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Abstract

We formulate a model of preferences with non-addictive habits, where consump-
tion is required to be non-negative at all times, but is allowed to fall below a
“standard of living” index that aggregates past consumption. In this context
we study the consumption-portfolio choice problem taking account of the non-
negativity constraint on consumption, and provide a constructive proof for the
existence of an optimal policy on a finite time-horizon [0,T]. In particular, we
show that the consumption constraint binds up to an endogenously determined
stopping time 7* € [0, T, after which it remains slack until 7. A decomposition
of constrained consumption involving an Asian average-strike capped call-option
is demonstrated.
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1 Introduction.

Habit-formation models have traditionally played an important role in economics (e.g.
Hicks (1965), Pollak (1970), Ryder and Heal (1973)). The notion that an individual’s
evaluation of a given consumption bundle depends on past consumption experience
is, indeed, appealing on intuitive grounds. Furthermore, studies in economics as
well as psychology suggest that past decisions condition current choices. More re-
cently, habit-formation has played an important role for explaining the behavior of
consumption and the properties of the equity premium (Sundaresan (1989), Con-
stantinides (1991), Detemple and Zapatero (1991, 1992), Heaton (1992), Chapman
(1998), Schroder and Skiadas (2000)).

To a large extent, the existing literature on this subject has relied on a prefer-
ence model in which habit-formation has an “addictive” flavor. More specifically, it
has been typically assumed that the marginal utility from consumption, net of the
standard of living (i.e., the benchmark based on past consumption history), is infi-
nite at zero. In essence, this assumption implies that (i) optimal consumption can
never fall below the standard of living, and that (ii) initial wealth must be sufficiently
large to sustain habits and ensure the existence of an optimal policy. The addictive
behavior of consumption is very strong and appears counterintuitive. While there is
substantial support for the notion that “habits matter”, it is doubtful that individuals
adopt lifecycle consumption profiles which display systematic excesses over historical
averages, even when suitably depreciated. In any case, the fact that consumption
may substantially decrease in recessions seems to contradict this “addiction” prop-
erty. From a theoretical perspective, infinite marginal utility at zero suggests that the
consumption space consists of those consumption processes which exceed their asso-
ciated standard of living. To avoid convexities in preferences and ensure the existence
of an optimal policy, one must then penalize consumption plans that fall below the
standard of living to the extreme (infinite disutility is assumed) and constrain initial
wealth to exceed a strictly positive amount; see Detemple and Zapatero (1991).

In this paper we adopt a specification which allows finite marginal utility of con-
sumption at zero. Thus, our consumption space is the usual positive orthant: we only
impose the natural constraint that consumption cannot take negative values. Pref-
erences are defined over this space in the usual manner. Thus, consumption plans
that fall below the standard of living are admissible, and initial wealth need not be
restricted. At the same time, the notion that consumption history has a detrimental
effect on the enjoyment of current consumption, i.e. that “habits matter”, is retained,
and influences the structure and properties of our solution.

Evidently, in a model with non-addictive habits, we expect optimal consumption
to fall below the standard of living when state-prices are high (and vice-versa). For
instance, if high state-prices follow a period of high consumption expenditures and
standard of living buildup, then it is intuitive that an individual would want to reduce
consumption so as to decumulate habits. In fact, unconstrained optimal consumption
may very well become negative, so as to reduce rapidly the standard of living, and
thereby the “cost” of habits as well. This cannot happen in our context, since we con-
strain consumption to be always non-negative. Thus, the non-negativity constraint



may bind with positive probability, and this will influence the optimal consumption
policy adopted by an agent.

In standard models with von Neumann-Morgenstern preferences, additively sep-
arable utility, and finite marginal utility at zero, a non-negativity constraint has a
“local effect” on consumption, in the sense that it increases consumption in the con-
strained state without affecting nearby states. In fact, as pointed out by Cox and
Huang (1991), optimal constrained consumption is the same as unconstrained con-
sumption plus a put-option on unconstrained consumption with zero strike, which
pays off precisely in those states that are constrained. The optimal consumption
profile may then display random times, scattered throughout the time-horizon of the
investor, at which the constraint binds.

One would intuitively conjecture that the same behavior materializes in the pres-
ence of habits. By analogy with Karatzas, Lehoczky and Shreve (1987) or Cox and
Huang (1991), one would expect to see the non-negativity constraint bind at ran-
dom, endogenously determined times throughout the investment time-horizon. As
we shall show, this reasoning turns out to be incorrect. In the presence of habits
it is, in fact, optimal for the individual to forgo consumption completely, until an
endogenously determined stopping time, after which the constraint on consumption
will always cease to bind. In essence, an individual who develops habits will sit on
the constraint until the first time at which the “adjusted” (for habit-formation) state
price-density in the constrained problem, hits the adjusted state price-density for the
unconstrained problem. After that time, unconstrained nonnegative consumption
can be sustained throughout the remaining lifetime, and this is the course that the
individual optimally follows. Nevertheless, this behavior induces a generalized Cox-
Huang decomposition, in which constrained consumption can be synthesized using a
path-dependent derivative, namely an Asian capped call-option on the unconstrained
policy.

Section 2 presents the model studied in this paper. In section 3 we provide several
characterization of the optimal consumption plan involving a class of stopping times.
Existence is proved in section 4. In section 5 we examine the economic implications
of our model for consumption behavior and provide further intuition for the optimal
consumption pattern. Conclusions are formulated in section 6.

2 The model.

We consider the standard financial market model with one riskless asset and d risky
securities (stocks). All the uncertainty in this market is generated by a Brownian
Motion W = (W1, ..., W) on a probability space (2, F, P). Let F = {F(t); 0 <t <
T} denote the information filtration, i.e., the augmentation of the natural filtration
FW(t) = a(W(s); s €[0,t]), for 0 <t < T. In particular, F(0) = {0, Q}, mod. P.
The riskless asset pays interest at the rate r(-). Stock prices satisfy the dynamics

d
dSi(t) = Si(t) [mi(t)dt + Y oi()dW,(t) |, i=1,...d;

=1



here p1;(-) represents the instantaneous rate of return of the i** stock, and {o;(*)}j=1,....4
the set of volatility coefficients of the rate of return processes. The interest rate
r(+), the instantaneous rate of return vector u(-) = (u1(+), ..., pa(+))’, and the volatil-
ity matrix o(-) = {0;(-) }1<i,j<d, are assumed to be bounded and F—progressively
measurable random processes. In addition, we impose the strong non-degeneracy
condition

n'o(t)o’(t)n > §|n|?, forall neRY, te[0,T]

almost surely, for some § > 0. Under this condition the inverses of o(:),o'(+) exist
and are bounded, thus the progressively measurable market price of risk process

9(t) = o(t) " [u(t) —r(H)1], t€[0,T]

is bounded as well. In this setting, the state-price density process is

H(t) = exp (— /Otr(s)ds—/otﬂ'(s)dW(s)— %/0t||19(s)||2ds), t € [0,T]

and Arrow-Debreu prices are given by integrating over [0,7] x Q with respect to
H(t,w)dtdP(w).

Consider now a “small investor” who receives an endowment (income) ¢ : [0, 7] X
Q — (0,00). This is a bounded, F—progressively measurable random process that sat-
isfles 0 < E (fOT H(t)e(t) dt) < 00. At any time ¢ € [0, 7] the investor has to choose

a consumption rate ¢(¢) > 0, as well as amounts 7;(¢) to invest in each of the stocks
i = 1,...,d. The resulting consumption policy ¢ : [0,7] x Q2 — [0,00) and portfolio
policy © = (71, ...,mq)" : [0,T] x 2 — R?, are assumed to be F—progressively measur-
able processes, and to satisfy the integrability condition f(;‘r (c(t) + ||7r(t)||2) dt < oo

almost surely. A pair of policies (7, c) generates the wealth process X (-) = X™¢(.),
given by the solution of the linear stochastic differential equation

dX(t) = r(t) X (t)dt + (e(t) — (b)) dt + 7' (t)o(t) [9(t)dt + AW (£)] (1)

subject to the initial condition X (0) = 0. This equation can be written in the equiv-
alent form

H(t)X (t) +/0 H(s)(c(s) —e(s))ds :/0 H(s)n'(s)o(s)daW (s), te[0,T]. (1)

A pair of consumption/portfolio policies (m, c) is called admissible, if the investor’s
total wealth is nonnegative at all times, i.e., if

T
HO)X(t) + B, ( /t H(s)e(s)ds) >0, tel0,T] 2)

holds almost surely. Here and in the sequel, E;[-] represents the conditional ex-
pectation E'[- | F(t)] under the probability measure P, given the o-algebra F(t)
(information up to time ¢). Condition (2) is standard: since total wealth equals the



portfolio value plus the present value of future income, the condition allows borrowing
against future endowment.

Let A denote the class of admissible pairs (m,¢). It follows from (1)’ and (2) that
the local martingale

Q) = H®X()+E ( / TH(s)e(s)ds) + / “H(s)e(s) ds
/H o(s)dW (s) +Et(/ H(s ()ds), t € [0,T]

is non-negative, thus a supermartingale, for every (m,c) € A. The static budget

constraint . (/OT H(S)C(s)ds> o (/OT H(s)g(s)d8> (3)

is then satisfied for every (c,m) € A, since

E (/OT H(s)e(s)d ) > B ( / H(s ) > E (/OT H(s)c(s)ds)

from the supermartingale property Q(0) > E[Q(T")] and the condition (2) for t = T.

We shall let B denote the set of budget-feasible consumption policies, i.e., the set
of consumption policies ¢ : [0,7] x Q@ — [0,00) which are progressively measurable
and satisfy (3). We have just shown that ¢ € B holds for every pair (m,¢) € A.
The converse also holds, in the following sense (see Karatzas, Lakner, Lehoczky and
Shreve (1991), pp. 256-257, or Karatzas and Shreve (1998), pp. 166-169, for a proof).

Lemma 1: For every progressively measurable process ¢ : [0,T] x Q — [0,00) that
satisfies (8), i.e. for every ¢ € B, there exists a portfolio process mw(-) such that
(m,c) € A. The corresponding wealth process X (-) = X™¢(-) is then given by

H(t)X(t) = E(Do) — E¢(Dy) , t€][0,T]
where Dy := ftT H(s)[e(s) —¢(s)]ds and E(Dgy) > 0.

This result ensures the existence of a portfolio process financing any budget-
feasible consumption policy.

In the present paper, preferences are represented by the non-separable von Neumann-
Morgenstern index

Ule) = B [ /0 "t olt) — (8 0))dt

where u(t, ) denotes the instantaneous utility function. At each time ¢ € [0, T, utility
is a function of the difference between the current instantaneous consumption-rate
¢(t), and an index z(t;c) which depends on past consumption ¢(s), 0 < s < ¢. The
process z(+) = z(t; ) is commonly referred to as the “standard of living process”; see
(4) and (5) below. Joint assumptions on z and u(¢, c—z) will be formulated to capture



the notion that an individual “develops habits”, in the sense that past consumption
experience conditions the current felicity from consumption.

The specification of preferences adopted in this paper generalizes the extant lit-
erature in two directions, as follows.
First, we assume that the standard of living z(-) = z(¢;-) follows the dynamics

dz(t) = (dc(t) — az(t))dt + on' (t)dW (t), 2(0) = zo (4)

where z9 > 0, > 0,6 > 0 are given real constants and 7 : [0,7] x @ — R? is a
bounded, progressively measurable process.! Equivalently, we write

t
2(t) = 2(t;¢) = z0e °t 46 /0 e %) [e(s)ds + 7' (s)dW (s)] (5)

for the solution of the stochastic differential equation (4). In this formulation, the
standard of living at date ¢ is a noisy estimate of a weighted average of past consump-
tion. The presence of noise may reflect imperfect recollection of consumption history,
or the influence of other factors in the formation of a benchmark for evaluation of
current felicity. Information-gathering (or record-keeping) costs can be invoked, to
motivate the absence of a precise recollection of past consumption experience. The
influence of business cycles on the evaluation of a given consumption profile (i.e., the
notion that a given consumption history has less of an impact on current utility of
consumption, if the economy is in a recession) rationalizes the second type of effect.

Secondly, we adopt a more general utility specification. We assume that u :
[0, T]xR — R s a jointly continuous function with the property that for each ¢ € [0, T']
the function u(t,-) is strictly concave, of class C!, with u'(t,-) > 0, u/(t,00) = 0 and
u(t, —0o) = oco. Thanks to these assumptions, the inverse I(t,-) : (0,00) — R of the
marginal utility function u'(¢,-) : R — (0, 00) is well-defined, continuous and strictly
decreasing, with I(¢,00) = —oo and I(t,0) = oo.

Thus, we do not impose the standard “addiction” assumption, namely, the condi-
tion u'(¢,0+) = oo. In contrast, our specification insists that consumption be always
non-negative, but allows it to fall below the standard of living — thus removing the in-
centives for a systematic buildup of habits over time and for an optimal consumption
perennially in excess of the standard of living. At the same time, the notion that con-
sumption history has a detrimental effect on the enjoyment of current consumption,
i.e., that “habits matter”, is retained in our model.

In addition to providing a more general and realistic specification of habit-forming
preferences and consumption plans, our model also obviates the need to impose strong
restrictions on the endowment process to ensure the existence of optimal policies.
Recall from Detemple and Zapatero (1991) that, with the standard specification,
initial wealth must exceed the cost of the subsistence consumption policy, namely,

1Versions of this model with constant coefficients and without noise (i.e. = 0) were introduced
by Sundaresan (1989) and Constantinides (1990) and also examined by Detemple and Zapatero
(1991). The standard model with time-separable preferences is obtained by setting § = zo = 0 and

n(-) = 0.



must exceed the quantity zo-F [ fOT H(t) e_(a_5)tdt] ; in the absence of this condition,

habits cannot be sustained throughout the time-horizon [0,7"] in their model (that
is, ¢(s) — z(s) < 0 for some s € [0,7]), and their optimization problem is ill-defined.
In the present paper the “proxy” for initial wealth, namely, the present value x =

E ( foT H(t)e(t) dt) of future income as in (3), is unrestricted.

Definition 2.a: (Dynamic Optimization). An admissible pair (7,c) € A is called
optimal for the dynamic problem, if for any other admissible pair (7', c') € A we have

U(cd) <U(e).

Definition 2.b: (Static Optimization). A consumption policy ¢ € B is called opti-
mal for the static problem, if for any other ¢’ € B we have U(c') < U(c).

Due to Lemma 1, we need only solve the static maximization problem to identify
the set of optimal policies.

3 Optimal policies: characterization.

The static optimization problem described above is a typical optimization problem
with constraints, namely (3) and ¢(-) > 0. As usual with problems of this sort, we
shall try to solve it by introducing Lagrange multipliers: namely, a real number y > 0
to enforce the static budget constraint (3), and a progressively measurable process
€:[0,T] x Q — [0,00) to enforce the non-negativity constraint ¢(-) > 0.

3.1 Duality.

For any Lagrange multipliers y € (0,00) and £ : [0,7] x @ — [0,00) as above, let us
consider the auxiliary functional

Viey,€) = E[ /OTu(t,c(t)—z(t;c))dt]+y~E[ /0 U H®) - o)t
+E { /0 ' H(t){(t)c(t)dt] . (6)

For every consumption-rate process ¢(-) > 0 that satisfies (3), we have V(c;y,&) >
U(c), with equality if and only if the conditions

{ B (T H@E) — evldt) = 0 } )
E)elt) =0, A@P-ac

are both satisfied (A is Lebesgue measure on [0, 7). The following duality result then
holds.



Lemma 3: (Duality) For a given pair y > 0, £(-) > 0 as above, suppose that we
can find a progressively measurable process c*(-) > 0 that satisfies the conditions of
(7) and mazimizes the functional (6), namely

V(c*y,8) > V(gy,€), forall c(-) € B. (8)
Then,
U(c*) =V(c"9,€) > V(ey,€) > U(c) 9)

for every c(-) € B. That is, c*(-) is optimal for the static optimization problem.

Under the stated conditions, the process ¢*(-) > 0 solves the static optimization
problem, thus also the dynamic optimization problem. In other words, there exists

a portfolio process 7*(-), with (7*,¢*) € A and associated wealth process X*(-) =
X7 (.) given by

T
X*(t) = ﬁ - Ey (/t H(s)[e(s) — c*(s)]ds> , t€l0,T],

such that (7*,c¢*) attains the supremum of U(c) over the set of admissible policies

(m,c) € A.

3.2 The unconstrained problem.

In order to characterize the solution of the auxiliary optimization problem (8), it is
useful to recall briefly the construction of the optimal policy in the wunconstrained
case, i.e., when ¢(-) is allowed to take negative values. In this instance, a prominent
role is played by the “adjusted” state-price density process

T(t):=H(t)+6- E; ( / ' e(éo‘)(St)H(s)ds) , te[0,T] (10)

introduced by Detemple and Zapatero (1991). As was shown in that paper, the
optimal unconstrained consumption, in excess of the standard of living, can be written
as

cu(t) — zu(t) = €07 F(t);

we have denoted by c%(-) the optimal unconstrained consumption process, and have
set
F(t) := e 1(t,9T(¢)), t€[0,T] (11)

for an appropriate Lagrange multiplier y = y,, > 0. In conjunction with the dynamics
of (4) for the process z,(:), it follows that

zu(t) = et [z0+5 /0 tF(s)ds+ /0 t C'(s)dW(s)]

and

cu(t) = e~ [F(t)+zo+5 /0 tF(s)der /0 t C'(s)dW(s)]

8



where we have set ((t) = del® 9iy(t). The constant y = y, > 0 of (11) is then
determined by the requirement that (3) hold as equality. More precisely, it can be
checked that the function

Yy Xy (/H cu(t dt)

is continuous and decreasing on (0,00) with X,(04+) = oo, X,(c0) = 0; thus, we
take as y, the smallest y > 0 such that X, (y) = z.

3.3 A parametric representation of the solution.

Let us return now to the constrained problem, which we shall treat under the following
conditions:

Standing Assumption 4: It will be assumed throughout the paper that

E ( /0 ' H(t) (I(t,yP(t))+dt> < o0, forsome y € (0,00)

E(/OT‘u(t,I(t,yI‘(t))‘dt> <00, ¥ ye(0,00)

E(/()T‘u(t,—eat(zo+5/0t 7 () dW (s ))‘dt) < .

In particular, by taking ¢(-) = 0 in (9), we see that

U(c*) =V(c";9,8) >E/ (t —e zo—i—d/ot I(s)dW(s)))dt > —o00.

In our present context the role of the “adjusted” state-price-density, in the pres-
ence of the non-negativity constraint on consumption, will be played by the process

1 T
")) =160, = - [<y CE(W)H() + 6By ( [ w- e<s)>H<s>e(5—a“s—“ds)]
(12)

for given Lagrange multipliers y > 0 and progressively measurable £(-) > 0. Clearly,
I'(-) > v(:) from (10) and (12). In terms of the process 7(-) of (12), the quantity

G(t) := eI (¢, yvy(t)), te]0,T] (13)

will now represent the normalized optimal net consumption, in excess of the standard
of living, for the constrained problem — in the sense that we shall have

() — 2(t; ) = P2 Q(t),



where ¢*(-) is the optimal constrained consumption process. Here is a formalization
of these ideas.

Proposition 5: Suppose that c*(-) solves the dual problem (8), for some given y > 0
and progressively measurable £(-) > 0; namely,

V(c'9,8) > V(gy,&) <oo, V()€ B.
Then we have
t ¢
& (t) = eG-at [G(t)+z0+5 / G(s)ds + / C'(s)dW(s)] (14)
0 0
and
Z(t) = 2(t¢*) = *(t) — el G(1)
t t
eld—a)t [zo + 5/ G(s)ds —I—/ C'(s)dW(s)] , (15)
0 0
in the notation of (13), (12) and with ((t) = del@=ty(t).
Proof: The optimality of ¢*(-) implies that
hmeiﬂ Z [V(C —I—G(C—C )ayaé-) —V(C ayag)] S 0

holds for every c¢(-) € B, or equivalently

Time o %E/OT [u(t,c*(t)+6(c(t)—c*(t))—z(t; c*+e(c—c*))) —u(t, c*(t)—z(t;c*))]dt

T
< 5| [ 1O - et - 0]
Let us consider from now onwards only those processes c¢(-) € B that satisfy
supg<i<r |c(t) — ¢*(t)| < 1, and denote the resulting class by Bi. From the con-

cavity of the utility function u(¢,-), the assumption V(c¢*;y,&) < oo, and dominated
convergence, the above inequality reads

B [ / Tt 0) - () [(elt) - () — (a(60) - z(t;c*»]dt]
OT
< E [ | o - o)) - c*<t>]dt] ,
or equivalently
B [ / e (1) - A(te) - O — €0)} [elt) — c*(t)]dt]
OT
< E [/ u'(t, c*(t) — z2(t; c*)) (2(t;¢) — z(t; c*)) dt] , (16)

0

10



for every c¢(-) € Bi. From (5), the right-hand side of this inequality can be written
as

E /O L) — () 8 ( /0 { emalt=5) (o(s) c*(s))ds) dt]
- B /0 s ( / " e, (1) — 2t c*))dt) (c(s) — c*(s))ds:|
- E /0 5. m, ( /t Y a0y (s ¢*(s) — (s c*))ds> (c(t) — c*(t))dt] .

Substituting back into (16), we deduce that the “utility-gradient”

G(t;c*) == (t,c*(t) — 2(t;c*)) — 6 - Ey (/t ey (5, ¢*(s) — 2(s; c*))ds)
satisfies
T
E (/0 {G(t;c*) — H(t)[y — E@)]} - [e(t) — c*(¢)] dt) <0, for every c(-) € By .

This, in turn, shows that ¢*(-) should satisfy G(-;c¢*) = H(:)[y — &(-)], that is

T
u'(t,c*(t) — 2(t;c")) — & - By </ e /(s ¢ (s) — 2(s; c*))d8> = H(t)[y — £(t)]
t
(17)
for all ¢ € [0,7]. One then observes that the “normalized marginal utility” process

() = iu'(t,c*(t) S, te0,T] (18)

solves the Recursive Linear Stochastic Equation

y(t) = HOly — E0)] +5 - B (/ e“"(s‘t)yv(«S)d«S), te(0,1].  (19)

As shown in the Appendix, the equation (19) can be solved exactly: the solution is
provided by the process () = v(-;y, ¢) of (12). Inverting (18), we obtain the optimal
net consumption

c*(t) — z(t; ¢*) = I(t, yvy(t)) (: et Q(t), in the notation of (13)),
and substituting into (4) we obtain the dynamics
dz*(t) = [I(t,yy(t)) + (6 — @)™ ()] dt + on'(t)dW (t),  2(0) =2z  (20)
for the standard-of-living process z*(-) = z(¢; ¢*).

The solution of the linear stochastic differential equation (20) is given by (15), and
the expression (14) for the optimal consumption process c*(-) follows readily. O

The reader should not fail to notice the formal similarity of the expressions in
(14), (15) with those provided for ¢,(:), z,(+) in subsection 3.2; in these expressions,
the process G(-) of (13) has replaced the process F(-) of (11).

11



3.4 A characterization of the shadow prices.

The representation of the solution in Proposition 5 expresses the adjusted state-price
density in terms of the Lagrange-multipliers y > 0 and £(-) > 0. We now complete
this characterization by deriving a set of equations that these Lagrange-multipliers
will have to satisfy, in order for the process c¢*(-) of Proposition 5 to be non-negative
and to satisfy the conditions (7).

In order to state this result, we formulate the following bold conjecture:

Conjecture: There ezists a stopping time 7 € [0,T], such that

v(t) < T(t), ¢*(t)=0; on [0,7)
{ v(t) =T(t), &£&(t)=0; on [r,T] } (21)

In essence, the conjecture postulates that the adjusted state-price-density ~(-) is
strictly less that the unconstrained one I'(-), thus the optimal consumption is null
(¢*(-) = 0), until an endogenously determined random time 7. After 7 has occurred,
the constrained investor follows the unconstrained optimal pattern, in the sense that
the constraint will never bind again (i.e., £(-) = 0 on [r,7]). The validity of this
conjecture constitutes a rather striking result. Indeed, our initial guess was that the
consumption constraint ¢(-) > 0 would bind repeatedly over time. We shall return to
the economic intuition associated with this conjecture in section 4.

Proceeding with the analysis, we obtain the following characterization for the
Lagrange multipliers y > 0 and £(-) > 0; recall the notation of (10)-(13).

Proposition 6: Suppose that c*(-) solves the auziliary problem (8). Then, it must
be that the condition

L(t) 2 ~(¢), (22)

as well as the conditions

G(t) > F(t), (23)

)
Gt) > —20 — 6 /0 G(s)ds — /0 C()dW () = Y (1), (24)

are satisfied for all t € [0,T]. If, in addition, the conjecture (21) holds, then we also
have

[G(t) - F()][G(t) —Y(2)] =0 (25)
for all t € [0,T].

With the exception of the last one, the conditions in the proposition are intuitive.
In essence, the inequality (22) states that adjusted state-prices in the constrained
case can never exceed those in the unconstrained case. This reflects the fact that
a binding constraint forces a higher consumption pattern than in the unconstrained
case, which means that the corresponding state-prices must be lower. Condition (23)
is the counterpart of this restriction, expressed in net-consumption space. Condition
(24) mandates that consumption cannot be negative.

12



The last condition is the most intriguing. Under the conjecture (21), the final
requirement (25) corresponds to the complementary slackness condition, and is ob-
viously satisfied. Indeed, if the conjecture is valid, events on which the consumption-
constraint ¢(¢) > 0 binds correspond to G(t) = Y (t), while events on which the
constraint does not bind entail unconstrained net consumption behavior, i.e., G(t) =
F(t). If the conjecture did not hold, then there would be no reason for the individ-
ual to behave in an unconstrained manner, in terms of net consumption, in between
times at which the constraint binds. In this instance, interim net consumption would
account for the possibility of a binding constraint at future dates and would be lower
than if unconstrained. In short, condition (25) would become an inequality as opposed
to an equality, and complementary slackness would entail a different restriction.

Proof of Proposition 6: Let us write the equation (19) in the form

£@t) = % H(t) —~(t) +6 - E, ( /t Teo‘(St)v(s)ds>] . (19)’

The formulae (19)', (14) express the optimal consumption process c*(-), and the
Lagrange multiplier £(-) corresponding to it, in terms of the normalized marginal
utility process ¥(-) of (18). Now recall that both ¢*(-) and £(-) should be non-negative.

From the equation (19)’, the requirement £(-) > 0 amounts to

v(t) < H(t)+ - By </T eO‘(St)'y(s)ds> , forall tel0,T], (26)

which, in turn, is equivalent to the inequality
T
v(t) < H(t) + 6 - By ( / e(5—“)(s—t)H(s)ds> =T(t), forall te[0,T] (27)
t
(see Appendix). This last process I'(-) of (10) satisfies the Linear Recursive Equation
T
I'(t)=H(t)+ 6 - By (/ F(s)e_o‘(s_t)ds) , forall te€l0,T], (28)
¢
and the requirement £(-) > 0 leads to
G(t) = e I(t,yy(1) > eIt yI(¢) = F(1), (29)
in conjunction with (27).
On the other hand, it follows from (14) that the requirement ¢*(-) > 0 amounts
to the inequality (24). Finally, the conjecture (21) leads to G(-) = Y(-) on [0,7),
and to y(-) =T(-) (thus also G(-) = F(-)) on [r,T], which justify the condition (25)
of the proposition. &

A few additional steps provide the following characterization of the solution.

13



Corollary 7: Suppose that the conjecture (21) holds. Then the process Y (-) of (24)
solves the stochastic integral equation

——z0—5/ s)V F(s ds—/g AW (s), te[0,T].  (30)

Furthermore, the optimal consumption, the associated standard of living, the ad-
justed state-price density, and the Lagrange-multiplier process that enforces the non-
negativity constraint on consumption, are given by

¢ (t) = e (G(t) — Y (1) = e (F(t) — Y (1)) (31)
Z*(t) = =Y (t) et (32)

_ Lo e
10 = ! (6O ) v E0), (33)

and

respectively, for t € [0,T].
Proof: Conditions (23)-(25) mandate
G()=Y()VF(), (35)

which leads to the equation (30). Since the process F(-) is completely described by
(10) and (11), the equation (30) can be construed as a Stochastic Integral Equation
with random drift coefficient for the process Y (). This equation can be shown to
admit a pathwise unique, strong solution, for every given y > 0 (see proof of Lemma 8
in the next section). Once the solution Y (-) of this equation has been determined, we
can obtain the processes ¢*(-), z2*(-) = z(-; ¢*),v(-) = v(+; ¢*), and £(-) by substituting
in the formulae of Propositions 5 and 6. O

Proposition 6 and Corollary 7 provide a characterization of the optimal policy,
based on the conjecture (21). In order to validate these characterizations and to
demonstrate the existence of an optimal policy, we now must

1. verify the Conjecture (21) — thus also the property c¢*(-)¢(-) =0 — and

2. select the Lagrange multiplier y > 0 so that ¢*(-) satisfies the budget-constraint
(3) as an equality.

This program will be carried out in the next section.
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4 Optimal policies: existence and construction.

We now provide a constructive proof for the existence of an optimal consumption-
portfolio policy in the dynamic problem. Recall the process I'(-) of (10), as well as
the process

FY(t) := @0 (¢, yI'(t)), ¢ € [0,T] (36)

as in (29), parametrized by y € (0,00). Our first result establishes the existence,
uniqueness and properties of the solution to the Stochastic Integral Equation (30).

Lemma 8: For each y € (0,00), the stochastic equation

YY(t) = —20— 6 /0 (Y¥(s) v F¥(s))ds — /0 Cs)dW(s), te[0,T]  (37)

has a pathwise unique strong solution YY(-), which is a continuous semimartingale.
Furthermore, the mapping (0,00) > y — Y¥(-) € C([0,T]) is continuous and
increasing:

O<yi<gp<oo = YV(t)<Y®(t), Vtelo,T] (38)

Proof: The proof follows from classical results about existence, uniqueness and
comparison, for solutions of one-dimensional stochastic differential equations, once
we write (37) in the form

dY¥(t) = b(t, Y¥(t);y)dt — {'(t)dW(t), Y¥(0) = —z

with b(¢,z;y) = —d max(z, F¥(t)); see, for instance, Ikeda and Watanabe (1989),
Chapter VI. This drift function satisfies the usual Lipschitz and linear growth con-
ditions, is progressively measurable in (¢,w), continuous in the triple (¢,z,y), and
increasing in the argument y, since the mapping y — F¥(-) of (36) is clearly decreas-

ing. &

Having constructed the process Y¥(-), we can now define for each y € (0,00) the
processes

GY(t) := YY(t) V FY(t) (39)
(t) == O (GY(t) — YV(t)) = O (FY(t) — YV(1)) T, 2¥(t) = —eTEYY(1),
(40)

so that c¥(t) — 2¥(t) = et G¥(t), as well as

0 < A¥(t) = iu'(t, e0=0)t Gu(4)) = iu'(t, I(t) — (1)) (41)

(0) = s [ 10—+ 5 ([ Te‘*(st)w(s)ds)] (42)
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for ¢t € [0,T], by analogy with (35) and (32)-(34). Comparing (41) with (36), written
in the equivalent form yI'(t) = u/(¢,e(®=**F¥(t)), we see that

0<¥(t) <T(t), te0,T] (43)
from (39), as well as

{'yy(t)<1"(t) & FY(t) <YY(t) = cy(t):0} (44)
V() =T(t) < FY(it)>Y¥1t) <= ¥(t) >0

from (40). Let us also recall the Recursive Equation (28), for the process I'(+) of (27);
with its help we can rewrite (42) as

&) = gt 00— -5 5 ([ " emate=0(r(s) - Honds)| )

or, equivalently, in the form

T
y[I(t) =" ()] = H()§ (1) + 6 - E; (/ H(S)&”(S)e(éa)(s”de*)’) , t€l0,T] (45)
¢
of a Linear Recursive Equation for the process £¥(-).
Lemma 9: The continuous, F—adapted process £¥(-) of (42) satisfies

0 < €¥(t) < =2 [T(t) —1¥(1)], te€[0,T).

Proof: From (43) and (45)" we obtain the Recursive Stochastic Inequality

h(t)+6 - B, (/tTh(s)ds) >0, tel0,T]

for the continuous, F—adapted process h(t) = H(t)¢¥(t)e® ) 0 < ¢t < T. The
“stochastic version of Gronwall’s inequality” (Appendix B in Duffie and Epstein
(1992)) then implies h(-) > 0, which proves &Y(-) > 0; the second inequality fol-
lows directly from (45), (43). This completes the proof of the Lemma. O
Proposition 10: For each y € (0,00), consider the F—stopping time

¥ :=inf{t € [0,T): F¥(t) > YY(t)} AT = inf{t € [0,T) : T'(t) =Y ()} AT. (46)
Then the mapping y — 7Y is increasing, and we have

Ad(t)=0; tel0,7Y) (47)

V() =T(), £&(t) =0; tel[r,T]. (48)
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Proof: From the continuity of the random functions I'(-) and 7¥(-), we have ¥(7Y) =
T(7Y). Therefore, Lemma 9 gives £Y(7¥) = 0, and back in (45)" it implies in turn

&()=0, thusalso I'(-)=4Y"), on [7Y,T].

This establishes (48), whereas (47) is a consequence of the definition (46) and the
implications in (44). The increase of the map y +— 7¥ is an immediate consequence
of the decrease of y — FY(-) — YY(.). O

Proposition 10 vindicates the conjecture (21), so all that remains is to show that
we can select the scalar Lagrange multiplier ¥ > 0 in such a way as to satisfy the
requirement X(y) = x, with € (0,00) defined in (3), where we have set

[/ H{t)e(t dt] [/ Ht)e DBy — YY) dt|  (49)

for 0 < y < co. The mappings y — FY(:) and y — (FY(-) — Y¥(-))" are decreasing,
thus so is X(-) . As y — oo we have F¥(t) | —oo, Y¥(t) 1 Y°°(¢) and thus ¢¥(¢t) | 0,
where

Y®(t) := —zpe % — /0 t e t=9)¢!(5)dW (s), t€[0,T) (50)

solves the linear equation dY ®(t) = —dY *®(¢t)dt — ¢'(t)dW(t) with Y*°(0) = —z.
Consequently, X'(o0) =0 by Monotone Convergence. On the other hand,

FY(t) T oo, Y¥(t) ] —oo and thus cY(¢) Too, asylO

for all ¢t € [0,7], so that X(0+) = oo by Monotone Convergence. Therefore, X(-)
is a continuous and decreasing function on (y,c0) with X(y) = oo; we have set

= inf{y > 0: X(y) < oo}, a number in [0, c0) thanks to the Standing Assumption
4. Clearly then

y* = inf{y € (y,00) : X(y) = =}
satisfies the requirement X (y*) =x.

Corresponding to this y* > 0, let us consider the consumption-rate process c*(-) =
¢V (+) as in (40) and note that

E [ /0 ' H(t)c*(t)dt] _E [ /0 ' H(t)a(t)dt]

by the choice of y*. We know then that there exists a portfolio process 7*(-) such
that (7*,c*) € A, and with corresponding wealth process

X*(t) = ﬁ B, [/tT H(s)(e(s) - c*(s))ds] .

In conclusion, we obtain the following result.
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Theorem 11: The pair (7*,c*) is optimal for the dynamic consumption-portfolio
problem; equivalently, we have U(c') < U(c*) < oo for any () € B.

Proof: Define 2*(-) := 2¥"(-), £*(-) == &¥" (), v*() :==4¥"(-) and 7* := 7¥" as in
(40)-(42) and (46). From the Standing Assumption 4, we have clearly U(c*) < oo.
For an arbitrary pair (7/,¢/) € A and with 2/(:) = z(-;¢’) as in (5), the concavity of
u(t, ) gives

u(t, ¢ (t)—2" () —u(t, ¢ () —2'(t)) > u'(t,c"(t)—2" (1) [e*(t) — (1) — (2*(t) — (V)] ,

and thus, with the help of (19), we obtain

UE)-U) > B / (b () — () {c*(t) _ ) - /0 ‘(s) —c'(s))e_a(t_s)ds}ds

- E/ e () — 2 (1)) () — ¢ (t))dt

5B / ( / Wt (E) — (t))e“"(t_s)dt) (c*(s) = ¢(s))ds

- E/ (e () — 2 (1)) () — ¢ (b)) dt
5.F / E, ( / W (s, c*(s) — 2 (s))e_a(s_t)ds) (c*(t) — () dt

= 5[ (w5 m([ weres)) eo- doa

T
) N REOL OO
0
T T
= y-E/ H(t)(c*(t) — (b)) dt—E/ H(@)E(t)(c*(t) — (t))dt

_ (x_ /H dt)+E/H eWdWdt>0. O

Remark 12: From (37), (38) and (50) we can re-cast the stopping time of (46) in
the form

¥ = mf{t€[0,T): F¥(t) > Y@#)} AT (51)
= inf {t €0,T) : (t, —e ™ (zo + 5/0t €7 (s) dW(s))) > yF(t)} AT.

In particular,
u’(0, —2)
146-E ( 4 H(t)e(5*a)tdt)

>0 & y>y:=
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5 Economic properties of optimal consumption.

5.1 A decomposition of optimal consumption.

In the standard model without habit-formation and without the so-called “Inada
condition” u/(t,0+) = oo, the non-negativity condition on consumption changes the
optimal policy in an interesting but straightforward manner. Indeed, the constrained
policy equals the positive part of the unconstrained policy (equivalently, can be ex-
pressed as a call-option with zero-strike, written on the unconstrained policy; see
Cox and Huang (1989)). As we show below, the relationship between unconstrained
and constrained policies in the presence of habit-formation involves an additional
correction with path-dependent payoff.

In order to state this result, let us fix the multiplier y* corresponding to the
solution of the constrained model. Recall from subsection 3.2 that the optimal un-
constrained consumption process (which, by definition, does not have to obey the
non-negativity constraint), associated with the Lagrange multiplier y* as in Section
4, is

& (t) == O (P () — v (1))

where

*

t t
YV (1) = —a (1) el — _ 5 /0 BV ()ds — /0 ¢(s)dW (s)

and zg*() is the associated standard of living process. As we shall clarify below,

cz*(-) represents the unconstrained-optimal policy corresponding to an “adjusted
portion of the constrained investor’s future endowment”. With this notation, we

have the following decomposition.

Proposition 13: (Consumption decomposition). The optimal constrained consump-
tion can be written as the sum of two call-options:

() = (f ()" + () () AO—A@®) T, telo,T]. (53)
Here CZ*(-) is the unconstrained consumption policy corresponding to the Lagrange

multiplier y* of Section 4,

1. (& (-))* is a call-option, written on the unconstrained policy with zero strike-
price, and

2. (c%*() A0 — A(-))t is an Asian average-strike, capped call-option on the un-
constrained policy, with path-dependent strike-price

t
At) = —gelo=alt / (YY" (s) — FV'(s))*ds. (54)
0
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The decomposition (53) of the sources of consumption highlights the differences
between the standard model and the one with habit-formation. Foremost, it should
be noted that existence of habits implies a change in the structure of the optimal
policy when the consumption constraint is taken into account. This structural effect
is captured by the Asian average-strike, capped call-option. Because of history-
dependence, a binding consumption constraint in the past implies a different standard
of living at date ¢, and therefore a deviation from the unconstrained policy. This
deviation is captured by the quantity —A(t), the negative of the strike-price in (53),
(54). Since past constrained consumption cannot be less than past unconstrained
consumption, the quantity —A(t) is nonnegative. Nonnegative consumption at date
t could be ensured by adding a put-option written on the sum of the unconstrained
policy and this deviation term, leading to the decomposition

c*(t) = i (t) — A(t) + (cf (1) — A1)

Alternatively, it can be enforced by adding a put-option on the unconstrained policy,
along with the Asian capped call-option, yielding

c*(t) = e (t) +(ch (1)) + (4 (¢) A0 — A(®)*

and thus (53). The Asian option pays off when the unconstrained policy exceeds the
strike. There are two possible scenarios in this event. If the cap is inactive (hence
4’ (t) < 0), the payoff is ¢ (t) — A(t) and therefore ¢*(t) = ¢ (t) — A(t). In this
instance the Asian option pays off the unconstrained policy, which is intuitive since
the other two components in the decomposition sum to zero. If the cap is active
(hence ¢, (t) > 0) the payoff is —A(t) and again ¢*(t) = ¢ (t) — A(t). The cap thus
limits the upside payoff of the Asian option when unconstrained consumption meets
the constraint. In this case the Asian option pays off the deviation incurred due to
past binding constraints, and this is consistent as the other two components sum to
the unconstrained policy.

Finally, note that the Asian option has null payoff when preferences are additively
separable over time. Indeed, § = 0 implies A(¢) = 0 for all ¢ € [0,7] and hence
(4" (¢t) A0 — A(t))* = 0. In this instance we retrieve the standard representation
for the constrained-optimal policy in the context of time-separable utilities, namely

c*(t) = (c (1)

Remark: A counterpart of the consumption formula (53) is a decomposition of op-
timal wealth into several parts, serving to finance the respective consumption compo-
nents. Specifically, we can write

X*(t) = Xu(t) — Xa(t) — X5(¢)
with

X1 (t) = ﬁ B, ( /t ' H(v)e(v)dv)

Xalt) = 505 " HE) (o) do
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Xa(t) = ﬁ . B, ( /t ' H(v) (cg* (v) AO— A(v)Big)+dv> .

Here X1(-) is the value of the future endowment process, X(-) is the cost of the call-
option, and Xs3(-) the cost of the Asian, capped call-option. The choice of Lagrange
multiplier y* ensures that, at time t =0, the total cost of these last two components
(namely, X2(0) + X3(0)) equals the value X1(0) = z of the endowment process e(-).

We can also use the results of Proposition 10 about the stopping time 7*, in order
to sharpen the decompositions above. Since the processes v*(-) = 4¥"(-) and I'(¢)
coincide for ¢ > 7%, it must be that

A(t) _ ef(afé)(tfr*)A(T*),
and hence
(1) = (@ (@) + (& W) A0—e @ TIAE)) "

for t > 7*. Thus, after time 7*, the strike in the decomposition of consumption be-
comes “deterministic”: it is equal to the F(7*)—measurable random variable A(7*),
discounted at the constant rate o — §. However, it is worth emphasizing that the
quantity A(7*) depends on the paths of Y¥"(-) and F¥ (-) up to the stopping time
T*.

5.2 Consumption behavior.

The consumption pattern that emerges from the previous analysis entails constrained
(null) consumption up to the random time 7*, after which the optimal net consump-
tion ¢*(t) — 2*(t) = I(t,y*y*(t)) mimics, in some sense to be made precise below, the
net consumption ¢, (t) — zy(t) = I(t,y,I'(t)) which is optimal in an unconstrained
model. On the surface such behavior may appear surprising, since one might have
expected random alternance between periods of constrained and unconstrained con-
sumption, as in the standard model without habits. However, this pattern is perfectly
understandable, if we recall that 7* := 79" is the first time at which the processes v*(-)
and I'(-) coincide. From this definition it follows that the normalized utility-gradients
must also coincide at and after ¢ = 7%, namely,

| =

*

T
u'(t, c*(t) — 2 —4- e 2y (s ¢*(s) — 2*(s))ds
: [ ()~ (0) -5 B [ (s,¢"(s) <>>d] (55)

1 T
= — [u'(t,cu(t) — zu(t)) =9 - Etf e/ (s, cu(s) — zu(s))ds] , TF<t<T.
Y t

But recall that these normalized gradients incorporate the impact of current consump-
tion choice on future utilities (“habit-effect”). The coincidence of these expressions
implies that future normalized marginal utilities cannot differ, namely

%u'(t,c*(t) _2(0) = yiuu'(t,cu(t) —(t), for T<t<T.  (56)
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Thus 7* can also be viewed as the first time at which the investor is able to sustain
the unconstrained net consumption patterns at all future times.

It is actually possible to go beyond (55), (56), and try to compare actual and/or
net consumption in the constrained and unconstrained problems. In order to make
some headway in this direction, let us recall the functions X(-) and X,(-) from (49)
and subsection 3.2, respectively; observe that the difference

X(y)—Xu(y) = E /OTH(t)e@a)t [Gy() FY(t) +6 / (GY(s ())ds] dt
- & /0 " (1)l [(Yy(t) t 45 / (YY(s y(s))+ds] dt

is non-negative for all 0 < y < oo and strictly positive if and only if ¥ < y < o0,
where 7 € (0,00) is the constant of (52), Remark 12. It follows immediately that
y* > y,. Let us also introduce the notation 7, := 7%, and recall 0 < 7, < 7* < T
from Proposition 10 and y* > yu Two cases suggest themselves naturally, according
to whether the value z = FE fo g(t)dt of the endowment at time ¢ = 0 is
sufficiently large, or not.

Proposition 14: Suppose that > X(y). Then we have c¢*(-) = cyu(-) on [0,T].

Proposition 15: Suppose that © < X(y). Then the optimal consumption has the
following properties:

1. for t > 7 we have c*(t) — 2*(t) < cu(t) — zu(t),

2. for t < 1, we have 0 = c*(t) > cyu(t), z*(t) > zu(t), and c*(t) — z*(t) >
cu(t) — zy(t) ; this last inequality is strict for t € [0,7,), and holds as equality
for t=1,.

In other words, for a sufficiently well-endowed investor, Proposition 14 shows that
the optimal unconstrained consumption process c,(-) is non-negative, and is thus
optimal in the constrained problem as well; such an investor is effectively not bound
by the constraint. For an investor who is not sufficiently well-endowed, Proposition 15
provides information about the manner in which the difference in net consumptions
[¢*(t) — 2*(t)] — [cu(t) — z4(t)] changes its sign during the time-interval [0,7] so that
the inequality

T T
E/O ult, cut) — zu(t)) dt > E/O u(t, () — 2*(t)) dt

is satisfied (i.e., the investor os better off when unconstrained). Proposition 15 also
provides further intuition about the persistence of a binding constraint until 7*.
Indeed, prior to time 7* the investor wishes to choose a net consumption policy as
close to the unconstrained net consumption as possible. The best that can be done
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is to build down the standard of living as much as possible, which means forgoing
consumption completely. This intuition prevails until 7*: this is the first time at
which net consumption is, effectively, unconstrained.

Proof of Proposition 14: Under the assumption of the proposition, we have
y* =1vy, <7y, thus 7, = 7* =0; and with y = y, = y*, we have

t
25(t) — zu(t) = el /0 (GY(s) — F¥(s)) ds

_ el /t (Y¥(s) = F¥(s))*ds = 0
0

and

[ () = 2*(1)] = [eu(t) — 2u(t)] = € (G¥(t) - F¥(t))
et (y¥(t) — FY(t)" = 0

forall 0<t<T.

Proof of Proposition 15: Under the assumption of the proposition, we have
0<y<yy,<y*<ooand 0< 7, <7 <T. The first claim follows directly from
(56). For the other claims, observe that we have

*

YV (t) = YYe(t) = YO(t) > F¥(t) > F¥ (t), for 0<t<m,
(with the first inequality valid as equality for ¢ = 7,), thus
t *
) — z(t) = deldalt / (6% (s) — F¥e(s)) ds
0

t
- ae(M)t/ (Y°(s) — F¥(s))Tds > 0, 0<t<m
0

and
[€(t) = 2 (8)] — [ealt) = 2a(®)] = €@ (GV' () - F¥(2))
= 0=t (yo@r)—Fu@)t >0, 0<t<m,

(with equality for ¢t = 7). All claims now follow.

6 Conclusion.

In this paper we resolved the consumption-portfolio problem when the investor’s pref-
erences exhibit non-addictive habits. Existence of an optimal consumption-portfolio
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policy was demonstrated. The consumption function was found to have unusual prop-
erties. Of particular interest is the fact that the optimal consumption is null up to
an endogenously determined stopping time, after which the non-negativity constraint
ceases to be binding. The source of this striking behavior is the non-separability of the
utility function over time. Another unusual feature is the decomposition of the opti-
mal consumption policy, which involves an Asian average-strike capped call-option.
The rationale for the presence of a path-dependent option in this decomposition, is
again a consequence of the influence of habits on the investor’s behavior.

Our formulation of preferences has also important implications for the study of
equilibrium prices and allocations. This becomes clear, once we note that the stan-
dard model with an Inada condition u'(¢,0+) = oo is unable to accommodate an
aggregate dividend process which is lognormally distributed. Thus, typical assump-
tions about aggregate consumption are simply unsustainable in the standard pure
exchange model with habit formation. In contrast, our setting can readily accom-
modate any non-negative aggregate dividend process. Our model can then be easily
calibrated and used in order to quantify the effects of habits on the structure and
properties of prices and the interest rate. The equilibrium implications of this work
will be taken up in a subsequent paper.

7 Appendix.

Proof of the equivalence of (26) and (27): Suppose that (26) holds, and set
o(t) = e (y(t) — H(t)) as well as H(t) = de **H(t),t € [0,T]. Then (26) reads

o(t) < E (/tT (&p(s) n f-_i(s)) ds) , teo,T.

From Appendix B in Duffie and Epstein (1992), this last inequality implies

T ~
o) < E ( / eé(s—ﬂﬂ(s)ds) , te[0,T]
t
which is (27). On the other hand, suppose that (27) holds, and set
p(t) = el (y(t) — H(t)) and F(t) = 6e~ iy (1);
then (27) becomes

o)< B ([ 606) - 300 ).

and Appendix B from Duffie and Epstein (1992) implies $(t) < E (ftT e_‘s(s_t)’y\(s)ds) ,
t € [0,T], which is (26). ¢

The solution of Equation (19): With h(t) = yy(t)e ™, g(t) = (y —&(¢)) H (t)e ™,
we can rewrite the Backwards Stochastic Equation (19) in the form

h(t) = g(t) + 6 - B, (/tTh(s)ds> . teo,T].
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Clearly h(T) = g(T'), and

h(t) + 6 / Ch(s)ds = g(t) + 5 M(t), € [0,T]
0

where M(t) := E; (fOT h(s)ds) , t € [0,T] is a martingale. Now this integral equa-
tion is solved via integration-by-parts, as follows:

hT) e — n(t) e = /T % [dh(s) + 8 h(s)ds]

T
- /t e%[dg(s) + 6 dM(s)]

T T
= g(T)e' — g(t)e® —5/t e‘ssg(s)ds%—d/t e dM(s),

or equivalently

T T
h(t) = g(t) + 6/ e‘s(sft)g(s)ds — 6/ e‘s(sft)dM(s).
t t

Taking conditional expectations, we obtain h(t) = g(t) + 6 - E; (ftT e‘s(s_t)g(s)ds) ,
t € [0,T), which is (12). ¢
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