‖ϑ̂1‖2)+log ẑ} (5.11)

is max-min optimal, where

ẑ = exp{−‖ϑ̂1 − ϑ̂2‖2/2− Φ−1(α) · ‖ϑ̂1 − ϑ̂2‖} (5.13)

13



attains the infimum of z 7→ αz + Ṽ (z), and

Ṽ (z) =
∫

<d

(
e(ϑ̂2−ϑ̂1)′ξ− 1

2
‖ϑ̂2−ϑ̂1‖2 − z

)+ e−
1
2
‖ξ‖2

(2π)d/2
dξ

is the value function of the auxiliary dual problem (3.11).

Example 5.6 Composite Hypothesis Q = {νϑ, ν−ϑ} vs. Simple Alternative P = {ν}, for

some given ϑ ∈ <d \ {0}. From Remark 4.1, the value function is now

Ṽ (z) = inf
0≤λ≤1

Eν
(
1− z[λeϑ′W− 1

2
‖ϑ‖2 + (1− λ)e−ϑ′W− 1

2
‖ϑ‖2 ]

)+

= inf
|δ|≤ 1

2

Eν
(
1− ze−

1
2
‖ϑ‖2

[(
1

2
− δ

)
eϑ′W +

(
1

2
+ δ

)
e−ϑ′W

])+

= inf
|δ|≤ 1

2

f(z; δ) ,

where

f(z; δ) := Eν
(
1 + ze−

1
2
‖ϑ‖2 [2δ sinh(ϑ′W )− cosh(ϑ′W )]

)+
.

For every fixed z ∈ (0,∞), the function δ 7→ f(z; δ) is symmetric and attains its infimum

over [−1
2
, 1

2
] at δ = 0, so that

Ṽ (z) = f(z; 0) = Eν
(
1− ze−

1
2
‖ϑ‖2 cosh(ϑ′W )

)+
. (5.16)

The optimal max-min test of (5.7), namely

X̂ = 1{ẑ(eϑ′W− 1
2 ‖ϑ‖2+e−ϑ′W− 1

2 ‖ϑ‖2 )<2} = 1{ẑe−
1
2 ‖ϑ‖2 cosh(ϑ′W )<1} = 1{|ϑ′W |<h‖ϑ‖} , (5.17)

rejects the hypothesis if the absolute value of the inner product ϑ′W is sufficiently small.

Here we have set

h :=
1

‖ϑ‖ cosh−1


e

1
2
‖ϑ‖2

ẑ


 , (5.18)

where cosh−1(·) is the inverse of cosh(·) on (0,∞) with cosh−1(u) ≡ 0 for 0 ≤ u ≤ 1, and

ẑ = arg min0<z<∞[αz + Ṽ (z)]. The quantity h > 0 of (5.18) is characterized by

α = ν±θ(|ϑ′W | < h‖ϑ‖) = ν(|ϑ′(W ± ϑ)| < h‖ϑ‖) = ν(|Ξ± ‖ϑ‖| < h)

where Ξ := ϑ′W/‖ϑ‖ is standard normal under ν, or equivalently by the equation

Φ(‖ϑ‖+ h)− Φ(‖ϑ‖ − h) = α. (5.19)

Remark 5.1 It is not hard to verify that the test of (5.17)-(5.19) is also max-min optimal

for testing the composite hypothesis Q = {νm, m ∈ (−∞,−ϑ] ∪ [ϑ,∞)} vs. the simple

alternative P = {ν}, for some ϑ > 0, in the case d = 1.
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6 Proofs

Proof of (3.2): The convexity of the set (3.1) is obvious; now if {Hn}n∈N ⊆ H and

limn Hn = H, µ−a.e., then clearly H ≥ 0, µ−a.e. and

Eµ(HX) = E[lim
n

(HnX)] ≤ lim inf
n

E(HnX) ≤ α

for every X ∈ Xα by Fatou’s lemma, so H ∈ H. In other words, H is closed under µ−a.e.

convergence. On the other hand, every H of the form HQ = dQ/dµ for some Q ∈ Q,

belongs to H, so that (3.2) holds as well, since Eµ(HQX) = EQ(X) ≤ α, ∀X ∈ Xα from

(2.4). Finally, from (2.4) the degenerate random variable X ≡ α belongs to Xα; with this

choice in (3.1) we see that Eµ(H) ≤ 1, ∀H ∈ H, so that H is a bounded subset of L1(µ).

Proof of Proposition 3.1: From (3.4), (3.5) and (2.8) we have

EP̂ (X) ≤ αẑ + Eµ(Ĝ− ẑĤ)+ , ∀ X ∈ Xα,

EP̂ (X̂) = ẑ · Eµ(ĤX̂) + Eµ(Ĝ− ẑĤ)X̂] = αẑ + Eµ(Ĝ− ẑĤ)+ .

This leads to the first inequality in (3.8). On the other hand, (3.4) and (3.5) also give

EP (X̂) = ẑ · Eµ(ĤX̂) + Eµ[X̂(GP − ẑĤ)]

= αẑ + Eµ[X̂(GP − ẑĤ)] , ∀ P ∈ P .

Thanks to the assumption (3.7), this last quantity dominates

αẑ + Eµ[X̂(Ĝ− ẑĤ)] = EP̂ (X̂) ,

and the second inequality of (3.8) follows.

Proof of Proposition 3.2: From (3.4) we have

Eµ(G− zH)+ + αz ≥ EP (X) , ∀ (G,H) ∈ G ×H (6.1)

for every z > 0, X ∈ Xα and with P =
∫

Gdµ. On the other hand, (3.6) gives

Eµ(Ĝ− ẑĤ)+ + αẑ = EP̂ (X̂). (3.6)′

Now read (6.1) with z = ẑ, X = X̂ to obtain (i), in conjunction with (3.6)′ and the second

inequality of (3.8). Similarly, read (6.1) with z > 0 arbitrary, and X ∈ Xα, to obtain (ii)

and V∗(α) = EP̂ (X̂), again in conjunction with (3.6)′ and the second inequality of (3.8).

The property (iv) follows then from Proposition 3.1, and (iii) is an easy consequence of (i),

(ii).
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Proof of Lemma 4.1: From (G − z1H)+ − (G − z2H)+ ≤ |z1 − z2|H, from Eµ(H) ≤ 1,

and from (3.11), we get

Ṽ (z1) ≤ Eµ(G− z1H)+ ≤ |z1 − z2| · Eµ(H) + Eµ(G− z2H)+

≤ Eµ(G− z2H)+ + |z1 − z2| , ∀ (G,H) ∈ G ×H.

Taking infimum over this set, we obtain Ṽ (z1) ≤ Ṽ (z2) + |z1 − z2|, and then we just inter-

change the roles of z1 and z2.

Proof of Lemma 4.2: Let {(Gn, Hn)}n∈N ⊂ G × H be a minimizing sequence for (3.11).

Because G × H is bounded in L1(µ) × L1(µ), there exists by the theorem of Komlós

(1967) (see also Schwartz (1986)) a random vector (Ĝ, Ĥ) ∈ L1(µ)×L1(µ) and a relabelled

subsequence {(G′
j, H

′
j)}j∈N ⊆ {(Gn, Hn)}n∈N, such that

(G̃k, H̃k) :=


1

k

k∑

j=1

G′
j,

1

k

k∑

j=1

H ′
j


 −→ (Ĝ, Ĥ)

as k → ∞, µ−a.e. By the convexity and the µ−a.e. closedness of G and H, we have

(Ĝ, Ĥ) ∈ G ×H; on the other hand, Fatou’s lemma and convexity give

Eµ(Ĝ− zĤ)+ = Eµ[lim
k

(G̃k − zH̃k)
+]

≤ lim inf
k

Eµ(G̃k − zH̃k)
+ = lim inf

k
Eµ


1

k

k∑

j=1

(G′
j − zH ′

j)




+

≤ lim inf
k

Eµ


1

k

k∑

j=1

(G′
j − zH ′

j)
+


 = lim

j
Eµ(G′

j − zH ′
j)

+ = Ṽ (z).

Proof of Lemma 4.3: The convex function

fα(z) := αz + Ṽ (z) = αz + inf
(G,H)∈(G×H)

Eµ(G− zH)+ , 0 < z < ∞

satisfies fα(0+) = infG∈G Eµ(G) = 1, fα(z) ≥ αz and thus fα(∞) = ∞. Consequently, fα(·)
either attains its infimum at some ẑα ∈ (0,∞) as claimed, or else satisfies fα(z) ≥ 1, ∀z > 0.

This latter possibility can be ruled out easily, as it implies

αz ≥ 1− Ṽ (z) ≥ 1− Eµ(G− zH)+ = Eµ(G)− Eµ(G− zH)+ ≥ z · Eµ[H1{zH≤G}] , ∀ z > 0

for any given G ∈ G, H ∈ H; dividing by z and then letting z ↓ 0, we obtain Eµ(H) ≤ α for

every H ∈ H, and thus α ≥ 1, a contradiction.

Proof of Lemma 4.4: The convexity of G and H leads to that of the set M in (4.2).

Now consider a sequence {(Gn, Hn, zn)}n∈N ⊆ M which converges to some (G,H, z) ∈ L
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in the norm ‖ · ‖ of Lemma 4.4. Then zn → z and (Gnj
, Hnj

) → (G,H), µ−a.e. (along a

subsequence) so that G ∈ G and H ∈ H by the closedness of both G and H under µ−a.e.

convergence. The properness, convexity and lower-semicontinuity of the functional (4.3) on

L are relatively easy to check. For the final claim of the lemma, just observe from (3.13),

(3.11) that we have

αẑ + Eµ(Ĝ− ẑĤ)+ = αẑ + Ṽ (ẑ) ≤ αz + Ṽ (z) ≤ αz + Eµ(G− zH)+ , ∀ (G,H, z) ∈M.

Proof of Theorem 4.1: First, let us read (4.7) with

G := Ĝ− 1{X̂+Ŵ>0} , Y := ẑĤ − 1{X̂+Ŵ>0}

and in conjunction with (4.8), to obtain Eµ(X̂ + Ŵ )+ = Eµ[(X̂ + Ŵ )1{X̂+Ŵ≥0}] ≤ 0. Sim-

ilarly, we can derive Eµ(X̂ + Ŵ )− ≤ 0, whence X̂ + Ŵ = 0, µ−a.e. This proves the first

equality in (4.9) and shows, in conjunction with (4.8), that the conditions of (4.6), (4.7) can

be written as

Eµ[X̂(ẑĤ − zH + G− Ĝ)] ≥ α(ẑ − z) , ∀ (G,H, z) ∈M (4.6)′

Eµ[X̂(Y − ẑĤ + Ĝ−G) + (G− Y )+ − (Ĝ− ẑĤ)+] ≥ 0 , ∀ (G, Y ) ∈ (L1(µ))2. (4.7)′

From now on we shall write

X̂ = 1{ẑĤ<Ĝ} + A (6.2)

for a suitable random variable A. Reading (4.7)′ with G ≡ Ĝ and X̂ as in (6.2) we obtain

Eµ[(ẑĤ − Y )A] ≤ Eµ[(Ĝ− Y )+ − (Ĝ− ẑĤ)1{ẑĤ<Ĝ} + (Y − ẑĤ)1{ẑĤ<Ĝ}]

= Eµ[(Ĝ− Y )1{Y <Ĝ} + (Y − Ĝ)1{ẑĤ <Ĝ}] , ∀ Y ∈ L1(µ). (4.7)′′

Now take Y ∈ L1(µ) such that

{Y < Ĝ} = {ẑĤ < Ĝ} , mod. µ (6.3)

which implies

Eµ[A(ẑĤ − Y )] ≤ 0 , for every Y ∈ L1(µ) as in (6.3), (4.7)′′′

as well as

A ≤ 0 , µ− a.e. on {ẑĤ < Ĝ} (6.4)

A ≥ 0 , µ− a.e. on {ẑĤ ≥ Ĝ}. (6.5)
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To prove (6.4), let us assume µ(A > 0, ẑĤ < Ĝ) > 0; we can select Y ∈ L1(µ) negative

and with |Y | so large on this set, as to make Eµ[A(ẑĤ − Y )1{A>0,ẑĤ<Ĝ}] positive and large

enough to violate (4.7)′′′ written in the form

Eµ[A(ẑĤ − Y )1{A>0,ẑĤ<Ĝ}] + Eµ[A(ẑĤ − Y )1{A≤0,ẑĤ<Ĝ}] + Eµ[A(ẑĤ − Y )1{ẑĤ≥Ĝ}] ≤ 0.

Similarly, in order to prove (6.5), assume that the set {A < 0, ẑĤ ≥ Ĝ} has positive

µ−probability, and select Y ∈ L1(µ) positive and so large on this set, as to violate condition

(4.7)′′′.

We can also see that

A = 0 , µ− a.e. on {ẑĤ < Ĝ} (6.6)

A = 0 , µ− a.e. on {ẑĤ > Ĝ}. (6.7)

To prove (6.6), assume µ(A < 0, ẑĤ < Ĝ) > 0 so that δ := Eµ[A(ẑĤ − Ĝ)1{ẑĤ<Ĝ}] > 0 in

conjunction with (6.4). For arbitrary ε > 0, the random variable

Y :=

{
Ĝ− ε ; on {ẑĤ < Ĝ}

Ĝ ; on {ẑĤ ≥ Ĝ}

}
(6.8)

is in L1(µ), satisfies (6.3), and for it the condition (4.7)′′′ becomes

0 ≥ Eµ[A(ẑĤ − Ĝ)1{ẑĤ≥Ĝ}] + Eµ[A(ẑĤ − Ĝ + ε)1{ẑĤ<Ĝ}]

= Eµ[A(ẑĤ − Ĝ)1{ẑĤ≥Ĝ}] + δ + ε · Eµ[A1{ẑĤ<Ĝ}].

Letting ε ↓ 0, this gives δ + Eµ[A(ẑĤ − Ĝ)+] ≤ 0, which is absurd in light of (6.5). This

proves the property (6.6), and allows us to recast the condition (4.7)′′′ in the equivalent form

Eµ[A(ẑĤ − Y )1{ẑĤ≥Ĝ}] ≤ 0 , for every Y ∈ L1(µ) as in (6.3).

In particular, with Y as in (6.8), this gives Eµ[A(ẑĤ−)+] ≤ 0 which, in light of (6.5), leads

to (6.7).

The properties (6.4)-(6.7) show that we have

A = B · 1{ẑĤ=Ĝ} for some random variable B ≥ 0. (6.9)

Back into (4.7)′′, this gives

Eµ[(Ĝ− Y )B1{ẑĤ=Ĝ}] ≤ Eµ[(Ĝ− Y )1{Y <Ĝ} + (Y − Ĝ)1{ẑĤ<Ĝ}] , ∀ Y ∈ L1(µ).

Finally, we have to establish

0 ≤ B ≤ 1, µ− a.e. on {ẑĤ = Ĝ}.
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In order to show this, we shall read (6.10) with the choice

Y :=





0 ; on {B > 1, ẑĤ = Ĝ}
Ĝ ; on {B ≤ 1, ẑĤ = Ĝ}

Ĝ(1− ε) ; otherwise





for arbitrary 0 < ε < 1; this leads to

EP̂
[
B · 1{B>1, ẑĤ=Ĝ}

]
≤ P̂ [B > 1, ẑĤ = Ĝ] + ε · P̂ [ẑĤ > Ĝ]

for every 0 < ε < 1, as well as to

EP̂
[
(B − 1)+ · 1{ẑĤ=Ĝ}

]
≤ 0

in the limit, as ε ↓ 0. Therefore, B ≤ 1 µ−a.e. on {ẑĤ = Ĝ}. This concludes the proof

that X̂ is of the form (2.8), (4.9). In particular, µ(0 ≤ X̂ ≤ 1) = 1 and (3.5)(b) holds, so

X̂ ∈ Xα.

Proof of (5.3) and (5.6); adapted from Xu & Shreve (1992): Let ϕ : < → [0,∞) be a

convex function satisfying a linear growth condition; with ϑ̂ ∈ K as in (5.2), and arbitrary

θ(·) ∈ Θ, we shall show

Eµϕ(Zθ(t)) ≥ Eµϕ(Zϑ̂(t)) , 0 ≤ t ≤ 1. (6.10)

This will clearly prove (5.3) (resp., (5.6)) by taking t = 1 and ϕ(x) = (x − z)+ (resp.,

ϕ(x) = (1− zx)+). We can write

θ(·)
‖θ(·)‖ = Q(·) ϑ̂

‖ϑ̂‖ , a.e. on [0, 1]× Ω

for some F−progressively measurable process Q(·) with values in the space of (d×d)−orthonormal

matrices. Let us also notice that the process

Λ(t) :=
∫ t

0

‖θ(s)‖2

‖ϑ̂‖2
ds ≥ t , 0 ≤ t ≤ 1

is increasing with d
dt

Λ(·) ≥ 1, so that its inverse is well defined and Λ−1(u) is an F−stopping

time with Λ−1(u) ≤ u, for every 0 ≤ u ≤ 1. Now the time-changed process

Ŵ (u) :=
∫ Λ−1(u)

0

‖θ(s)‖
‖ϑ̂‖ Q′(s)dW (s) , 0 ≤ u ≤ 1

is a (local) martingale of the filtration F̂(u) := F(Λ−1(u)), 0 ≤ u ≤ 1, with

〈 Ŵi, Ŵj 〉(u) = δij

∫ Λ−1(u)

0

‖θ(s)‖2

‖ϑ̂‖2
ds = u · δij .
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In other words, Ŵ (·) is an F̂−Brownian motion (by P. Lévy’s Theorem 3.3.16 in Karatzas

& Shreve (1991)), and

1 +
∫ u

0
Zθ(Λ

−1(τ))ϑ̂′dŴ (τ) = 1 +
∫ Λ−1(u)

0
Zθ(s)ϑ̂

′dŴ (Λ(s))

= 1 +
∫ Λ−1(u)

0
Zθ(s)

‖θ(s)‖
‖ϑ̂‖ (Q(s)ϑ̂)′dW (s) = 1 +

∫ Λ−1(u)

0
Zθ(s)θ

′(s)dW (s)

= Zθ(Λ
−1(u)) , 0 ≤ u ≤ 1.

Since Zϑ̂(t) = 1 +
∫ t
0 Zϑ̂(s)ϑ̂

′dW (s), 0 ≤ t ≤ 1, we conclude that the processes Zϑ̂(·),
Zθ(Λ

−1(·)) have the same distribution. From this, from the optional sampling theorem, and

the fact that ϕ(Zθ(·)) is a submartingale, we obtain

Eµϕ(Zϑ̂(t)) = Eµϕ(Zθ(Λ
−1(t)) ≤ Eµϕ(Zθ(t)) , which proves (6.10).
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