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Abstract

Consider a process X(·) = {X(t), 0 ≤ t < ∞} with values in the interval I = (0, 1), absorp-
tion at the boundary-points of I, and dynamics

dX(t) = β(t)dt + σ(t)dW (t), X(0) = x.

The values (β(t), σ(t)) are selected by a controller from a subset of <× (0,∞) that depends
on the current position X(t), for every t ≥ 0. At any stopping rule τ of his choice, a
second player, called stopper, can halt the evolution of the process X(·), upon which he
receives from the controller the amount e−ατu(X(τ)); here α ∈ [0,∞) is a discount factor,
and u : [0, 1] → < is a continuous “reward function”. Under appropriate conditions on
this function and on the contoller’s set of choices, it is shown that the two players have a
saddle-point of “optimal strategies”. These can be described fairly explicitly by reduction to
a suitable problem of optimal stopping, whose maximal expected reward V coincides with
the value of the game:

V = sup
τ

inf
X(·)

E
[
e−ατu(X(τ))

]
= inf

X(·)
sup

τ
E
[
e−ατu(X(τ))

]
.
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1 Introduction

We describe in this section a zero-sum stochastic game, that involves a linear diffusion process.
The game takes place between two players, one called controller and the other called stopper.
This game will be the object of study in the paper.

The diffusion process X(·) evolves in the state-space I = (`, r), a non-empty, bounded,
open interval of the real line. Its evolution is governed by the equation

(1.1) dX(t) = β(t)dt + σ(t)dW (t), X(0) = x ∈ I

on a filtered probability space (Ω,F ,P), F = {F(t), 0 ≤ t < ∞}. The process W (·) is a stan-
dard Brownian motion with respect to F, and (β(·), σ(·)) is a pair of real-valued, F−progressively
measurable processes which satisfy almost surely

(1.2)
∫ t

0
[|β(s)|+ σ2(s)]ds < ∞, (β(t), σ(t)) ∈ K(X(t))

for all t ∈ [0,∞). Whenever the process X(·) is in a given state X(t) = ζ ∈ [`, r], the controller
can choose a local drift / local volatility pair (β(t), σ(t)) from a given subset K(ζ) of <× (0,∞).
The family {K(ζ) / ζ ∈ [`, r]} is specified in advance, and we set K(`) = K(r) = {(0, 0)}; this
choice forces the process X(·) of (1.1) to become absorbed, whenever it reaches either one of the
boundary-points of the interval I = (`, r). Given an initial condition x ∈ I, we shall denote by
A(x) the class of all processes X(·) with X(0) = x that can be constructed this way, and are
thus “available” to the controller with this starting position.

A second player, called stopper, can halt the evolution of the process X(·) by selecting
a stop-rule τ : C[0,∞) → [0,∞]. This is a mapping from the space C[0,∞) of continuous
functions ξ : [0,∞) → < into the extended real half-line, with the property

(1.3) {ξ ∈ C[0,∞) / τ(ξ) ≤ t} ∈ Bt := ϕ−1
t (B), ∀ 0 ≤ t < ∞.

Here B := B(C[0,∞)) is the Borel σ−algebra generated by the open sets in C[0,∞), and
ϕt : C[0,∞) → C[0,∞) is the mapping

(ϕtξ)(s) := ξ(t ∧ s), 0 ≤ s < ∞

(cf. Karatzas & Shreve (1988), p. 60, Problem 2.4.2). The significance of (1.3) should be clear:
“whether the stop-rule τ has acted by any given time t to halt the trajectory ξ, or not, can be
decided by observing the trajectory up to time t, and not beyond”. We shall denote by S the
class of all stop-rules τ : C[0,∞) → C[0,∞) as above.

Consider now a continuous “reward function” u : [`, r] → <, and a real “discount factor”
α ≥ 0 . If the controller selects a diffusion X(·) from the class A(x) of processes available at the
initial position x ∈ I, and if the stopper employs the stop-rule τ ∈ S, then the controller pays
the stopper the amount e−ατ(X)u(X(τ(X))) at the time τ(X). The objective of the controller
(respectively, the stopper) is to try and minimize (resp., maximize) this random quantity, at
least in expectation (“on the average”). In this spirit, we denote by

(1.4) V (x) := inf
X(·)∈A(x)

sup
τ∈S

E
[
e−ατ(X) u(X(τ(X)))

]
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the upper value, and by

(1.5) V (x) := sup
τ∈S

inf
X(·)∈A(x)

E
[
e−ατ(X) u(X(τ(X)))

]
the lower value, of the game between the controller and the stopper. Clearly, V (x) ≤ V (x).

In (1.4), (1.5) and throughout the paper, we are employing the convention χ(∞) :=
lim supt→∞ χ(t) for any F−progressively measurable process χ(·).

Definition 1.1. We say that the game has a value, if V (x) = V (x).

Definition 1.2. A pair (Z(·), ρ) ∈ (A(x)× S) is called a saddle-point of the game, if we have

(1.6) E
[
e−ατ(Z) u(Z(τ(Z)))

]
≤ E

[
e−αρ(Z) u(Z(ρ(Z)))

]
≤ E

[
e−αρ(X) u(X(ρ(X)))

]
for every X(·) ∈ A(x), τ ∈ S.

As is straightforward to verify, (1.6) implies that the game has a value, namely

(1.7) V (x) = V (x) = E
[
e−αρ(Z) u(Z(ρ(Z)))

]
.

After some preliminary results from optimal stopping theory, we shall identify a saddle-
point for the undiscounted game (α = 0) in some generality in Section 4, and for the discounted
game (α > 0) under a special assumption in Section 6.

The controller-and-stopper game has been studied in discrete time by Maitra & Sud-
derth (1996), who showed that the game has a value when the reward function is Borel-
measurable and the state-space is Polish. Perhaps the same is true in continuous time, but
here we consider only real-valued processes and a continuous reward function. In this much
more concrete context we obtain not just the existence of a value but also that of a saddle-point
for the game, which we are able to describe fairly exactly.

2 Reduction to Optimal Stopping

Let us consider now two Borel-measurable functions b : I → <, s : I → < that satisfy

(2.1) s2(x) > 0, (b(x), s(x)) ∈ K(x),
∫ x+ε

x−ε
s−2(y)[1 + |b(y)|]dy < ∞ for some ε > 0

at every x ∈ I. We always assume that there exist functions b, s with these properties. It is
then well-known (cf. Karatzas & Shreve (1988), Theorem 5.5.15, p. 341) that the stochastic
differential equation

(2.2) dZ(t) = b(Z(t))dt + s(Z(t))dW (t), Z(0) = x ∈ I

has a weak solution, which is unique in the sense of the probability law. The resulting process
Z(·) is a one-dimensional, time-homogeneous diffusion on the interval I, with local drift function
b, local volatility function s, and absorption at the boundary-points of the interval (cf. loc. cit.,
pp. 348-350, for conditions about the attainability or non-attainability of the boundary-points).
Furthermore, the processes β(·) ≡ b(Z(·)), σ(·) ≡ s(Z(·)) satisfy the requirements of (1.2), and
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thus the diffusion Z(·) of (2.2) belongs to the class A(x) of processes available to the controller
at the initial position x ∈ I.

If the controller has selected the diffusion process Z(·) ∈ A(x), then the best that the
stopper can do is to select a stop-rule which attains the supremum

(2.3) G(x) := sup
τ∈S

E
[
e−ατ(Z) u(Z(τ(Z)))

] (
= sup

µ∈M
E
[
e−αµ u(Z(µ))

] )
.

In this last expression we have denoted by M the class of F−stopping times, namely those
random variables µ : Ω → [0,∞] that satisfy {µ ≤ t} ∈ F(t), for every t ∈ [0,∞). It is
well-known that this optimal reward function G : I → < is α−excessive, that is

(2.4) G(x) ≥ E
[
e−αtG(Z(t))

]
, ∀ 0 ≤ t < ∞ and G(x) = lim

t↓0
E
[
e−αtG(Z(t))

]
hold for every x ∈ I. The function G(·) clearly also majorizes u(·), that is

(2.5) G(x) ≥ u(x), ∀ x ∈ I,

and is in fact the smallest α−excessive majorant of u(·). Furthermore, the stop-rule ρ :
C[0,∞) → C[0,∞) given by

(2.6) ρ(ξ) := inf{t ≥ 0 / G(ξ(t)) = u(ξ(t))} = inf{t ≥ 0 / ξ(t) ∈ Σ}

attains the supremum in (2.3), namely

(2.7) G(x) = E
[
e−αρ(Z) u(Z(ρ(Z)))

]
.

We are denoting by

(2.8) Σ := {x ∈ I / G(x) = u(x)}, C := {x ∈ I / G(x) > u(x)}

the “optimal stopping” and “optimal continuation” regions, respectively. For these classical
results, the reader may wish to consult Shiryaev (1978) or Salminen (1985).

In terms of the optimal reward function G(·) of (2.3), (2.7) and of the stop-rule ρ in
(2.6), the saddle-point property (1.6) amounts to

(2.9) E
[
e−αρ(Z) u(Z(ρ(Z)))

]
= G(x) ≤ E

[
e−αρ(X) u(X(ρ(X)))

]
, ∀ X(·) ∈ A(x).

If (2.9) holds, then the pair (Z(·), ρ) is a saddle-point of the stochastic game, whose value is
thus given by

(2.10) V (x) = V (x) = G(x).

The whole problem, then, becomes to identify a diffusion process Z(·) ∈ A(x) as in
(2.2), with the properties (2.1) and (2.9). We shall carry out this program in Section 4 for the
undiscounted case (α = 0), and in Section 6 for the discounted case (α > 0), under appropriate
conditions.
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3 The Undiscounted Optimal Stopping Problem

In the undiscounted case of α = 0, a prominent rôle is played by the scale function

(3.1) p(x) :=
∫ x

x0

exp
[
−2
∫ ζ

x0

(b/s2)(u)du
]
dζ, x ∈ I

of the diffusion process Z(·) in (2.2), for some arbitrary but fixed x0 ∈ I. This function is strictly
increasing, with absolutely continuous first derivative

(3.2) p′(x) = exp
{
−2
∫ x

x0

(b/s2)(u)du
}

= 1 +
∫ x

x0

p′′(u)du > 0, x ∈ I,

where

(3.3) p′′(x) := −2b(x)
s2(x)

· p′(x).

Under the assumptions

(3.4) ˜̀ := p(l+) > −∞, r̃ := p(r−) < ∞,

the strictly increasing function p(·) maps the bounded interval I = (`, r) onto the bounded
interval Ĩ = (˜̀, r̃), and has the inverse function q : Ĩ → I that satisfies p(q(y)) = y, ∀y ∈ Ĩ.
Furthermore, the transformation

(3.5) Y (t) := p(Z(t)), 0 ≤ t < ∞

of the process Z(·) in (2.2), is a diffusion in natural scale, namely

(3.6) dY (t) = s̃(Y (t))dW (t), Y (0) = y := p(x) ∈ Ĩ ,

with s̃(·) := ((p′s) ◦ q) (·). Similarly, with a new reward function

(3.7) ũ(·) := (u ◦ q) (·), on Ĩ

we have

(3.8) G(x) = G̃(p(x)), where G̃(y) := sup
τ∈S

E [ũ(Y (τ(Y )))] for y ∈ Ĩ .

The auxiliary optimal reward function G̃(·) of (3.8) is defined on Ĩ. It is concave on
this interval, and in fact is the smallest concave majorant of ũ(·), namely

(3.9) G̃(y) = inf{f(y) / f(·) affine, f(·) ≥ ũ(·)}.

This leads to the representation

(3.10) G(x) = inf{β + γp(x) / β ∈ <, γ ∈ <, β + γp(·) ≥ u(·)}

of the optimal reward function G(·) in (2.3), as the lower-envelope of all affine transformations
of the scale function p(·), that dominate the reward function u(·).
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By analogy with (2.8), the optimal stopping region and the optimal continuation region
for the problem of (3.8), are given by

(3.11) Σ̃ := {y ∈ Ĩ / G̃(y) = ũ(y)}, C̃ := {y ∈ Ĩ / G̃(y) > ũ(y)},

respectively. As a concave function on Ĩ , G̃(·) has a decreasing left-derivative D−G̃(·), which
induces a positive measure ν̃ on B(Ĩ) through the recipe

(3.12) ν̃([a, b)) = D−G̃(a)−D−G̃(b), for ˜̀< a < b < r̃.

The measure ν̃ does not charge the optimal continuation region C̃ in (3.11), i.e.,

(3.13) ν̃(C̃) = 0;

this reflects the fact that G̃(·) is affine on each of the (at most countably-many) open disjoint
intervals, whose union constitutes C̃.

For proofs of these statements, the reader is referred to Section 3 in Karatzas & Sud-
derth (1999), and to the references cited there.

4 The Undiscounted Game

Let us discuss now the stochastic game of Section 1 in the undiscounted case (α = 0), under the
assumptions

(4.1) inf {σ2 / (β, σ) ∈ K(x) for some β ∈ <, x ∈ I} > 0

(4.2) u∗ := sup
x∈[`,r]

u(x) = u(m), for exactly one m ∈ I.

We will also assume that we can select pairs (b`, s`), (br, sr) of measurable functions with the
properties (2.1) and (3.4), as well as

(4.3)
b`(x)
s2
`(x)

= inf
{

β

σ2
/ (β, σ) ∈ K(x)

}

(4.4)
br(x)
s2
r(x)

= sup
{

β

σ2
/ (β, σ) ∈ K(x)

}
for every x ∈ I. One can then construct diffusion processes Z`(·), Zr(·) as in (2.2), namely

(4.5) dZ`(t) = b`(Z`(t))dt + s`(Z`(t))dW (t), Z`(0) = x ∈ I

(4.6) dZr(t) = br(Zr(t))dt + sr(Zr(t))dW (t), Zr(0) = x ∈ I

as well as the corresponding optimal reward functions of (2.3) with α = 0, namely

(4.7) Gj(x) := sup
τ∈S

E [u(Zj(τ(Zj)))] , x ∈ I for j = `, r.
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With these ingedients in place, we can formulate the solution of the stochastic game in the
undiscounted case (α = 0).

Theorem 4.1: With the above assumptions and notation (4.1)-(4.7), we have the following:
(i) For each x ∈ [`,m], a saddle-point for the stochastic game is given by (Z`(·), ρ`), in the
notation of (4.5) and of

(4.8) ρ`(ξ) := inf{t ≥ 0 / G`(ξ(t)) = u(ξ(t))}, ξ ∈ C[0,∞).

(ii) For each x ∈ [m, r], a saddle-point for the stochastic game is given by (Zr(·), ρr), in the
notation of (4.6) and of

(4.9) ρr(ξ) := inf{t ≥ 0 / Gr(ξ(t)) = u(ξ(t))}, ξ ∈ C[0,∞).

(iii) The stochastic game has a value, given by

(4.10) V (x) = V (x) =


G`(x), x ∈ [`,m),
Gr(x), x ∈ (m, r],
u∗, x = m.


In words: the controller (minimizer) tries to “get away as effectively as he can from

the point m”, the position of the global maximum of u(·) on [`, r], by minimizing (respectively,
maximizing) the mean-variance, or “signal-to-noise”, ratio β/σ2 , when to the left (resp., to the
right) of m. This same policy maximizes the probability of reaching the left-boundary-point
` (resp., the right-boundary-point r), as Pestien & Sudderth (1985) have demonstrated. It
is not a priori clear that the controller should follow such a strategy (i.e., that his notion of
“effectiveness” should be the same as trying to reach a goal with maximal probability), even in
the vicinity of local minima for the function u(·).

On the other hand, the stopper (maximizer) finds it best, when to the left of the point
m, to halt the controlled process X(·) at the time ρ`(X) of its first entrance into the optimal
stopping region Σ` = {x ∈ I / G`(x) = u(x)} , that corresponds to the problem (4.7) for the
diffusion process Z`(·) in (4.5). And when to the right of m, the stopper finds it best to halt
the controlled process X(·) at the time ρr(X) of its first entrance into the optimal stopping
region Σr = {x ∈ I / Gr(x) = u(x)} of the problem (4.7) for the diffusion process Zr(·) in
(4.6). Clearly, the point m belongs to both stopping regions Σ` and Σr; so, under optimal play
on the part of his opponent, the controller will find himself using only one of the two régimes
(4.5), (4.6) – he will never have to switch from one régime to the other.

Proof of Theorem 4.1: It suffices to deal with the case x ∈ [`,m] (the other case is then
treated similarly). In order to simplify notation, we shall set

(4.11) m = r, s(·) ≡ s`(·), b(·) ≡ b`(·), Z(·) ≡ Z`(·), G(·) ≡ G`(·)

and try to establish the saddle-point property

(4.12) G(x) ≤ E[u(X(ρ(X)))] , ∀ X(·) ∈ A(x)
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of (2.9), for the stop-rule ρ(ξ) = inf{t ≥ 0 / G(ξ(t)) = u(ξ(t))} of (4.8).
For any given X(·) ∈ A(x), we claim that

(4.13) ϑ(·) := p(X(·)) is a submartingale

with values in the bounded interval Ĩ = (˜̀, r̃). Indeed, we have

dϑ(t) = p′(X(t)) · [β(t)dt + σ(t)dW (t)]−
(

p′
b

s2

)
(X(t)) · σ2(t)dt

= p′(X(t))
[

β(t)
σ2(t)

− b(X(t))
s2(X(t))

]
σ2(t)dt + p′(X(t)) · σ(t)dW (t)(4.14)

from Itô’s rule and (1.1), (3.3). Thanks to p′(·) > 0 and the definition (4.3), the drift term is
nonnegative. In other words, ϑ(·) is a local submartingale, thus also a (true) submartingale,
because it is bounded.

Now let us recall (3.8), (4.13) and look at the process

(4.15) η(t) := G(X(t)) = G̃(ϑ(t)), 0 ≤ t < ∞.

From the generalized Itô rule for concave functions (e.g. Karatzas & Shreve (1988), section 3.7)
we obtain

η(T ) = G(x) +
∫ T

0
D−G̃(ϑ(t)) · p′(X(t))

[
β(t)
σ2(t)

− b(X(t))
s2(X(t))

]
σ2(t)dt

+
∫ T

0
D−G̃(ϑ(t)) · p′(X(t))σ(t)dW (t) −

∫
Ĩ
Lϑ

T (ζ)ν̃(dζ), 0 ≤ T < ∞.(4.16)

Here t 7→ Lϑ
t (ζ) is the local time of the semimartingale ϑ(·) at the point ζ ∈ I: a continuous,

increasing and F−adapted process, flat off the set {t ≥ 0 / ϑ(t) = ζ}.

As we are assuming that the continuous function u(·) attains its maximum over [`, r]
at x = r, so in turn the continuous function ũ(·) attains its maximum over [˜̀, r̃] at y = r̃;
this implies D−G̃(·) ≥ 0, and the increase of G̃(·) on Ĩ. From the positivity of p′(·) and the
definition (4.3), we deduce that the first integral on the right-hand-side of (4.16) defines an
increasing process. The second (stochastic) integral defines a continuous, local martingale. The
third integral defines a continuous, increasing process that starts at zero, and for which we have∫

Ĩ
Lϑ

ρ(X)(ζ)ν̃(dζ) =
∫

Σ̃
Lϑ

ρ(X)(ζ)ν̃(dζ) = 0,

almost surely. This is because the measure ν̃ does not charge the continuation region C̃ (recall
(3.12) and (3.13)), and because

Lϑ
ρ(X)(ζ) = 0, a.s.

for ζ ∈ Σ̃, since ρ(X) = inf{t ≥ 0 / ϑ(t) ∈ Σ̃} and t 7→ Lϑ
t (ζ) is flat off the set {t ≥ 0 / ϑ(t) = ζ}.
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We deduce from all this, that the process η(· ∧ ρ(X)) is a local submartingale; because
it takes values in the bounded interval Ĩ = [˜̀, r̃], the process

(4.17) η(· ∧ ρ(X)) is actually a (bounded) submartingale.

Now from (4.17) and the optional sampling theorem, we obtain

(4.18) G(x) = Eη(0) ≤ E[η(ρ(X))] = E[G(X(ρ(X)))] = E[u(X(ρ(X)))], ∀ X(·) ∈ A(x),

and (4.12) is proved. Note that we have used the assumption (4.1) to guarantee

(4.19) ρ(X) < ∞ a.s., ∀ X(·) ∈ A(x).

The proof of Theorem 4.1 is complete.

Remark 4.1. We cannot expect (4.10) to hold, in the absence of condition (4.1).
To see this, consider a reward function u(·) which is continuous on [`, r], strictly decreasing on
(`, x∗) and strictly increasing on (x∗, r) , for some x∗ ∈ I. Furthermore, in accordance with the
simplifying assumption (4.11), we take u(r) > u(`), which amounts to m = r. Suppose also that
K(x) = {(−1, 1)} ∪ {(0, ε) / ε > 0} for every x ∈ I = (`, r). Then

b(x)
s2(x)

=
b`(x)
s2
`(x)

= −1

in the notation of (4.3), so that the process Z(·) ≡ Z`(·) of (4.5), (4.11) is Brownian motion
with negative drift:

(4.20) Z(t) = x− t + W (t).

The point x∗, and a small open interval N∗ containing it, belong to the continuation region
for the stopper’s (maximizer’s) problem G(x) = supτ∈S E[u(Z(τ(Z)))] for the process Z(·) of
(4.20). On the other hand, the controller (minimizer) can effectively halt the process X(·) near
any point x ∈ I, by choosing controls of the type

(4.21) (β(t), σ(t)) = (0, ε(t))

for some deterministic function ε : (0,∞) → (0,∞) with
∫∞
0 ε2(t)dt very small.

Therefore, if X(0) = x∗ and the controller uses controls as in (4.21) so as to keep
the process X(·) in a sufficiently small neighborhood N∗ containing x∗, then the controller can
secure a payoff very near u(x∗), in particular smaller than G(x∗), so that (4.10) fails. On the
other hand, we have in this case ρ(X) = ∞ a.s., so (4.19) fails, and the argument in (4.18) fails
too – as it should.

It would be interesting to study the stochastic game of Section 2, and try to find a
saddle-point of optimal strategies for the two players, in the absence of condition (4.1).
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5 The Discounted Optimal Stopping Problem

Our objective in this section will be to study in some detail the optimal reward function of
(2.3) in the discounted case α > 0 after the manner of Salminen (1985), culminating with the
following result.

Theorem 5.1: The function G(·) of (2.3) with α > 0 can be written as the difference of two
convex functions, and the measure

(5.1) ν(dx) :=
[
αG(x)− b(x) ·D−G(x)

]
dx−

(
s2(x)/2

)
·D2G(dx)

is positive and does not charge the optimal continuation region C of (2.8):

(5.2) ν(C) = 0.

Here and in the sequel, we are denoting by D−G(·), D+G(·) the left- and right-
derivatives of the function G(·), and by D2G(dx) the second-derivative signed measure defined
on the σ-algebra B(I) of Borel sets of I, through

(5.3) D2G([a, b)) := D−G(b)−D−G(a), ` < a < b < r.

These derivatives exists because, as asserted in Theorem 5.1, we have G = G1 − G2 for two
convex functions G1, G2 ; from well-known theory (see, for instance, Karatzas & Shreve (1988),
p. 213), these have right- and left-derivatives D±Gi which exist, are non-decreasing, and satisfy
D−Gi ≤ D+Gi on I (with strict inequality on a set which is at most countable), for i = 1, 2 ; .

The proof of Theorem 5.1 occupies the remainder of this section and follows very closely
the work of Salminen (1985). It is rather technical, so readers may wish to skip it on first reading
and proceed directly to Section 6. There we treat, with the help of Theorem 5.1, the stochastic
game of (1.2)− (1.6) in the discounted case α > 0.

In order to make headway with the proof, let us recall from Dynkin (1969), Theorem
10.1 or Salminen (1985), Sections 3 and 4, that the optimal reward function G(·) of (2.3) admits
an integral representation of the type

(5.4) G(x) =
∫

[`,r]
Ky(x;x0)λ(dy), x ∈ I .

Here, the point x0 ∈ I is arbitrary but fixed, and λ is some positive, finite measure on B(I) that
does not charge the optimal continuation region C of (2.8), namely

(5.5) λ(C) = 0.

(cf. Salminen (1985), 4.2 and 4.5). We have set Ky(x;x0) = ky(x)/ky(x0), where

ky(x) :=
{

Φ↑(x) / Φ↑(y) ; x < y
Φ↓(x) / Φ↓(y) ; x ≥ y

}
= E

[
e−αTy

]
(5.6)

and Ty := inf{t ≥ 0 / Z(t) = y} is the first-hitting-time of the point y ∈ [`, r] by the diffusion
process Z(·) of (2.2). We are using here the notation Φ↑(·) (respectively, Φ↓(·)) for a positive,
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strictly increasing (resp., decreasing) function that is α−harmonic (meaning that it solves the
equation (s2/2)Φ′′ + bΦ′ = αΦ in the generalized sense of (5.10) below). The functions
Φ↑(·),Φ↓(·) are linearly independent, and the Wronskian

(5.7) B =
1

p′(x)

[
D±Φ↑(x) · Φ↓(x)−D±Φ↓(x) · Φ↑(x)

]
is a positive constant.

Let us concentrate on the interval [`, x0] (a similar analysis can be carried out for
[x0, r]). On this interval, Salminen (1985) computes the left-derivative of the optimal reward
function in (2.3), (5.4), as

D−G(x) =
D−Φ↓(x)
Φ↓(x0)

· λ([`, x)) +
D−Φ↑(x)
Φ↑(x0)

· λ((x0, r])

+
D−Φ↑(x)
Φ↓(x0)

∫
[x,x0]

Φ↓(y)
Φ↑(y)

· λ(dy), x ≤ x0.(5.8)

A similar expression can also be computed for the right-derivative, leading to the property

D−G(x)−D+G(x) =
Bp′(x)

Φ↓(x0)Φ↑(x)
· λ({x}) ≥ 0, x ≤ x0.

From (5.4), written for x ≤ x0 in the more suggestive form

G(x) =
Φ↓(x)
Φ↓(x0)

· λ([`, x)) +
Φ↑(x)
Φ↑(x0)

· λ((x0, r])) +
Φ↑(x)
Φ↓(x0)

∫
[x,x0]

Φ↓(y)
Φ↑(y)

· λ(dy),

and (5.8), we obtain

αG(x)− b(x) ·D−G(x) =
αΦ↓(x)− b(x) ·D−Φ↓(x)

Φ↓(x0)
· λ([`, x))

+
αΦ↑(x)− b(x) ·D−Φ↑(x)

Φ↑(x0)
· λ((x0, r])

+
αΦ↑(x)− b(x) ·D−Φ↑(x)

Φ↓(x0)

∫
[x,x0]

Φ↓(y)
Φ↑(y)

· λ(dy) , x ≤ x0.(5.9)

Now each of the functions Φ↑(·),Φ↓(·) is α−harmonic, which means in particular that its second
derivative measure

D2Φ([a, b)) := D−Φ(b)−D−Φ(a), ` < a < b < r

exists and is given by

(5.10) D2Φ(dx) =
2

s2(x)
[
αΦ(x)− b(x) ·D−Φ(x)

]
dx ;

11



see Salminen (1985), equation (2.4), p. 88, and Revuz & Yor (1991), Theorem 3.12 and Exercise
3.20, pp. 285-289. This way, we may re-write (5.9) in the more compact form

2
s2(x)

[
αG(x)− b(x) ·D−G(x)

]
dx =

D2Φ↓(dx)
Φ↓(x0)

· λ([`, x)) +
D2Φ↑(dx)

Φ↑(x0)
· λ((x0, r])

+
D2Φ↑(dx)

Φ↓(x0)

∫
[x,x0]

Φ↓(y)
Φ↑(y)

· λ(dy) , x ≤ x0.(5.11)

On the other hand, we may differentiate the expression of (5.8) to see that the second
derivative of G(·) exists as a signed measure, namely

D2G(dx) =
D2Φ↓(dx)

Φ↓(x0)
· λ([`, x)) +

D2Φ↑(dx)
Φ↑(x0)

· λ((x0, r]) +
D−Φ↓(x)
Φ↓(x0)

· λ(dx)

+
D2Φ↑(dx)

Φ↓(x0)

∫
[x,x0]

Φ↓(y)
Φ↑(y)

· λ(dy)− D−Φ↑(x)
Φ↓(x0)

· Φ↓(x)
Φ↑(x)

· λ(dx)

=
[
αG(x)− b(x)D−G(x)

] 2dx

s2(x)
− Φ↓(x)D−Φ↑(x)− Φ↑(x)D−Φ↓(x)

Φ↑(x)Φ↓(x0)
· λ(dx)

in conjunction with (5.11), so that[
αG(x)− b(x) ·D−G(x)

] 2dx

s2(x)
−D2G(dx) =

Bp′(x)
Φ↓(x0)Φ↑(x)

· λ(dx), on (`, x0)

or equivalently

(5.12) ν(dx) =
Bp′(x)s2(x)

2Φ↓(x0)Φ↑(x)
· λ(dx), on (`, x0)

in the notation of (5.1), where B > 0 is the Wronskian of (5.7).

The right-hand-side of (5.12) is a positive, finite measure that does not charge the
optimal continuation region C (recall (5.5)). Thus ν is also a positive measure, and (5.2) holds.
On the other hand, the representation (5.12) for the measure ν of (5.1) allows us to write the
second-derivative measure of G(·) as

(5.13) D2G = λ1 − λ2 ,

the difference of two positive, finite measures

λ1(dx) := f+(x)dx, λ2(dx) := f−(x)dx +
2

s2(x)
· ν(dx),

with f(x) := 2[αG(x)− b(x) ·D−G(x)]/s2(x), f±(x) := max(±f(x), 0). This means that

D−G(x) = D−G(x0) + λ2([x, x0])− λ1([x, x0])

is the difference of two increasing functions on [`, x0], or in other words that G(·) is the difference
of two convex functions. A similar argument establishes this same property on [x0, r], and
completes the proof of Theorem 5.1.
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6 The Discounted Game

Let us take up again the stochastic game of Section 1, now in the discounted case α > 0. We
shall assume that the continuous function

(6.1) u : [`, r] → [0,∞) is increasing

(and non-negative), and that there exists a pair of real-valued, measurable functions (b, s) on I,
with the properties (2.1), (3.4) as well as

(6.2)
b(x)
s2(x)

= inf
{

β

σ2
/ (β, σ) ∈ K(x)

}

(6.3) s2(x) = inf
{
σ2 / (β, σ) ∈ K(x), for some β ∈ <

}
at every x ∈ I. For this pair (b, s) of local drift and volatility functions, let us consider the
diffusion process Z(·) of (2.2), and recall the optimal reward function G(·) of (2.3). We have the
following result.

Theorem 6.1: With the above assumptions and notation (6.1)-(6.3), the pair (Z(·), ρ) with

(6.4) ρ(ξ) := inf{t ≥ 0 / G(ξ(t)) = u(ξ(t))}, ξ ∈ C[0,∞)

is a saddle-point for the stochastic game of Section 1, and the value of this game is given by

(6.5) V (x) = V (x) = G(x), x ∈ I.

In other words, since the reward function u(·) is increasing, the controller (minimizer)
always tries to “get as close to the left-boundary-point ` as possible”, by minimizing the mean-
variance, or signal-to-noise, ratio β/σ2. At the same time, because of the discount factor α > 0,
he also tries to minimize the local variance (noise) σ2 – thus “slowing the process down and
allowing the positive discount to reduce his expected cost”. For his part, the stopper (maximizer)
halts the game at the stopping time

(6.6) ρ(X) = inf{t ≥ 0 / X(t) ∈ Σ} ∈ M

when the controlled process X(·) first enters into the optimal stopping region Σ = {x ∈
I / G(x) = u(x)} of (2.8).

Conditions like (6.2) and (6.3) are also imposed by Sudderth & Weerasinghe (1989),
who studied the problem of controlling a diffusion process to a goal on a fixed, finite time-horizon.
We shall conclude this section with a discussion of some examples, for which it is indeed possible
to minimize simultaneously the variance σ2 and the mean-variance ratio β/σ2, as mandated by
(6.2) and (6.3).

Proof of Theorem 6.1: We need to show the saddle-point property

(6.7) G(x) ≤ E
[
e−αρ(X) u (X(ρ(X)))

]
, ∀ X(·) ∈ A(x),
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and all the claims of the theorem will follow. To this end, let us apply the generalized Itô rule
for convex functions of semimartingales (e.g. Karatzas & Shreve (1988), Section 3.7), to the
process

e−αt G(X(t)), 0 ≤ t < ∞.

(This is possible because, as we showed in Theorem 5.1, the function G(·) can be written as the
difference of two convex functions.) The result is

e−αT G(X(T ))−G(x) =
∫ T

0
e−αt D−G(X(t))[β(t)dt + σ(t)dW (t)]− α

∫ T

0
e−αt G(X(t))dt

+
∫ T

0

∫
I
e−αt D2G(dy) · dt

(
LX

t (y)
)
, 0 ≤ T < ∞.(6.8)

Here t 7→ LX
t (y) is the local time of the semimartingale X(·) at the point y ∈ I: a continuous,

increasing and F−adapted process, flat off the set {t ≥ 0 / X(t) = y}. We may re-write (6.8) as

e−αT G(X(T ))−G(x)−
∫ T

0
e−αt D−G(X(t))σ(t)dW (t) =

=
∫ T

0

∫
I
e−αt

[
D2G(dy) +

2β(t)
σ2(t)

·D−G(y)dy − 2α

σ2(t)
G(y)dy

]
· dt

(
LX

t (y)
)

=
∫ T

0

∫
I
e−αt

[
D2G(dy) +

2b(y)
s2(y)

·D−G(y)dy − 2α

s2(y)
G(y)dy

]
· dt

(
LX

t (y)
)

+ 2
∫ T

0

∫
I

e−αt

[
β(t)
σ2(t)

− b(y)
s2(y)

]
D−G(y)dy · dt

(
LX

t (y)
)

+ 2α

∫ T

0

∫
I

e−αt

(
σ2(t)
s2(y)

− 1
)

G(y)dy

σ2(t)
· dt

(
LX

t (y)
)

or equivalently in the form

e−αT G(X(T ))−G(x)−
∫ T

0
e−αt D−G(X(t))σ(t)dW (t) =

(6.9) = α

∫ T

0
e−αt

(
σ2(t)

s2(X(t))
− 1
)

G(X(t))dt

+
∫ T

0
e−αt

[
β(t)
σ2(t)

− b(X(t))
s2(X(t))

]
D−G(X(t)) · σ2(t)dt

+
∫ T

0

∫
I

2e−αt

s2(y)

[
(s2(y)/2) ·D2G(dy) +

{
b(y)D−G(y)− αG(y)

}
dy
]
· dt

(
LX

t (y)
)

.

(Recall Theorem 3.7.1 from Karatzas & Shreve (1988) and its proof, particularly the last equation
on p.224 and the first equation of p. 225; see also Exercise 1.15, p. 216 in Revuz & Yor (1991).)

Let us look at the three integrals on the right-hand side of (6.9). The first is non-
negative, because of conditions (6.3) and (6.1) – which implies G(·) ≥ 0. The second of these
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integrals is also non-negative, this time because of conditions (6.2) and (6.1) – which also implies
D−G(·) ≥ 0. The last integral of (6.9), on the other hand, is equal to

−
∫

I

(∫ T

0
2e−αt dt

(
LX

t (y)
)) ν(dy)

s2(y)
≤ 0

in the notation of Theorem 5.1; but this integral is identically equal to zero on the event {T ≤
ρ(X)} , where ρ(X) is the stopping time of (6.6), again thanks to Theorem 5.1. It develops from
this discussion that the continuous process

(6.10) e−α(t∧ρ(X)) G(X((t ∧ ρ(X)))), 0 ≤ t < ∞

is a local submartingale; it is also bounded, so it is, in fact, a (bounded) submartingale. Applying
the optional sampling theorem to the process of (6.10), and recalling the definition of the stop-
rule ρ from (6.4), we obtain

G(x) ≤ E
[
e−αρ(X) G(X(ρ(X)))

]
= E

[
e−αρ(X) G(X(ρ(X))) · 1{ρ(X)<∞}

]
= E

[
e−αρ(X) u(X(ρ(X))) · 1{ρ(X)<∞}

]
= E

[
e−αρ(X) u(X(ρ(X)))

]
, ∀ X(·) ∈ A(x).(6.11)

This establishes (6.7) and completes the proof of Theorem 6.1.

Notice that in this discounted case (α > 0) there is no need to impose the condition
(4.1), because in turn there is no need to guarantee P[ρ(X) < ∞] = 1 in (6.11).

Remark 6.1. Suppose that the function u(·) is continuous, non-negative, satisfies the condition
(4.2) and is increasing on [`,m], decreasing on [m, r]. Suppose also that we can select pairs
(b`, s`), (br, sr) of measurable functions with the properties (2.1), (3.4) and s`(·) ≡ sr(·) ≡ s(·)
as in (6.3), which satisfy (4.3), (4.4) for every x ∈ I. Then, with the notation of (4.5), (4.6) and
with

Gj(x) := sup
τ∈S

E
[
e−ατ(Zj) u(Zj(τ(Zj)))

]
, x ∈ I

for j = `, r, we have all the conclusions (i)–(iii) of Theorem 4.1.

Let us conclude with a look at two special cases, which illustrate Theorem 6.1 and also
reveal some open problems.

Case I: Suppose that the control sets are equal to a fixed rectangle, say

K(x) = [β1, β2]× [σ1, σ2], x ∈ I,

where β1 < β2, 0 < σ1 < σ2. Recall that the controller (minimizer) prefers that the process
move to the left, because we are assuming that the reward function u(·) is increasing. Thus,
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we can regard the game as being “superfair” from the controller’s viewpoint, if the local drift
coefficient can be chosen to be negative. This means β1 < 0 and, if so, Theorem 6.1 applies with
optimal controls β(t) ≡ β1, σ(t) ≡ σ1.

In the “subfair” case β1 > 0, Theorem 6.1 does not apply because no pair (β, σ) can
satisfy both (6.2) and (6.3). It still seems clear that the controller should take β(t) ≡ β1, but
the choice of s(·) is more delicate. (The process is drifting in the “wrong direction”; large values
of s(·) mollify the drift as reflected in the scale function, whereas small values of s(·) slow the
process down and allow the discount factor to reduce the controller’s expected loss.) We suggest
this case as an interesting open problem.

Case II: Assume I = (0, 1) and that the controlled process is of the form

dX(t) = π(t)[β0dt + σ0dW (t)].

Here β0 6= 0 and σ0 > 0 are given real constants, and the controller chooses the F−progressively
measurable process π(·) subject to the constraint

εX(t) ≤ π(t) ≤ X(t), 0 ≤ t < ∞,

for some given 0 < ε < 1. Then the control sets are

K(x) = {(πβ0, πσ0) / εx ≤ π ≤ x} , x ∈ I.

Here “superfairness” to the controller means β0 < 0, in which case Theorem 6.1 yields the
optimal control π(t) = εX(t); that is, β(t) = εβ0X(t) and σ(t) = εσ0X(t). If β0 > 0, we do not
know an optimal strategy for the controller.
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