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Abstract

We provide a complete solution to a general, continuous-time dynamic allocation

(multi-armed bandit) problem with arms that are not necessarily independent or Marko-

vian, using notions and results from time-changes, optimal stopping, and multi-parameter

martingale theory. The independence assumption is replaced by the condition (F.4) of

Cairoli & Walsh. We also introduce a synchronization identity for allocation strategies,
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which is necessary and sufficient for optimality in the case of decreasing rewards, and which

leads to the explicit construction of a strategy with all the important properties: optimality

in the dynamic allocation problem, optimality in a dual (minimization) problem, and the

“index-type” property of Gittins.

Key words and phrases: Dynamic allocation, multi-parameter stochastic calculus and con-

trol, optional increasing paths, optimal stopping, time-change, synchronization and “min-

plus” algebra.
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1. INTRODUCTION

Consider a situation, in which several projects are competing simultaneously for the

attention of a single investigator (or scarce resource, or equipment of expensive machinery).

Let Ti(t) be the total time allocated to the ith project (i = 1, . . . , d) by the calendar time

t, with
∑d

i=1 Ti(t) = t. By engaging the ith project at time t, the investigator accrues a

certain reward hi(Ti(t)) per unit time, discounted at the rate α > 0 and multiplied by the

intensity χi(t) = dTi(t)
dt with which the project is engaged (

∑d
i=1 χi(t) = 1). The objective

is to schedule the engagement of projects sequentially in time, i.e., to find an allocation

strategy T
˜
(t) = (T1(t), . . . , Td(t)), t ≥ 0, so as to achieve the maximal total expected

discounted reward

(1.1) Φ
4
= sup

T
˜

(·)
E

d∑
i=1

∫ ∞

0

e−αthi(Ti(t))dTi(t).

Here Hi = {hi(u), u ≥ 0} is a positive reward process, adapted to the history Fi =

{Fi(u), u ≥ 0} of the corresponding project i = 1, . . . , d. These histories (or filtrations)

are typically assumed to be independent. A very important example is hi(u) = ηi(Xi(u)),
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where the Xi(·)’s are independent Markov processes (modelling the “state of affairs” in

each particular project), and the ηi(·)’s are non-random real-valued functions; we refer to

this as the Markovian case. One can also envisage situations where the current reward

hi(u) depends on the entire past-and-present record Fi(u) of the project by time u (e.g.,

on the best performance-to-date); such situations are clearly non-Markovian.

In any case, decisions about engagement of projects can only be made on the basis of

available information about the different projects. This is expressed formally by imposing

on allocation strategies T
˜
(·) the non-anticipativity requirement

(1.2) {T1(t) ≤ r1, . . . , Td(t) ≤ rd} ∈ F(r
˜
), ∀ t ≥ 0, ∀ r

˜
= (r1, . . . , rd) ∈ [0,∞)d ,

where F(r
˜
) is the information accumulated on (or, the “collective history” of) all projects

i = 1, . . . , d, up to the “multi-dimensional time-parameter” r
˜

= (r1, . . . , rd) ∈ [0,∞)d. In

the case of projects with indepenent evolution, we take F(r
˜
) =

∨d
i=1 Fi(ri), where the

individual filtrations Fi, i = 1, . . . , d are assumed to be independent.

This is a generic “Dynamic Allocation” or “Multi-Armed Bandit” problem (the latter

terminology is common in the sequential design of experiments). In such problems, projects

can be thought of as representing: different arms of a multi-armed bandit machine, that

have to be pulled sequentially; medical trials, or chemical research projects, to which effort

has to be allocated in order to determine which of d available drugs or treatments is

best; different tasks which have to be performed by a single machine or computer; various

endeavours or capabilities which have to be deployed sequentially; parcels of agricultural

land, which can be cultivated but with limited manpower or resources; and so on (see

Gittins (1989)). Models of this sort are designed “to capture the essential conflict inherent

in situations, when one has to choose between actions that yield high reward in the short-

term, and actions (such as learning, or preparing the ground) whose rewards can be reaped

only later,” as Whittle (1980) puts it. They are also used in economics, to capture aspects

of learning and strategic pricing; see, for example, Rothschild (1974), Banks & Sundaram
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(1992), Bergemann & Valimaki (1993).

The problem (1.1) is an apparently difficult question in stochastic control with multi-

dimensional time-parameter, formulated as in Mandelbaum (1987). The main difficulty

comes from the “interaction of the different time-scales” in (1.1). It was shown by Gittins

& Jones (1974), Gittins (1979, 1989) and Whittle (1980, 1982) in a discrete-time Marko-

vian context with independently evolving arms, that the computational difficulties of this

problem can be reduced to manageable proportions by looking instead at a family of much

simpler optimal stopping problems. Thus one “splits” the original problem into indepen-

dent components, and “knits together” the solutions of these latter (as in formula (1.6)

below) to obtain the solution of the original problem.

In our general, continuous-time and non-Markovian, setup, and with independent

filtrations Fi (i = 1, . . . , d), this reduction was carried out in our earlier work El Karoui &

Karatzas (1994), as follows: one considers the family of optimal stopping problems

(1.3) e−αuVi(u;m)
4
= esssup σ≥u

σ∈Si

E
[∫ σ

u

e−αθhi(θ)dθ + me−ασ
∣∣∣ Fi(u)

]
, u ≥ 0,

indexed by the reward-upon-stopping m ≥ 0, where each individual project i = 1, . . . , d is

viewed in isolation (i.e., the supremum in (1.3) is taken over the class Si of Fi-stopping

times). Let σi(u;m)
4
= inf{θ ≥ u/Vi(θ;m) = m} be the optimal stopping time for this

problem: the Gittins index (“equitable surrender value”) at time u, is then defined as

(1.4) Mi(u) = inf{m ≥ 0/Vi(u;m) = m} ,

the smallest value of m ≥ 0 which makes immediate stopping profitable; and the lower

envelope

(1.5) M i(u, θ) = inf
u≤v≤θ

Mi(v), θ ≥ u

turns out to be the inverse of m 7→ σi(u;m). Now we can “knit together” the different

optimal rewards in (1.3), to obtain the value of our Dynamic Allocation Problem (1.1) in
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the form

(1.6) Φ =
∫ ∞

0

(
1−

d∏
i=1

∂+

∂m
Vi(0;m)

)
dm,

or equivalently

(1.7) Φ =
∫ ∞

0

(1− Ee−ατ(m))dm = E

∫ ∞

0

αe−αtN(t)dt.

Here τ(m)
4
=
∑d

i=1 σi(0;m), and the inverse N(t)
4
= inf{m ≥ 0/τ(m) ≤ t} of m 7→ τ(m)

has an interpretation as “equitable surrender value for the entire collection of projects”

at calendar time t, in our original problem (1.1). Moreover, an allocation strategy T
˜
∗(·)

of index-type can be constructed, which “engages projects only from among those with

maximal index” so that for every i = 1, . . . , d, and with M i(·) ≡ M i(0, ·), the increasing

process

(1.8) T ∗i (·) is flat away from the set {t ≥ 0/M i(T
∗
i (t)) = max

1≤j≤d
M j(T

∗
j (t))}.

This T
˜
∗(·) attains the supremum in (1.1), and is thus optimal in our original problem. This

is a very brief synopsis of the results in El Karoui & Karatzas (1994), which builds on and

extends the earlier works Karatzas (1984), Mandelbaum (1987), Menaldi & Robin (1990).

For similar results in discrete-time, see El Karoui & Karatzas (1993), Cairoli & Dalang

(1996), Mandelbaum (1986), Varaiya, Walrand & Buyukkoc (1985), Tsitsiklis (1986, 1994),

Kaspi & Mandelbaum (1996), among others.

One of the important points of the present work is to extend these results to situations

where the histories Fi (i = 1, . . . , d) of the different projects are not necessarily indepen-

dent. We shall asume instead that the multi-parameter filtration F = {F(r
˜
)}r

˜
∈[0,∞)d of

(1.2), which expresses “the collective history of the various projects up to the multidimen-

sional time-parameter r
˜
∈ [0,∞)d ”, satisfies the milder condition

(1.9) F(s
˜
), F(r

˜
) are conditionally independent given F(s

˜
∧ r

˜
), ∀ s

˜
, r
˜
∈ [0,∞)d.



6

This condition allows for dependence within the “common past” F(s
˜
∧ r

˜
) of any two

multiparameter time-indices s
˜
, r
˜
∈ [0,∞)d. In the generality of (1.9), the representation

(1.6) of the value is no longer true, but it turns out that the representations of (1.7) survive.

One can also construct an allocation strategy T
˜
∗(·) of “index-type” (i.e., satisfying (1.8))

which is optimal in this generality. This strategy is shown to satisfy the “synchronization

identity” (commutation of “minimum” and “summation”, or “min-plus” property)

(1.10)
d∑

i=1

(T ∗i (t) ∧ σi(0;m)) = t ∧ τ(m), 0 ≤ t,m < ∞.

To our knowledge, this property is being observed and utilised in the context of Dynamic

Allocation for the first time in the present work. Indeed, the main feature of this paper

is the central importance of condition (1.10) for Dynamic Allocation; it is necessary and

sufficient for optimality in the special case of decreasing rewards — and leads to all the

important results, including the construction of optimal strategies, for the general case as

well. It should be of interest, to discover possible connections of (1.10) with the “max-plus”

algebra of Baccelli et al. (1992).

The present work owes a lot to the paper of Mandelbaum (1987), and attempts to

complete the research programme envisaged and initiated in that paper. For related work

on Dynamic Allocation/Multi-Armed Bandit Problems in continuous time, see Dalang

(1990), Eplett (1986), Mazziotto & Millet (1987), Kaspi & Mandelbaum (1995), Morimoto

(1987), Presman (1990), Presman & Sonin (1983, 1990), Tanaka (1994), Vanderbei (1991),

Yushkevich (1988), as well as Chapter 8 of Berry & Fristedt (1985).

2. SUMMARY

The paper is organized as follows. Section 3 presents the complete solution of problem

(1.1) in the special but very important case of decreasing rewards

(2.1) h′i(θ)
4
= αM i(θ) ≡ αM i(0, θ), θ ≥ 0, 1 ≤ i ≤ d.
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This solution is pathwise, and as such does not impose any condition on the multi-parameter

filtration F, not even (1.9): for every ω ∈ Ω, the supremum of the discounted total reward∑d
i=1

∫∞
0

e−αth′i(Ti(t, ω))dTi(t, ω) equals

(2.2)
∫ ∞

0

αe−αtN(t, ω)dt =
∫ ∞

0

(1− e−ατ(m,ω))dm,

and is attained by any allocation strategy T
˜
∗(·) which satisfies the “synchronization iden-

tity” (1.10) (again pathwise). A strategy with this property is constructed explicitly in

(3.26) and (3.29); it has the “dual optimality” property

max
1≤j≤d

M j(Tj(t)) ≥ N(t) = max
1≤i≤d

M j(T
∗
j (t)), ∀ 0 ≤ t < ∞, for any strategy T

˜
(·);

and is of “index-type”, in that it satisfies (1.8) for every i = 1, · · · , d. In particular, the

expectation of the random variable in (2.2) gives the value of this problem

(2.3)

Ψ
4
= sup

T
˜

(·)
E

d∑
i=1

∫ ∞

0

e−αth′i(Ti(t))dTi(t) = E

∫ ∞

0

αe−αtN(t)dt = E

∫ ∞

0

(1− e−ατ(m))dm.

The results in section 3 are of an “elementary” nature, as they are all based on simple

time-change arguments.

The optimality of T
˜
∗(·) in the problem (1.1) with general reward processes, is estab-

lished in section 7. The key steps here are to show that

(i) T
˜
∗(·) has the same expected total discounted reward in both problems (1.1) and (2.3),

namely

(2.4) E
d∑

i=1

∫ ∞

0

e−αthi(T ∗i (t))dT ∗i (t) = E
d∑

i=1

∫ ∞

0

e−αtαMi(T ∗i (t)dT ∗i (t) = Ψ,

and that

(ii) the two problems have the same value, namely Ψ = Φ, or equivalently

(2.5) E
d∑

i=1

∫ ∞

0

e−αthi(Ti(t))dTi(t) ≤ Ψ, for any strategy T
˜
(·).
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The proofs of (2.4), (2.5) are somewhat demanding, as they require

(a) a careful, martingale-type study of the one-parameter optimal stopping problem (1.3)

(reviewed in section 6), and

(b) notions from the stochastic calculus of multi-parameter processes, including filtrations,

martingales and optional increasing paths in that context (reviewed in section 4).

In terms of these latter notions, the Dynamic Allocation Problem is formulated in sec-

tion 5; the critical steps (2.4), (2.5) of its solution are carried out in section 7, based in a

crucial (perhaps indispensable) manner on the condition (1.9), the famous condition (F.4)

of Cairoli & Walsh (1975). Roughly speaking, (1.9) guarantees that (super)martingales

of a “small”, one-parameter filtration remain (super)martingales of the “large”, multi-

parameter filtration F (see Proposition 4.1 and Lemma 4.6 for precise statements to this

effect), and that such multi-parameter (super)martingales retain this property when eval-

uated along an allocation strategy or optional increasing path (Proposition 4.3).

3. DECREASING REWARDS

The problem (1.1) admits a very general and explicit solution, in the case of decreasing

reward processes Hi, i = 1, . . . , d. In this solution, probability plays no role whatsoever;

thus, in order both to simplify typography and to bring out the essentials of this case, let

us assume throughout the present section that

(3.1) hi(u) = αM i(u), 0 < u < ∞

where M i : (0,∞) → (0,∞) is a given decreasing, right-continuous function with

0 < M i(0)
4
= limu↓0 M i(u) ≤ ∞ and M i(∞)

4
= limu→∞M i(u) = 0, for every i = 1, . . . , d.

An important role will be played by the right-continuous inverses

(3.2) σi(m)
4
= inf{u ≥ 0/M i(u) ≤ m}, 0 ≤ m < ∞
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of these functions, and by the sum of these inverses

(3.3) τ(m)
4
=

d∑
i=1

σi(m), 0 ≤ m < ∞.

We collect together some elementary properties of all these mappings, for future use.

3.1 Lemma: For every i = 1, . . . , d we have the following properties:

(3.4) σi(m) ≤ u ⇔ M i(u) ≤ m, ∀ 0 ≤ m,u < ∞

(3.5) M i(σi(m−)) ≤ M i(σi(m)) ≤ m ≤ M i(σi(m)−), ∀ 0 < m < ∞

(3.6) σi(M i(u−)) ≤ σi(M i(u)) ≤ u ≤ σi(M i(u)−), ∀ 0 < u < ∞

(3.7) Bi
4
= {m > 0/M i(σi(m−)) < m} =

⋃
t∈Bi

(M i(t),M i(t−)]

(3.8) Di
4
= {u ≥ 0/σi(M i(u)−) > u} =

⋃
λ∈Di

[σi(λ), σi(λ−)).

Here Bi (respectively, Di) is the set of discontinuities of the function M i(·) (respectively,

σi(·)). The intervals in Bi (respectively, Di) are the flat stretches of the function σi(·)

(respectively, M i(·)).

3.2 Lemma: Let us denote the right-continuous inverse of the mapping m 7→ τ(m) by

(3.9) N(u)
4
= inf{m ≥ 0/τ(m) ≤ u}, 0 ≤ u, m < ∞.

We have then N(u) > 0, ∀ 0 ≤ u < ∞, as well as:

(3.10) τ(m) ≤ u ⇔ N(u) ≤ m, ∀ 0 ≤ u, m < ∞
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(3.11) N(τ(m−)) ≤ N(τ(m)) ≤ m ≤ N(τ(m)−), ∀ 0 < m < ∞

(3.12) τ(N(u−)) ≤ τ(N(u)) ≤ u ≤ τ(N(u)−), ∀ 0 < u < ∞

(3.13) B 4
= {m > 0/N(τ(m−)) < m} =

⋃
t∈B

(N(t), N(t−)]

(3.14) D 4
= {u ≥ 0/τ(N(u)−) > u} =

⋃
λ∈D

[τ(λ), τ(λ−)).

Here B =
⋂d

i=1 Bi (respectively, D =
⋃d

i=1 Di) is the set of discontinuities of the function

N(·) (respectively, τ(·)). The intervals in B (respectively, D) are the flat stretches of the

function τ(·) (respectively, N(·)).

3.3 Definition: An allocation strategy is a vector T
˜
(·) = (T1(·), . . . , Td(·)) of increasing

functions with T1(0) = . . . = Td(0) = 0 and

(3.15)
d∑

i=1

Ti(t) = t, ∀ 0 ≤ t < ∞. �

Every component Ti(·) of an allocation strategy is an absolutely continuous function, since

0 ≤ Ti(θ)− Ti(t) ≤
∑d

j=1(Tj(θ)− Tj(t)) = θ − t for 0 ≤ t < θ < ∞, [0,∞) → [0, 1] with

(3.16) Ti(t) =
∫ t

0

χi(u)du, 0 ≤ t < ∞

for every i = 1, . . . , d and

(3.17)
d∑

i=1

χi(t) = 1, ∀ 0 ≤ t < ∞.

3.4 Definition: An allocation strategy is called pure, if the functions χi(·), i = 1, . . . , d of

(3.16), (3.17) take values in {0, 1}.
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3.5 Interpretation: In the context of Dynamic Allocation, the interpretation is that

Ti(θ)− Ti(t) represents “the total amount of time, during the calendar time-interval [t, θ],

that the allocation strategy T
˜
(·) engages the ith project”, and χi(t) represents “the inten-

sity with which T
˜
(·) engages the ith project at the calendar time t”. Now T

˜
(·) is pure, if at

any time t ≥ 0 it engages only one project e(t) (i.e., χe(t)(t) = 1 and χi(t) = 0, ∀ i 6= e(t)).

3.6 Dynamic Allocation Problem with Deterministic, Decreasing Rewards.

With hi(·), i = 1, . . . , d as in (3.1) and given α ∈ (0,∞), compute the value

(3.18) Φ
4
= sup

T
˜

(·)
R(T

˜
), where R(T

˜
) =

d∑
i=1

∫ ∞

0

αe−αtM i(Ti(t))dTi(t)

is the total discounted reward from employing the allocation strategy T
˜
(·), and find an

allocation strategy T
˜
∗(·) that attains the supremum (if such a strategy exists).

3.7 Theorem: The value (3.18) of Problem 3.6 is given by

(3.19) Φ =
∫ ∞

0

αe−αuN(u)du =
∫ ∞

0

(
1− e−ατ(λ)

)
dλ;

and the supremum in (3.18) is achieved by a given allocation strategy T
˜
(·), if and only if

T
˜
(·) satisfies the “synchronization identity”

(3.20)
d∑

i=1

(Ti(t) ∧ σi(λ−)) = t ∧ τ(λ−); ∀ 0 ≤ t < ∞, 0 < λ < ∞.

Proof: The results follow from very simple time-change arguments, based on (3.4) and

(3.10). First, let us note that
∫∞
0

αe−αuN(u)du =
∫∞
0

αe−αu
(∫∞

0
1{λ<N(u)}dλ

)
du =∫∞

0

(∫∞
0

αe−αu1{u<τ(λ)}du
)
dλ
)

=
∫∞
0

(1− e−ατ(λ))dλ gives the second equality in (3.19).

Secondly, for any allocation strategy T
˜
(·) let

(3.21) Ai(t;λ, T
˜
)
4
= Ti(t) ∧ σi(λ), A(t;λ, T

˜
)
4
=

d∑
i=1

Ai(t;λ, T
˜
) ≤ t ∧ τ(λ)
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for 0 ≤ t, λ < ∞, and observe:

(3.22)

R(T
˜
) =

d∑
i=1

∫ ∞

0

αe−αtM i(Ti(t))dTi(t) =
d∑

i=1

∫ ∞

0

αe−αt

(∫ ∞

0

1{λ<M
i
(Ti(t))}dλ

)
dTi(t)

=
d∑

i=1

∫ ∞

0

(∫ ∞

0

αe−αt1{Ti(t)<σi(λ)}dTi(t)

)
dλ

=
d∑

i=1

∫ ∞

0

∫ ∞

0

αe−αtdAi(t;λ, T
˜
)dλ

=
d∑

i=1

∫ ∞

0

∫ ∞

0

α2e−αtAi(t;λ, T
˜
)dtdλ =

∫ ∞

0

∫ ∞

0

α2e−αtA(t;λ, T
˜
)dtdλ

≤
∫ ∞

0

∫ ∞

0

α2e−αt(t ∧ τ(λ))dtdλ =
∫ ∞

0

(
1− e−ατ(λ)

)
dλ .

Now (3.22) holds as equality, and thus T
˜
(·) attains the supremum in (3.18), if and

only if

(3.23) A(t;λ, T
˜
) = t ∧ τ(λ); 0 ≤ t, λ < ∞

(recall that both sides of (3.23) are continuous in t, and right-continuous in λ). But (3.23)

is equivalent to (3.20). �

In order to complete the proof of Theorem 3.7, it remains to construct explicitly an

allocation strategy that satisfies ther synchronization identity (3.20). To this end, we recall

the notation of Lemma 3.2, and start by observing that, for any allocation strategy T
˜
(·) that

satisfies (3.20), we must have:
∑d

i=1(Ti(τ(m))∧σi(m)) = τ(m)
(
=
∑d

i=1 σi(m) =
∑d

i=1 Ti(τ(m))
)
, whence

(3.24) Ti(τ(m)) = σi(m); ∀ 0 ≤ m < ∞, i = 1, . . . , d.

On the other hand, for any allocation strategy T
˜
(·) that satisfies (3.24), we have

(Ti ◦ τ)(N(t)) ≤ Ti(t) ≤ (Ti ◦ τ)(N(t)−) from (3.12) and the increase of Ti(·), and thus

(3.25) σi(N(t)) ≤ Ti(t) ≤ σi(N(t)−); ∀ 0 ≤ t < ∞, i = 1, . . . , d .
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3.8 Proposition: For an allocation strategy T
˜
(·) = (T1(·), . . . , Td(·)), the conditions

(3.20), (3.24), (3.25) are equivalent.

Proof: We have already seen that (3.20) ⇒ (3.24) ⇒ (3.25), so it remains to prove the

implication (3.25) ⇒ (3.20). With t ∈ [0,∞) fixed and m = N(t), we have from (3.25), for

λ > m : Ti(t) ≥ σi(m) ≥ σi(λ), ∀ i = 1, . . . , d. On the other hand, from (3.12) we obtain

t ≥ τ(m) ≥ τ(λ), whence
∑d

i=1(Ti(t) ∧ σi(λ)) =
∑d

i=1 σi(λ) = τ(λ) = t ∧ τ(λ). Similarly,

for λ ≤ m, we have from (3.25) that Ti(t) ≤ σi(m−) ≤ σi(λ−), ∀ i = 1, . . . , d, and from

(3.12) we obtain whence
∑d

i=1(Ti(t) ∧ σi(λ−)) =
∑d

i=1 Ti(t) = t = t ∧ τ(λ−). �

To proceed further with the construction of a strategy T
˜
∗(·) that satisfies (3.20), we

need to distinguish two cases.

Case I: t ∈ [0,∞)\D. In this case τ(N(t)−) = t from (3.14) and (3.12), and writing the

identity (3.24) as T ∗i (τ(m−)) = σi(m−) with m = N(t), we get

(3.26) T ∗i (t) = σi(m−) = σi(N(t)−); i = 1, . . . , d, t 6∈ D.

Case II: t ∈ D. Then t ∈ L(m)
4
= [τ(m), τ(m−)) for m = N(t) ∈ D. We define

y0 ≡ y0(m)
4
= τ(m) and recursively

(3.27) yi ≡ yi(m)
4
= yi−1(m)−∆σi(m) =

i∑
j=1

σj(m−) +
d∑

j=i+1

σj(m), i = 1, . . . , d

where ∆σi(m)
4
= σi(m)− σi(m−), and set Li(m)

4
= [yi−1, yi) so that L(m) =

⋃d
i=1 Li(m).

In particular, yd = τ(m−), and Li(m) = ∅ if σi(·) is continuous at m. Now find the unique

k = k(t) ∈ {1, . . . , d} for which t ∈ Lk(m), and write

(3.28)
d∑

i=1

T ∗i (t) = (t− yk−1) + yk−1 =
k−1∑
i=1

σi(m−) + (t− yk−1 + σk(m)) +
d∑

i=k+1

σi(m)
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(recall (3.25), (3.27)). This suggests taking

(3.29) T ∗i (t) =

 σi(m−) ; i = 1, . . . , k − 1
σi(m) + t− yi−1 ; i = k

σi(m) ; i = k + 1, . . . , d

 , for t ∈ D.

(Similar strategies appear in El Karoui & Karatzas (1994), Proposition 7.3 and in Man-

delbaum (1987), p.1537; see also Remark 3.15 below.)

3.9 Proposition: The vector T
˜
∗(·) = (T ∗1 (·), . . . , T ∗d (·)) of increasing functions defined

in (3.26), (3.29), constitutes an allocation strategy which satisfies the “synchronization”

identity (3.20) – and is thus optimal for the Dynamic Allocation Problem (3.18).

Proof: Each T ∗i (·) is clearly increasing. With t 6∈ D, we have from (3.26), (3.14):∑d
i=1 T ∗i (t) =

∑d
i=1 σi(N(t)−) = τ(N(t)−) = t. On the other hand, with t ∈ D, the

construction of (3.29) was designed to satisfy (3.28), i.e.,
∑d

i=1 T ∗i (t) = t. Consequently,

T
˜
∗(·) is an allocation strategy, and satisfies (3.20) because it satisfies (3.25) rather obvi-

ously (cf. Proposition 3.8). �

This completes the proof of Theorem 3.7. Let us conclude the section with a few

additional properties of strategies T
˜
∗(·) that satisfy (3.20).

3.10 Proposition (Dual Optimality of T
˜
∗(·)): With the notation

(3.30) M(r
˜
)
4
= max

1≤i≤d
M i(ri), r

˜
= (r1, . . . , rd) ∈ [0,∞)d

we have for any strategy T
˜
(·):

(3.31) M(T
˜
(t)) ≥ N(t), ∀ 0 ≤ t < ∞.

Equality holds in (3.31) for a given strategy T
˜
∗(·), that is, we have

(3.32) M(T
˜
∗(t)) = N(t), ∀ 0 ≤ t < ∞,
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if and only if the strategy T
˜
∗(·) satisfies the synchronization identity (3.20).

Proof: For an arbitrary strategy T
˜
(·), we have the implications

M(T
˜
(t)) ≤ m ⇔ M i(Ti(t)) ≤ m, ∀ i = 1, . . . , d ⇔ σi(m) ≤ Ti(t) , ∀ i = 1, . . . , d

⇒ τ(m) ≤ t ⇔ N(t) ≤ m, ∀ 0 ≤ t, m < ∞

(consequences of (3.4), (3.10)), and these lead to (3.31). Now (3.31) is valid as equality, if

and only if

(3.33) τ(m) ≤ t ⇒ σi(m) ≤ Ti(t), ∀ i = 1, . . . , d, 0 ≤ t, m < ∞.

But (3.33) holds for any strategy T
˜
(·) that satisfies (3.23) (or, equivalently, (3.20)).

On the other hand, suppose that T
˜
(·) satisfies (3.32); then (3.33) holds as well,

and yields: σi(m) ≤ Ti(τ(m)), ∀ 0 ≤ m < ∞, i = 1, . . . , d. But
∑d

i=1 σi(m) =∑d
i=1 Ti(τ(m)) = τ(m), ∀ 0 ≤ m < ∞, so that this T

˜
(·) necessarily satisfies (3.24);

from Proposition 3.8, it has to satisfy (3.20) as well. �

3.11 Remark: Here is an alternative derivation of (3.32) for a strategy T
˜
∗(·) that satisfies

(3.20): from (3.25), (3.5) we have

(3.34) M i(σi(N(t)−)) ≤ M i(T
∗
i (t)) ≤ M i(σi(N(t))) ≤ N(t), ∀ 0 ≤ t < ∞, i = 1, . . . , d

whence maxi=1,...,d M i(T
∗
i (t)) = M(T

˜
∗(t)) ≤ N(t); then (3.32) follows from this, in con-

junction with (3.31). It develops also that M i(σi(N(t))) = N(t), for any i ∈ {1, . . . , d}

which attains the maximum.

The following result shows that the support of the increasing function T ∗i (·) is included

(modulo Lebesgue measure) in the set {t ≥ 0/M i(T
∗
i (t)) = M(T

˜
∗(t))}, ∀ i = 1, . . . , d.
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3.12 Proposition: If a strategy T
˜
∗(·) satisfies the “synchronization identity” (3.20), then

(3.35)
d∑

i=1

∫ ∞

0

1{M
i
(T∗

i
(t))<M(T

˜
∗
(t))}dT ∗i (t) = 0.

Proof: From (3.34), (3.7) we have

(3.36) N(t) 6∈ Bi ⇒ M i(T
∗
i (t)) = N(t).

Consequently, from (3.36) and (3.32), we have for every i = 1, . . . , d:

0 ≤
∫ ∞

0

1{Mi(T
∗
i
(t))<M(T

˜
∗
(t))}dT ∗i (t) =

∫ ∞

0

1{M
i
(T∗

i
(t))<N(t)}dT ∗i (t)

≤
∫ ∞

0

1{N(t)∈Bi}dT ∗i (t) = 0.

This last equality holds, because N(t) ∈ Bi means that N(t) is on a flat stretch of σi(·),

whence that T ∗i (·) = σi(N(·)−) = σi(N(·)) is then flat at t. �

3.13 Remark: Mixed Dynamic Allocation/Stopping. The proof of Theorem 3.7 can be

slightly modified to show that, with the reward functions of (3.1) and for any given m ≥ 0,

the supremum

Φ(m)
4
= sup

0≤ρ≤∞

T
˜

(·)

R(T
˜
, ρ;m) with R(T

˜
, ρ;m)

4
=

d∑
i=1

∫ ρ

0

e−αthi(Ti(t))dTi(t) + me−αρ

is given as

Φ(m) =
∫ ∞

0

αe−αu(N(u) ∨m)du = m +
∫ ∞

m

(1− e−ατ(λ))dλ,

and is attained by any pair of the type by (ρ̂, T̂
˜
(·)), where ρ̂ = τ(m) and T̂

˜
(·) a strategy

which satisfies (3.20) for all λ ∈ (m,∞). Note that for any such T̂
˜
(·), the recipe

T̂i(t;m)
4
= T̂i(t) ∧ σi(m), i = 1, . . . , d for 0 ≤ t ≤ τ(m)

defines an allocation strategy of “write-off” type, as in Whittle (1980).
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3.14 Remark: For every given allocation strategy T
˜
(·), there exists a sequence of pure

strategies {T
˜

(n)(·)}n∈N (Definition 3.4) such that limn→∞ sup0≤t≤T ||T˜
(n)(t)− T

˜
(t)|| = 0.

On the other hand, we have from (3.21) and (3.22):

R(T
˜
) =

d∑
i=1

∫ ∞

0

(∫ ∞

0

α2e−αt(Ti(t) ∧ σi(λ))dt

)
dλ.

It follows from these observations that the supremum Φ = supT
˜

(·)R(T
˜
) does not change,

if we take it only over the class of pure strategies.

However, this class may fail to contain an optimal strategy; in other words, there may

not exist a pure strategy that attains the supremum in (3.18)). This can be seen readily by

considering continuous, strictly decreasing functions M i(·), i = 1, . . . d, say with M i(0) = 1.

Then the inverses σi(·) = M i
−1(·), and their sum τ(m) =

∑d
i=1 σi(m), are also continuous

and strictly decreasing; the same is true of the inverse N(·) = τ−1(·) =
(∑d

i=1 M i
−1(·)

)−1

.

Consequently, the optimal strategy

T ∗i (t) = σi(N(t)) = M−1
i (N(t)); 0 ≤ t < ∞, i = 1, . . . , d

engages all projects at all times, and satisfies (3.32) in the stronger form

M i(T
∗
i (t)) = N(t), ∀ 0 ≤ t < ∞, i = 1, . . . , d.

3.15 Remark: The construction of (3.26), (3.29) can be modified in many ways, to

produce allocation strategies that satisfy (3.20). More precisely, consider nonnegative,

measurable functions Pi(u, ξ
˜
), 0 ≤ u < ∞, ξ

˜
= (ξ1, . . . , ξd) ∈ [0,∞)d\{0

˜
} such that, for

every ξ
˜
, we have:{

u 7→ Pi(u, ξ
˜
) is increasing, 0 ≤ Pi(u, ξ

˜
) ≤ ξi

and
∑d

i=1 Pi(u, ξ
˜
) = u, for 0 ≤ u ≤ |ξ

˜
| 4=

∑d
i=1 ξi

}
,

∀ i = 1, . . . , d. Define T ∗i (t) by (3.26) for t 6∈ D, and by

(3.37) T ∗i (t) = σi(m) + Pi(t− τ(m), −∆σ
˜
(m)); τ(m) ≤ t < τ(m−), m = N(t)
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for t ∈ D. Here, ∆σ
˜
(m) = {∆σi(m)}d

i=1 = {σi(m)− σi(m−)}d
i=1.

Now (3.26), (3.37) clearly define an allocation strategy that satisfies (3.25) (hence also

(3.20)). For instance, we may take Pi(u, ξ
˜
) = uξi/|ξ

˜
|, 0 ≤ u ≤ |ξ

˜
|, so that (3.37) becomes

(3.38) T ∗i (t) = σi(m) +
σi(m−)− σi(m)
τ(m−)− τ(m)

(t− τ(m)), m = N(t).

One can envision additional such examples.

4. RANDOM FIELDS AND OPTIONAL INCREASING PATHS

Consider a complete probability space (Ω,F , P ) and a multi-parameter filtration

(i.e., family of sub-σ-fields of F)

(4.1) F = {F(s
˜
)}s

˜
∈4

indexed by the elements of the nonnegative cone 4 = [0,∞)d in Rd with d ≥ 2. This

filtration is assumed to have the following properties:

(F.1) F(s
˜
) ⊆ F(r

˜
) for s

˜
≤ r

˜
;

(F.2) F(0
˜
) contains all the negligible sets in F ;

(F.3) F(s
˜
) =

⋂
r
˜
∈4

s
˜

<r
˜

F(r
˜
), ∀ s

˜
∈ 4; and

(F.4)
{
F(s

˜
),F(r

˜
) are conditionally independent

given F(s
˜
∧ r

˜
), for any (s

˜
, r
˜
) ∈ 42.

}
We are denoting here by s

˜
≤ r

˜
⇔def si ≤ ri, ∀ i = 1, . . . , d the usual partial ordering

in 4, whilst s
˜

< r
˜
⇔def s

˜
≤ r

˜
, s
˜
6= r

˜
. Conditions (F.1) – (F.3) are extensions of the

one-parameter theory’s “usual conditions”. Condition (F.4) is standard in multi-parameter
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theory (cf. Cairoli & Walsh (1975), Walsh (1976/77)), where it seems to be essential for the

development of multi-parameter martingales; it implies F(s
˜
) ∩ F(r

˜
) = F(s

˜
∧ r

˜
), ∀(s

˜
, r
˜
) ∈

42. Condition (F.4) is obviously satisfied in the special case

(4.2)
{

F(s
˜
) =

∨d
i=1 Fi(si), s

˜
= (s1, . . . , sd) ∈ 4, with

independent one-parameter filtrations Fi = {Fi(u)}u≥0, i = 1, . . . , d.

}
(For an example of a multi-parameter filtration F which satisfies the condition (F.4) but

cannot be written in the form of (4.2), see Remark 4.8 below.)

Let us denote by S the class of stopping points of the filtration F, i.e., of random

variables ν
˜

: Ω → [0,∞]d that satisfy {ν
˜
≤ s

˜
} ∈ F(s

˜
),∀ s

˜
∈ 4. And for every ν

˜
∈ S, let

F(ν
˜
)
4
= {A ∈ F / A ∩ {ν

˜
≤ s

˜
} ∈ F(s

˜
), ∀ s

˜
∈ 4}

be the σ-field of events associated with the stopping point ν
˜
. For any pair σ

˜
, ν
˜

of stopping

points in S, we have {σ
˜
≤ ν

˜
} ∈ F(ν

˜
), as well as F(σ

˜
) ⊆ F(ν

˜
) if σ

˜
≤ ν

˜
.

A random field X : 4 × Ω → R with E|X(s
˜
)| < ∞, ∀ s

˜
∈ 4 is called an F -

supermartingale, if it is F-adapted (that is, X(s
˜
) is F(s

˜
)-measurable, ∀s

˜
∈ ∆), and

(4.3) E[X(r
˜
)|F(s

˜
)] ≤ X(s

˜
) a.s., ∀ s

˜
≤ r

˜
;

X is called an F - martingale if both X and −X are F - supermartingales. For any F -

supermartingale X with right-continuous paths, and any two stopping points σ
˜
≤ ν

˜
in S,

we have the analogue

(4.4) E[X(ν
˜
)|F(σ

˜
)] ≤ X(σ

˜
), a.s.

of the optional sampling theorem, provided that one of the following conditions holds:

(4.5)(i) σ
˜
, ν

˜
are a.s. bounded, or

(4.5)(ii) X is bounded from below, or
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(4.5)(iii) the family {X(ν
˜
)}ν

˜
∈S is uniformly integrable.

4.1 Proposition: For a random field X : 4× Ω → R, the following are equivalent:

(a) X is an F - supermartingale:

(b) X is F - adapted, integrable, and E[X(r
˜
)|F(s

˜
)] ≤ X(r

˜
∧ s

˜
) a.s., ∀ r

˜
, s
˜

in 4;

(c) {X(s
˜

+ te
˜i),Gi(s

˜
+ te

˜i); 0 ≤ t < ∞} is a supermartingale, ∀s
˜
∈ 4,∀i = 1, . . . , d.

�

Here e
˜i is the ith unit vector in 4, and we have set

(4.6) Gi(r
˜
)
4
= F(∞, . . . , ri, . . . ,∞) = σ

( ⋃
s
˜
∈4

si≤ri

F(s
˜
)

)
, r

˜
= (r1, . . . , rd) ∈ ∆.

Notice that F(r
˜
) =

⋂r
i=1 Gi(r

˜
), ∀ r

˜
∈ ∆.

4.2 Definition: A family T
˜

= {T
˜
(t), 0 ≤ t < ∞} of 4-valued random variables is called

an optional increasing path (O.I.P.) for s
˜

= (s1, . . . , sd) ∈ 4, if

(i) Ti(·) is increasing, with Ti(0) = si, ∀i = 1, . . . , d;

(ii)
∑d

i=1(Ti(t)− si) = t, ∀ 0 ≤ t < ∞ almost surely; and if

(iii) {T
˜
(t) ≤ r

˜
} =

⋂d
i=1{Ti(t) ≤ ri} ∈ F(r

˜
), ∀ r

˜
∈ 4, 0 ≤ t < ∞.

We shall denote by A(s
˜
) the class of all such O.I.P.’s. �

Conditions (i), (ii) are (almost sure) generalizations of the concept of allocation strat-

egy in Definition 3.3; in particular, each component Ti(·) of an optional increasing path is

absolutely continuous with respect to Lebesgue measure, and we have the analogue

(4.7) Ti(t) = si +
∫ t

0

χi(u)du; 0 ≤ t < ∞, i = 1, . . . , d

of (3.16), for suitable measurable processes χi : [0,∞) × Ω → [0, 1] that satisfy (3.17),

almost surely. Condition (iii) implies that each random vector T
˜
(t) (0 ≤ t < ∞) is an F -
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stopping point, and each random variable Ti(t) (0 ≤ t < ∞, i = 1, . . . , d) a stopping time

of the one-parameter filtration

Fi = {F i(θ), 0 ≤ θ < ∞}, where F i(θ)
4
= G(θe

˜i) = F(∞, . . . , θ, . . . ,∞)

as in (4.6). In particular then, for every T
˜
∈ A(s

˜
),

(4.9) F(T
˜
) = {F(T

˜
(t)), 0 ≤ t < ∞}

is a one-parameter filtration that satisfies the usual conditions, and the following is a

consequence of the optional sampling theorem.

4.3 Proposition: Let X : 4×Ω → R be an F – (super) martingale with right-continuous

paths, and T
˜
∈ A(s

˜
). Then

(4.10) X(T
˜
) = {X(T

˜
(t)), 0 ≤ t < ∞}

is a right-continuous, F(T
˜
) – local (super)martingale.

4.4 Remark: The adjective “local” can be deleted from the conclusion of Proposition 4.3,

if condition (4.5)(iii) holds (or, in the case of a supermartingale X, if (4.5)(ii) holds).

4.5 Proposition: It T
˜

is an optional increasing path in A(0
˜
), and σ : Ω → [0,∞] is a

stopping time of the one-parameter filtration F(T
˜
) in (4.9), then T

˜
(σ) is a stopping point

of the multi-parameter filtration F of (4.1); in particular, every Ti(σ), i = 1, . . . , d is then

a stopping time of the one-parameter filtration Fi in (4.8).

These results can be found in Walsh (1976/77), Walsh (1981); see also Krengel &

Sucheston (1987), Edgar & Sucheston (1992), Cairoli & Dalang (1996). We conclude this

section with Proposition 4.7 below, a corollary of Propositions 4.1 and 4.3 which will be

very useful in section 7. For each i = 1, . . . , d, let us introduce the one-parameter filtration

(4.11) Fi = {Fi(θ), 0 ≤ θ < ∞), where Fi(θ)
4
= F(θe

˜i) = F(0, . . . , θ, . . . , 0).
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The filtrations {Fi}d
i=1 satisfy the usual conditions. We shall assume throughout that

these filtrations are quasi-left-continuous.

It is useful to keep in mind here the interpretation of the σ-algebra Fi(θ) of (4.11)

(respectively, F i(θ) of (4.8)) as representing the “history of the ith project during the time-

interval [0, θ], with this project considered in isolation from all the rest” (respectively, “with

the ith project viewed in a context where the future evolution of all other projects is known

in advance at t = 0”).

The following is a crucial enlargement of filtration property, which links the “small”

filtration Fi = {Fi(θ), 0 ≤ θ < ∞} to the “large” filtration Fi = {F i(θ), 0 ≤ θ < ∞},

under the condition (F.4).

4.6 Lemma: Every Fi - (super) martingale is also an Fi - (super) martingale.

Proof: It suffices to verify that, for every 0 ≤ u < t < ∞ and for every bounded, Fi(t)-

measurable random variable ξ, we have

E[ξ|Fi(u)] = E[ξ|F i(u)] (= E[ξ|F i(u) ∨ Fi(u)])

almost surely. In other words, it suffices to check that

Fi(t),F i(u) are conditionally independent, given Fi(u).

But this follows directly from (F.4) which, with s
˜

= (0, . . . , t, . . . , 0) and r
˜

= (∞, . . . , u, . . . ,∞),

postulates that Fi(t) = F(s
˜
) and F i(u) = F(r

˜
) are conditionally independent, given

F(s
˜
∧ r

˜
) = F(0, . . . , u, . . . , 0) = Fi(u).

4.7 Proposition: For a fixed s
˜

= (s1, . . . , sd) ∈ 4, let T
˜
∈ A(s

˜
) be an optional increasing

path and, for every i = 1, . . . , d, let Qi = {Qi(u), si ≤ u < ∞} be an Fi – martingale
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(respectively, supermartingale of class D) with RCLL paths. Then the process

X(t) =
d∑

i=1

∫ t

0

e−α(θ−Ti(θ))dQi(Ti(θ)), 0 ≤ t < ∞

is an F(T
˜
) – local (super) martingale.

Proof: For every i = 1, . . . , d, the process

Ki(θ)
∆=
∫ θ

si

eαξdQi(ξ) = eαθQi(θ)− eαsiQi(si)− α

∫ θ

si

eαξQi(ξ)dξ; si ≤ θ < ∞

is an Fi – martingale (respectively, supermartingale) with RCLL paths. Thus from Lemma

4.6 and Proposition 4.1 (implication (c) ⇒ (a)), the random field K(r
˜
) ∆=

∑d
i=1 Ki(ri), r

˜
∈

4, s
˜
≤ r

˜
is an F – martingale (respectively, supermartingale). It develops then (from

Proposition 4.3) that K(T
˜
(t)) =

∑d
i=1 Ki(Ti(t)) =

∑d
i=1

∫ t

0
eαTi(θ)dQi(Ti(θ)), 0 ≤ t < ∞

is an F(T
˜
) – local (super)martingale, hence the same is true of X(t) =

∫ t

0
e−αθdK(T

˜
(θ)),

0 ≤ t < ∞. �

4.8 Remark: Let us denote by B(4) the class of Borel sets of 4 = [0,∞)d, and by

W : B(4)×Ω → R the white-noise (set-valued) process corresponding to Lebesque measure

λ on B(4); cf. Walsh (1986), Chapter 1. This is a family of Gaussian random variables

{W (A)} A∈B(4)
λ(A)<∞

with

(i) EW (A) = 0, E(W (A))2 = λ(A), as well as

(ii) W (A),W (B) independent, and W (A ∪ B) = W (A) + W (B) (a.s.), for any disjoint

sets A,B in B(4).

It is easy to check that this zero-mean Gaussian family has covariance function

E[W (A)W (B)] = λ(A ∩B).

Now consider the multi-parameter process B(r
˜
)
4
= W ((0

˜
, r
˜
]), r

˜
∈ 4, called Brownian

sheet on 4, and its associated filtration F as in (4.1) with

F(r
˜
)
4
= σ(B(s

˜
)/s

˜
≤ r

˜
) = σ(W (A)/A ∈ B(4), A ⊆ (0

˜
, r
˜
])
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where we have set (0
˜
, r
˜
] ≡ ×d

i=1(0, ri] for r
˜
∈ 4.

It is not hard to see that this filtration F satisfies the condition (F.4), but cannot be

written in the form (4.2); we owe this observation to Prof. Robert Dalang.

5. GENERAL DYNAMIC ALLOCATION PROBLEM

For every i ∈ {1, ..., d} consider a positive, Fi – progressively measurable process

Hi = {hi(θ), 0 ≤ θ < ∞} such that

(5.1) E

∫ ∞

0

e−αθhi(θ)dθ < ∞,

where α ∈ (0,∞) is a given “discount factor”. With these ingredients, and for any given

s
˜
∈ 4, consider now the “total discounted reward”

(5.2) R(T
˜
) =

d∑
i=1

∫ ∞

0

e−αthi(Ti(t))dTi(t)

as in (3.8), corresponding to an optional increasing path T
˜
∈ A(s

˜
). The general Dynamic

Allocation (or “Multi-Armed Bandit”) Problem is to maximize the conditional expectation

E[R(T
˜
)|F(s

˜
)] over T

˜
∈ A(s

˜
), and to find an optional increasing path T

˜
∗ ∈ A(s

˜
) that

attains the supremum

(5.3) Φ(s
˜
) ∆= esssupT

˜
∈A(s

˜
)E[R(T

˜
)|F(s

˜
)].

The random variable of (5.3) is called the value of, and any optional increasing path T
˜
∗

with Φ(s
˜
) = E[R(T

˜
∗)|F(s

˜
)] a.s. is called optimal for, the Dynamic Allocation Problem

at s
˜
∈ 4.

5.1 Interpretation: Suppose there are d projects, competing simultaneously for the

attention of a decision-maker; this latter has at his disposal the choice of an allocation

strategy, modelled here by an optional increasing path T
˜
∈ A(0

˜
) with the Interpretation



25

3.5 (we are taking s
˜

= 0
˜

and F(0
˜
) = {∅,Ω} mod.P , for concreteness). Engaging the ith

project at the calendar time t yields an instantaneous reward hi(Ti(t)), multiplied by the

intensity χi(t) = dTi(t)
dt , 0 ≤ χi(t) ≤ 1 of the engagement, and discounted at the rate

α > 0; thus, the total discounted reward corresponding to an allocation strategy (optional

increasing path) T
˜
∈ A(0

˜
) is given by R(T

˜
) of (5.2), and the value of the problem by

Φ(0
˜
) = supT

˜
∈A(0

˜
) ER(T

˜
) as in (5.3). If the rewards hi(·) are deterministic, T

˜
(·) simply

has to satisfy the requirements of Definition 3.3. If, however, the rewards are random, the

definition of a strategy T
˜

has to reflect the fact that
decisions about which project(s) to engage, and with what intensity, have to be
made in a non–anticipative way, based on the “histories” Fi(ri) of the various
projects (accumulated up to their respective engagement times ri, i = 1, ..., d)

by the calendar time |r
˜
| =

∑d
i=1 ri.


This non-anticipativity requirement is captured by condition (iii) of Definition 4.2. For

certain purposes it is useful to embed the problem of (5.3) into a more general Stochastic

Control problem, in which the decision-maker has the additional option of “retiring” (i.e.,

abandoning all projects) and receiving a lump-sum reward m ≥ 0.

5.2 Definition: Mixed Dynamic Allocation/Stopping Problem. For any given s
˜
∈ 4

and m ∈ [0,∞), maximize the conditional expectation E[R(T
˜
, ρ;m)|F(s

˜
)] of the total

discounted reward

(5.4) R(T
˜
, ρ;m) ∆=

d∑
i=1

∫ ρ

0

e−αthi(Ti(t))dTi(t) + me−αρ

over the class of “admissible policies”

(5.5) P(s
˜
) ∆= {(T

˜
, ρ) / T

˜
∈ A(s

˜
), ρ is an F− stopping time}. �

The value of this problem will be denoted by

(5.6) Φ(s
˜
;m) ∆= esssup(T

˜
,ρ)∈P(s

˜
)E[R(T

˜
, ρ;m)|F(s

˜
)],
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and clearly it satisfies Φ(s
˜
) ≡ Φ(s

˜
; 0), as well as

(5.7)
Φ(s

˜
;m)−m = esssup(T

˜
,ρ)∈P(s

˜
)E
[ d∑

i=1

∫ ρ

0

e−αt{hi(Ti(t))− αm}dTi(t)
∣∣∣ F(s

˜
)
]

= esssup(T
˜

,ρ)∈P(s
˜
)E[R(T

˜
, ρ;m)−m|F(s

˜
)].

6. THE ONE–PARAMETER PROBLEM

The analogue of (5.6), (5.7) in the one-parameter case (d = 1) is the optimal stop-

ping problem with value

(6.1)

Vi(u;m) ∆= esssupσ∈Si(u)E
[∫ σ

u

e−α(θ−u)hi(θ)dθ + me−α(σ−u)
∣∣∣ Fi(u)

]
= m + esssupσ∈Si(u)E

[∫ σ

u

e−α(θ−u){hi(θ)− αm}dθ
∣∣∣ Fi(u)

]
; 0 ≤ u, m < ∞

and Vi(∞;m) ≡ m, for fixed i ∈ {1, ..., d}. Here Si(u) is the set of stopping times σ of

the filtration Fi in (4.11), with values in [u,∞]. From the standard theory of Optimal

Stopping, it is well–known (e.g. Neveu (1975), Ch. VI, El Karoui (1981), or Karatzas

(1993)) that for every given m ∈ [0,∞), the process

(6.2)
Qi(u;m)

4
= e−αuVi(u;m) +

∫ u

0

e−αθhi(θ)dθ

= m + e−αu[Vi(u;m)−m] +
∫ u

0

e−αθ{hi(θ)− αm}dθ, 0 ≤ u < ∞

is a regular Fi – supermartingale of class D, with RCLL paths; it is the smallest Fi-

supermartingale which dominates the continuous, positive process me−αu+
∫ u

0
e−αθhi(θ)dθ,

0 ≤ u < ∞. Furthermore, the stopping time

(6.3) σi(u;m) ∆= inf{θ ≥ u/Vi(θ;m) = m} attains the supremum in (6.1);

and the stopped process

(6.4) Qi(θ ∧ σi(u;m);m), u ≤ θ < ∞ is an Fi −martingale.
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On the other hand, for every fixed u ∈ [0,∞), the process m 7→ σi(u;m) is decreas-

ing and right–continuous with values in [u,∞], σi(u; 0) = ∞ and σi(u;∞) = u, almost

surely; and the mapping m 7→ Vi(u;m) is convex and increasing, with values in [m,∞),

limm→∞[Vi(u;m)−m] = 0 and right–hand derivative

(6.5)
∂+

∂m
Vi(u;m) ∆= lim

δ↓0

1
δ
[Vi(u;m + δ)− Vi(u;m)] = E[e−α(σi(u;m)−u)|Fi(u)]

almost surely. Equivalently, in integral form,

(6.6) Vi(u;m)−m = E
[∫ ∞

m

(1− e−α(σi(u;λ)−u))dλ
∣∣∣ Fi(u)

]
, a.s.

All these results are proved in section 2 of El Karoui & Karatzas (1994).

Consider now, for fixed u ∈ [0,∞), the decreasing, positive, and Fi – adapted process

(6.7) M i(u, θ) ∆= inf{m ≥ 0/σi(u;m) ≤ θ}, u ≤ θ < ∞,

the right-continuous inverse of the mapping m 7→ σi(u;m), and observe from (3.4) that

(6.8) Mi(u) ∆= M i(u, u) = lim
θ↓u

M i(u, θ)

satisfies {m > 0/Vi(u;m) = m} = [Mi(u),∞), modulo P . In other words, Mi(u) has the

significance of equitable surrender value at σ = u for the ith project viewed in isolation, as

it is the smallest value of the parameter m ≥ 0 that makes immediate stopping profitable

at σ = u in (6.1). We call the Fi – progressively measurable process Mi(u), 0 ≤ u < ∞

the Gittins index process for the ith project. Its lower envelope coincides with the process

of (6.7): M i(u, θ) = infu≤s≤θ Mi(s), u ≤ θ < ∞. The index also admits the so-called

forwards induction interpretation

(6.9) Mi(u) = esssup σ>u
σ∈Si(u)

E[
∫ σ

u
e−αθhi(θ)dθ|Fi(u)]

E[
∫ σ

u
e−αθdθ|Fi(u)]

, a.s.

This index process Mi(·) of (6.8), (6.9) will not play a role in the theory of section 7.
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6.1 Proposition: For every i ∈ {1, ..., d}, 0 ≤ s, m < ∞ we have the a.s. identities

(6.10) Vi(σi(s;m);m) = m, Vi(σi(s;m−);m) = m,

(6.11) e−αsVi(s;m) = E
[∫ ∞

s

αe−αθ(m ∨M i(s, θ))dθ
∣∣∣ Fi(s)

]
;

in particular,

(6.12) e−αsVi(s; 0) = E
[∫ ∞

s

e−αθhi(θ)dθ
∣∣∣ Fi(s)

]
= E

[∫ ∞

s

e−αθαM i(s, θ)dθ
∣∣∣ Fi(s)

]
.

6.2 Proposition: For every i ∈ {1, ..., d} and si ∈ [0,∞), the process

(6.13)

Ui(θ) := e−αθ[Vi(θ;M i(si, θ))−M i(si, θ)] +
∫ θ

si

e−αu{hi(u)−αM i(si, u)}du, si ≤ θ < ∞

is an Fi – martingale with RCLL paths.

For proofs of the properties (6.9), (6.11)–(6.13), including a detailed discussion and

examples, see section 3 of El Karoui & Karatzas (1994).

Proof of (6.10): To simplify typography, let us drop the subscript i throughout, and

write σs(m) for σ(s;m). Clearly V (σs(m);m) = m a.s., from the definition (6.3) and the

right-continuity of V (·;m). With 0 < λ < m we have σs(m) ≤ σs(m−) ≤ σs(λ), whence

(6.14) e−αs[V (s;λ)− λ] = E
[∫ σs(λ)

s

e−αθ(h(θ)− αλ)dθ
∣∣∣ F(s)

]
, a.s.

and from (6.4):

(6.15) E[Q(σs(m−);λ)|F(σs(m))] = Q(σs(m);λ), a.s.

Letting λ ↑ m in (6.14), (6.15) we obtain, respectively,

(6.16) e−αs[V (s;m)−m] = E
[∫ σs(m−)

s

e−αθ(h(θ)− αm)dθ
∣∣∣ F(s)

]
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and

(6.17)

E[e−ασs(m−)(V (σs(m−);m)−m)|F(σs(m))] = −E
[∫ σs(m−)

σs(m)

e−αθ(h(θ)−αm)dθ
∣∣∣ F(σs(m))

]
,

almost surely. Now take expectations in (6.17) and note (by virtue of (6.16), and of (6.14)

with λ replaced by m) that the resulting right-hand side is then equal to zero; this means

that the expectation of the nonnegative random variable e−ασs(m−)[V (σs(m−);m)−m] is

also equal to zero, whence V (σs(m−);m) = m, a.s. �

6.3 Remark: The representations of (6.5), (6.6), (6.11), (6.12), as well as the properties

of (6.2), (6.4), (6.13), all remain in force if one replaces the filtration Fi by the filtration

Fi of (4.8); recall Lemma 4.6.

7. OPTIMALITY IN THE GENERAL PROBLEM

For fixed s
˜

= (s1, ..., sd) ∈ 4, consider the Dynamic Allocation Problem of section 5

with the reward processes Hi replaced by the decreasing, right–continuous processes

(7.1) h′i(θ)
∆= αM i(si, θ), si ≤ θ < ∞, i = 1, ..., d

(in the notation of (6.3), (6.7)), and denote by

(7.2) Ψ(s
˜
) ∆= esssupT

˜
∈A(s

˜
)E[R′(T

˜
)|F(s

˜
)], R′(T

˜
) =

d∑
i=1

∫ ∞

0

e−αth′i(Ti(t))dTi(t)

the value of this new problem.

The complete solution of Problem (7.2) is provided, as an easy corollary, by the theory

of section 3. One introduces the decreasing, right–continuous processes (inverses of each

other)

(7.3) τ(m; s
˜
) ∆=

d∑
i=1

(σi(si;m)− si), 0 ≤ m < ∞ and N(t; s
˜
) ∆= inf{m ≥ 0/τ(m; s

˜
) ≤ t}



30

for 0 ≤ t < ∞ and constructs, for every fixed ω ∈ Ω, the allocation strategy T
˜
∗(·, ω) −

s
˜

= (T ∗1 (·, ω) − s1, ..., T
∗
d (·, ω) − sd) as in Proposition 3.9 with τ(·), N(·) replaced by

τ(·, ω; s
˜
), N(·, ω; s

˜
) respectively. This defines an optional increasing path T

˜
∗ ∈ A(s

˜
) which

satisfies pathwise:

(i) The “synchronization identity” (3.20), in the form

(7.4)
d∑

i=1

([T ∗i (t)− si] ∧ [σi(si;λ−)− si]) = t ∧ τ(λ−; s
˜
), ∀ 0 ≤ t < ∞, 0 < λ < ∞.

(ii) The “index–type property” (3.35) in the form

(7.5)
d∑

i=1

∫ ∞

0

1{M
i
(si,T∗i (t))<max1≤j≤d M

j
(sj ,T∗

j
(t))}dT ∗i (t) = 0;

this states that “every T ∗i (·) grows only (modulo Lebesgue measure) on the set {t ≥

0/M i(si, T
∗
i (t)) = maxi≤j≤d M j(sj , T

∗
j (t))} where the lower–envelope M i(si, T

∗
i (·)) =

infsi≤u≤T∗
i
(·) Mi(u) of its index process is maximal among all projects”.

(iii) The “dual optimality property” (3.31)–(3.32)

(7.6) M(s
˜
, T
˜
(t)) ≥ N(t, s

˜
) = M(s

˜
;T
˜
∗(t)), 0 ≤ t < ∞; ∀ T

˜
∈ A(s

˜
)

with the notation M(s
˜
, r
˜
) ∆= max1≤i≤d M i(si, ri) for r

˜
∈ 4, s

˜
≤ r

˜
.

(iv) The optimality property (3.22), in the form

(7.7) R′(T
˜
) ≤ R′(T

˜
∗) =

∫ ∞

0

αe−αtN(t; s
˜
)dt =

∫ ∞

0

[1− e−ατ(λ;s
˜
)]dλ, ∀ T

˜
∈ A(s

˜
).

In particular, T
˜
∗ is optimal for the problem of (7.2):

(7.8)

E[R′(T
˜
)|F(s

˜
)] ≤ E[R′(T

˜
∗)|F(s

˜
)] = Ψ(s

˜
) = E

[∫ ∞

0

αe−αtN(t; s
˜
)dt
∣∣∣ F(s

˜
)
]

= E
[∫ ∞

0

(1− e−ατ(λ;s
˜
))dλ

∣∣∣ F(s
˜
)
]

a.s, ∀ T
˜
∈ A(s

˜
).
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It should be stressed that (7.7), (7.8) hold without any assumption on the multi-parameter

filtration F; in particular, the assumption (F.4) is not needed for these properties. Now

the fundamental result of this work, Theorem 7.1 below, states that T
˜
∗ is optimal also in

our original, general Dynamic Allocation Problem (5.4). For this theorem, the condition

(F.4), on the multi-parameter filtration F, is crucial; the result was established in our

earlier work El Karoui & Karatzas (1994) under the independent assumption (4.2) on Fi.

7.1 Theorem: For every fixed s
˜
∈ 4, the general Dynamic Allocation Problem (5.3) with

general reward proceses {hi(t), t ≥ si}d
i=1, has the same value, namely

(7.9)

Φ(s
˜
) ≡ Ψ(s

˜
) = E

[∫ ∞

0

αe−αtN(t; s
˜
)dt
∣∣∣ F(s

˜
)
]

= E
[∫ ∞

0

(1− e−ατ(λ;s
˜
))dλ

∣∣∣ F(s
˜
)
]
, a.s.

and the same optimal strategy T
˜
∗ ∈ A(s

˜
), namely

(7.10) E[R(T
˜
)|F(s

˜
)] ≤ E[R(T

˜
∗)|F(s

˜
)] = Φ(s

˜
) a.s., ∀ T

˜
∈ A(s

˜
),

as the problem (7.2) with the decreasing rewards {h′i(t) = αM i(si, t), t ≥ si}d
i=1 of (7.1). �

The remainder of the section will be devoted to the proof of this result. Clearly, it

suffices to show that

(7.11)
{

K(t) ∆=
∑d

i=1

∫ t

0
e−α(θ−T∗i (θ))dUi(T ∗i (θ)), 0 ≤ t < ∞

is a uniformly integrable F(T
˜
∗)−martingale

}
in the notation of (6.13), that

(7.12)
{

K(∞) = Λ(∞), almost surely, where
Λ(t) ∆=

∑d
i=1

∫ t

0
e−αθ[hi(T ∗i (θ))− αM i(si, T

∗
i (θ))]dT ∗i (θ), 0 ≤ t < ∞

}
and that the positive process

(7.13)
{

Z(t;T
˜
) ∆= e−αtΨ(T

˜
(t)) +

∑d
i=1

∫ t

0
e−αθhi(Ti(θ))dTi(θ), 0 ≤ t < ∞

is an F(T
˜
)− supermartingale, ∀ T

˜
∈ A(s

˜
).

}

Because then we have from (7.13)

(7.14) Ψ(s
˜
) = Z(0;T

˜
) ≥ E[Z(∞;T

˜
)|F(s

˜
)] = E[R(T

˜
)|F(s

˜
)] a.s., ∀ T

˜
∈ A(s

˜
),
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whereas E[Λ(∞)|F(s
˜
)] = E[K(∞)|F(s

˜
)] = K(0) = 0 from (7.11), (7.12) gives, with the

notation of (5.2), (5.3), (7.2):

(7.15) E[R(T
˜
∗)|F(s

˜
)] = E[R′(T

˜
∗)|F(s

˜
)] = Ψ(s

˜
).

All the claims of Theorem 7.1 follow from (7.14), (7.15).

To establish (7.11) - (7.13) we shall need a few auxiliary Lemmata. For results on the

stochastic calculus of one–parameter processes see, for instance, Karatzas & Shreve (1991)

or Revuz & Yor (1991).

7.2 Lemma: For any T
˜
∈ A(s

˜
), m ≥ 0, the process

(7.16) X(t) ∆=
d∑

i=1

∫ t

0

e−α(θ−Ti(θ))dθQi(Ti(θ);m), 0 ≤ t < ∞

in the notation of (6.2), is an F(T
˜
)–local supermartingale.

Proof: The processes Qi(·;m) of (6.2) are Fi – supermartingales of class D with RCLL

paths, so the result follows from Proposition 4.7.

7.3 Lemma: For any T
˜
∈ A(s

˜
), the process

(7.17) Y (t) ∆= e−αtΨ(T
˜
(t))−

d∑
i=1

∫ t

0

e−α(θ−Ti(θ))dθ(e−αTi(θ)Vi(Ti(θ); 0)), 0 ≤ t < ∞

is an F(T
˜
)–supermartingale.

Proof: From (6.6), (7.9) and Remark 6.3:

e−αTi(t)[Vi(Ti(t);m)−m] = E

[∫ ∞

m

{
e−αTi(t) − e−ασi(Ti(t);λ)

}
dλ

∣∣∣∣∣ F i(Ti(t))

]
,

e−αtΨ(T
˜
(t)) = E

[∫ ∞

0

{
e
−α
∑d

j=1
(Tj(t)−sj) − e

−α
∑d

j=1
(σj(Tj(t);λ)−sj)

}
dλ

∣∣∣∣∣ F(T
˜
(t))

]
, a.s.
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Therefore, taking s
˜

= 0
˜

to simplify typography, we have to show for u < t:

E

[
d∑

i=1

∫ ∞

0

∫ t

u

e
−α
∑

j 6=i
Tj(θ)

dθ

(
e−αTi(θ) − e−ασi(Ti(θ);λ)

)
dλ

∣∣∣∣∣ F(T
˜
(u))

]

≥ E

[∫ ∞

0

{(
e
−α
∑d

j=1
Tj(t) − e

−α
∑d

j=1
σj(Tj(t);λ)

)

−

(
e
−α
∑d

j=1
Tj(u) − e

−α
∑d

j=1
σj(Tj(u);λ)

)}
dλ

∣∣∣∣∣ F(T
˜
(u))

]
,

or equivalently:

(7.18)

E

[∫ ∞

0

{
e
−α
∑d

j=1
σj(Tj(t);λ) − e

−α
∑d

j=1
σj(Tj(u);λ)

−
d∑

i=1

∫ t

u

e
−α
∑

j 6=i
Tj(θ)

dθ(e−ασi(Ti(θ);λ))

}
dλ

∣∣∣∣∣ F(T
˜
(u))

]

≥ E

[∫ ∞

0

{
e
−α
∑d

j=1
Tj(t) − e

−α
∑d

j=1
Tj(u)

−
d∑

i=1

∫ t

u

e
−α
∑

j 6=i
Tj(θ)

dθ(e−αTi(θ))

}
dλ

∣∣∣∣∣ F(T
˜
(u))

]
,

almost surely. From Lemma 7.4 below and the continuity of the Tj(·)’s, the right–hand–

side of (7.18) is zero. On the other hand, in the notation of Lemma 7.4 and with Aj(·) ≡

ασj(Tj(·);λ), j = 1, . . . , d, the expression inside the braces on the left-hand-side of (7.18)

dominates

e−A(t) − e−A(u) −
d∑

i=1

∫ t

u

e−A(i)(θ−)d(e−Ai(θ))

which is nonnegative (again thanks to Lemma 7.4), and the result is proved.

7.4 Lemma: Let Ai : [0,∞) → [0,∞) be increasing, right–continuous functions, and set

A =
∑d

j=1 Aj , A(i) = A−Ai =
∑

j 6=i Aj for i = 1, ..., d. Then

(7.19)

e−A(t) − e−A(0) −
d∑

i=1

∫ t

0

e−A(i)(s−)d(e−Ai(s)) =

=
∑
s≤t

e−A(s−)
[
(e−

∑d

i=1
∆Ai(s) − 1)−

d∑
i=1

(e−∆Ai(s) − 1)
]
, 0 ≤ t < ∞
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is an increasing, pure jump function (identically equal to zero, if A is continuous).

Proof: Let us recall the change-of-variable formula for an increasing, right–continuous

function C (e.g. Revuz & Yor (1991), p.6), namely

F (C(t)) = F (C(0))+
∫ t

0

F ′(C(s−))dC(s)+
∑
s≤t

{F (C(s))−F (C(s−))−F ′(C(s−))∆C(s)}

where ∆C(s)
4
= C(s) − C(s−). We shall apply this formula to the function F (x) = e−x,

twice: first with C = A,

(7.20) e−A(t) − e−A(0) +
d∑

i=1

∫ t

0

e−A(s−)dAi(s) =
∑
s≤t

e−A(s−)[e−∆A(s) − 1 + ∆A(s)]

and then with C = Ai,

e−Ai(t) − e−Ai(0) +
∫ t

0

e−Ai(s−)dAi(s) =
∑
s≤t

e−Ai(s−)[e−∆Ai(s) − 1 + ∆Ai(s)].

It follows from this last expression that

(7.21)
∫ t

0

e−A(i)(s−)d(e−Ai(s))+
∫ t

0

e−A(s−)dAi(s) =
∑
s≤t

e−A(s−)[e−∆Ai(s)−1+∆Ai(s)];

summing up over i = 1, ..., d in (7.21), and substituting the resulting expression for∑d
i=1

∫ t

0
e−A(s−)dAi(s) into (7.20), we obtain (7.19). Now the right–hand side of (7.19) is

an increasing (pure jump) function, since: 1− e−
∑d

i=1
∆Ai(s) ≤

∑d
i=1(1− e−∆Ai(s)).

Proof of (7.13): From Lemmata 7.3 and 7.2 (with m = 0) we see that

Z(t;T
˜
) = X(t) + Y (t) = e−αtΨ(T

˜
(t)) +

d∑
i=1

∫ t

0

e−αθhi(Ti(θ))dTi(θ), 0 ≤ t < ∞

is an F(T
˜
)–local supermartingale; because it is positive, it is actually an F(T

˜
) – super-

martingale.

7.5 Lemma: For every i = 1, . . . , d we have, in the notation of sections 3 and 6:

Yi(t)
4
= Vi(T ∗i (t);M i(si, T

∗
i (t))−M i(si, T

∗
i (t)) = 0
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on the set ([0,∞)\D)
⋃

(
⋃

m∈D([τ(m), τ(m−))\(yi−1(m), yi(m)))).

Proof: To simplify typography we take s
˜

= 0
˜

and write σi(m) for σi(0;m), τ(m) for

τi(m; 0
˜
), M i(u) for M i(0, u), and N(t) for N(t; 0

˜
).

For t 6∈ D, we have T ∗i (t) = σi(m−) from (3.26), with m = N(t). For τ(m) ≤ t <

τ(m−) with some m ∈ D, we have from (3.29): T ∗i (t) =
{

σi(m−); τ(m) ≤ t ≤ yi−1(m)
σi(m); yi(m) ≤ t < τ(m−)

}
if m ∈ Di (i.e., if σi(·) has a jump at m), and T ∗i (t) = σi(m) = σi(m−) if m 6∈ Di (i.e.,

if σi(·) is continuous at m); here again, m = N(t). We distinguish the following cases:

(a) m 6∈ Bi. Then M i(σi(m−)) = M i(σi(m)) = m, from (3.5), (3.7), and T ∗i (t) =

σi(m±); thus Vi(T ∗i (t);M i(T
∗
i (t))) = Vi(σi(m±);M i(σi(m±))) = Vi(σi(m±);m) = m =

M i(T
∗
i (t)), from (6.10).

(b) m ∈ Bi,m ∈ Di. Then M i(σi(m−)) < M i(σi(m)) = m, and there exists a point

r = σi(m−) ∈ Bi such that m = M i(r−).

If T ∗i (t) = σi(m), then M i(T
∗
i (t)) = m and thus Vi(T ∗i (t);M i(T

∗
i (t))) = Vi(σi(m);m)

= m = M i(T
∗
i (t)), from (6.10).

If T ∗i (t) = σi(m−), then T ∗i (t) = r = σi(M i(r)) so that, again from (6.10),

(7.22) Vi(T ∗i (t);M i(T
∗
i (t))) = Vi(σi(M i(r));M i(r)) = M i(r) = M i(T

∗
i (t)).

(c) m ∈ Bi,m 6∈ Di: Then M i(σi(m−)) = M i(σi(m)) < m, and there exists a point

r
4
= σi(m−) = σi(m) ∈ Bi such that m ∈ (M i(r),M i(r−)]. In this case T ∗i (t) = r =

σi(M i(r)), and (6.10) leads again to (7.22).

Proof of (7.12) (due to Prof. D.L. Ocone): To simplify notation, let us take s
˜

= 0
˜

again.

From (6.13), the definition of K(·),Λ(·) and the notation of Lemma 7.5, the equality
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K(∞) = Λ(∞) is equivalent to

(7.23)
d∑

i=1

∫ ∞

0

e−α(t−T∗i (t))dt

(
e−αT∗i (t)Yi(t)

)
= 0.

From Lemma 7.5 and (3.29), the left-hand-side of (7.23) equals

(7.24)

∑
m∈D

d∑
i=1

∫ yi(m)

yi−1(m)

e−α(t−T∗i (t))dt(e−αT∗i (t)Yi(t))

=
d∑

i=1

∑
m∈Di

e−α(yi−1(m)−σi(m)) ·
(
e−αT∗i (t)Yi(t)

) ∣∣∣t=yi(m)

t=yi−1(m)

=
d∑

i=1

∑
m∈Di

e−αyi−1(m)[Yi(yi(m))eα∆σi(m) − Yi(yi−1(m))].

Now (7.23) follows from Lemma 7.5, since Yi(yi(m)) = Yi(yi−1(m)) = 0, ∀ i = 1, . . . , d

(for i = d, observe that yd(m) = τ(m−) 6∈ D).

7.6 Remark: Notice that the explicit form (3.29) of the strategy T
˜
∗(·), in particu-

lar the fact that each T ∗i (·) grows linearly and at slope +1 on intervals of the type

(yi−1(m), yi(m)),m ∈ Di, has been used in a crucial way in the proof of (7.12). This

property is not shared by the allocation strategies of Remark 3.15, for instance by (3.38).

Proof of (7.11): The processes Ui(·) of (6.13) are Fi-martingales with RCLL paths; thus,

Proposition 4.7 shows that K(t) =
∑d

i=1

∫ t

0
e−α(θ−T∗i (θ))dUi(T ∗i (θ)), 0 ≤ t < ∞ is an

F(T
˜
∗)-local martingale. To prove the claim of (7.11), it suffices to show that

(7.25) the family {K(τ)}τ∈S(F(T
˜
∗
)) is uniformly integrable,

where S(F(T
˜
∗)) is the class of stopping times τ : Ω → [0,∞] of the filtration F(T

˜
∗).

Now in the notation of Lemma 7.5 and (7.12), we have the decomposition K(·) =

Λ(·) + W (·), where

(7.26) W (t)
4
=

d∑
i=1

∫ t

0

e−α(θ−T∗i (θ))dθ(e−αT∗i (θ)Yi(θ)), 0 ≤ t < ∞.
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The process Λ(·) of (7.12) is dominated a.s. by the random variable

L
4
=

d∑
i=1

eαsi

{∫ ∞

si

e−αuhi(u)du +
∫ ∞

si

αe−αuM i(si, u)du
}

which is integrable, thanks to E
∫∞
0

αe−αθM i(si, θ)dθ = E
∫∞
0

e−αθhi(θ)dθ < ∞ from

(6.12) and (5.1). Therefore, in order to prove (7.25), it suffices to show that

(7.27) the family {W (τ)}τ∈S(F(T
˜
∗
)) is uniformly integrable.

To carry this out let us suppose again, for simplicity of notation, that s
˜

= 0
˜
, and

observe that W (τ) of (7.26) can be written equivalently as

(7.28)

W (τ) =
∑
m∈D

m>N(τ)

d∑
i=1

∫ yi(m)

yi−1(m)

e−α(θ−T∗i (θ))dθ

(
e−αT∗i (θ)Yi(θ)

)

+
d∑

i=1

∫ τ

yi−1(m)

e−α(θ−T∗i (θ))dθ

(
e−αT∗i (θ)Yi(θ)

) ∣∣∣
m=N(τ)

by analogy with (7.24). From (7.24) and the discussion that follows it, the first (double)

summation on the right-hand-side of (7.28) is zero, and the second equals

W (τ) =
∫ τ

yk−1(m)

e−α(yk−1(m)−σk(m))dθ

(
e−αT∗k (θ)Yk(θ)

)
= e−α(T∗k (τ)+yk−1(m)−σk(m))Yk(τ) = e−ατ

[
Vk(σ;λ)− λ

] ∣∣∣ σ=T∗
k

(τ)

λ=Mk(σ)

≤ e−ασ · sup
0<λ<∞

[
Vk(σ;λ)− λ

] ∣∣∣
σ=T∗

k
(τ)

, a.s.

in the notation of (3.29) with m = N(τ), k = k(m), yk−1(m) ≤ τ < yk(m). In particular,

the process W (·) is nonnegative, and in order to prove (7.27) it suffices to show (by virtue

of Proposition 4.5) that

(7.29) the family {sup0<m<∞(e−ασ[Vi(σ;m)−m])}σ∈S(Fi)

is uniformly integrable, ∀ i = 1, . . . , d,
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where S(Fi) is the class of stopping times σ : Ω → [0,∞] of the filtration Fi in (4.8). But

from (6.11), (6.12) and Remark 6.3 we obtain, for every 0 ≤ s < ∞ and m ∈ (0,∞):

e−αs[Vi(s;m)−m] = E

[∫ ∞

s

αe−αθ
(
M i(s, θ)−m

)+

dθ

∣∣∣∣∣ F i(s)

]

≤ E

[∫ ∞

s

αe−αθM i(s, θ)dθ

∣∣∣∣∣ F i(s)

]
= E

[∫ ∞

s

αe−αθhi(θ)dθ

∣∣∣∣∣ F i(s)

]

≤ E[Ai|F i(s)], Ai
4
=
∫ ∞

0

αe−αθhi(θ)dθ,

whence

sup
0<m<∞

(
e−ασ[Vi(σ;m)−m]

)
≤ E[Ai|F i(σ)], a.s.

for every σ ∈ S(Fi). The assumption E(Ai) < ∞ of (5.1) implies the uniform integrability

of the family {E[Ai|F i(σ)]}σ∈S(Fi), and (7.29) follows.

7.7 Remark: The methods of this section also solve the mixed Dynamic Allocation/

Stopping Problem of Definition 5.2: for any given m ≥ 0 and s
˜
∈ 4, the value of (5.6) is

given by

(7.30)

Φ(s
˜
;m) = E

[∫ ∞

0

αe−αt(N(t; s
˜
) ∨m)dt

∣∣∣∣∣ F(s
˜
)

]

= m + E

[∫ ∞

m

(1− e−ατ(λ;s
˜
))dλ

∣∣∣∣∣ F(s
˜
)

]
, a.s.

and the supremum of (5.6) is attained by the pair (T
˜
∗, ρ∗) ∈ P(s

˜
), with ρ∗ = τ(m; s

˜
)

and T
˜
∗ ∈ A(s

˜
) the same as in Theorem 7.1. To check that τ(m; s

˜
) is indeed an F(T

˜
∗) –

stopping time, for any m ≥ 0 and s
˜
∈ 4, observe that we have from (7.4):

(7.31) {τ(m; s
˜
) ≤ t} =

d⋂
i=1

{σi(si;m) ≤ T ∗i (t)} = {σ
˜
(s
˜
;m) ≤ T

˜
∗(t)} ∈ F(T

˜
∗(t)), ∀ t ≥ 0

for every 0 ≤ t < ∞. This is because both σ
˜
(s
˜
;m) ≡ (σ1(s1;m), ..., σd(sd;m)) and

T
˜
∗(t) = (T ∗1 (t), ..., T ∗d (t)) are stopping points of the multi-parameter filtration F – the
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former from Definition 4.2(iii), and the latter thanks to

{σ
˜
(s
˜
;m) ≤ r

˜
} =

d⋂
i=1

{σi;m) ≤ ri} =
d⋂

i=1

{M i(si; ri) ≤ m} ∈
d⋂

i=1

F i(ri) = F(r
˜
)

which is valid for every r
˜
∈ 4, s

˜
≤ r

˜
.

8. THE CASE OF INDEPENDENT “BROWNIAN” BANDITS

As a simple illustration of the results in sections 3 and 7, let us consider the situation

of the Problem in (5.3) with s
˜

= 0
˜

and reward processes

(8.1) hi(θ) = ηi(Wi(θ)), 0 ≤ θ < ∞, i = 1, ..., d.

Here each ηi : R → (0,∞) is a strictly increasing function of class C1(R), and W1(·), ...,Wd(·)

are independent standard Brownian motions; we denote by Fi the augmentation of the nat-

ural filtration{FWi(θ)}0≤θ<∞, and define the multi–parameter filtration F as in (4.2).

In this case, it is well–known (Karatzas (1984); see also Mandelbaum (1987), El

Karoui & Karatzas (1994), §3.10) that the index-process Mi(·) of (6.8), (6.9) is Mi(θ) =

νi(Wi(θ)), 0 ≤ θ < ∞, where the index function νi : R → (0,∞) is given as

(8.2) νi(x) =
1
α

∫ ∞

0

ηi

(
x +

z√
2α

)
e−zdz

and inherits the properties of strict increase and C1(R) from ηi, for every i = 1, ..., d. We

shall assume for convenience that all the νi(·)’s have the same range, so that their inverses

ν−1
i (·) are all defined on the same domain, and denote by

(8.3) ν(·) the inverse of ν−1(·) ∆=
d∑

i=1

ν−1
i (·).

It follows that the decreasing processes M i(·) ≡ M i(0, ·) of (6.7) are given as

(8.4) M i(θ) = inf
0≤u≤θ

Mi(u) = νi(Ai(θ)), Ai(θ)
∆= min

0≤u≤θ
Wi(u), 0 ≤ θ < ∞;
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in particular, they are continuous, with right–continuous decreasing, pure-jump inverses

(8.5)
σi(m) = inf{θ ≥ 0/M i(θ) ≤ m}

= inf{θ ≥ 0/νi(Wi(θ)) ≤ m}, 0 ≤ m < ∞, i = 1, ..., d.

Note that, if Di stands for the set of jump–points of σi(·), then

(8.6)


D0

i
4
=
⋃

m∈Di
(σi(m), σi(m−)) is the set of excursion intervals

away from the origin, of νi(Wi(θ))− νi(Ai(θ)), or equivalently of
the reflecting Brownian motion process Ri(θ)

∆= Wi(θ)−Ai(θ), 0 ≤ θ < ∞.


Now the pure-jump processes m 7→ σi(m) i = 1, ..., d are independent, thus the sets

Di (i = 1, ..., d) disjoint, and their union D = ∪d
i=1Di is the set of jump–points of the

decreasing, right continuous, pure-jump process

τ(m) =
d∑

i=1

σi(m), 0 ≤ m < ∞

with continuous (decreasing) inverse N(t) = inf{m ≥ 0/τ(m) ≤ t}, 0 ≤ t < ∞.

With these ingredients, it is straightforward to see that the dynamic allocation strategy

T
˜
∗(·) = (T ∗i (·), . . . , T ∗d (t)) of Proposition 3.9 takes the form

(8.7) T ∗i (t) = σi(N(t)) + (t− τ(N(t)))1{N(t)∈Di}, 0 ≤ t < ∞, i = 1, ..., d.

Now each M i(·) is continuous, so that σi(·) has no flat stretches (i.e., Bi = ∅), and we

obtain from (3.7), (3.36) that

(8.8) M i(T
∗
i (t)) = N(t), 0 ≤ t < ∞, i = 1, ..., d.

In other words, T
˜
∗(·) maintains equal lower envelopes of indices for all projects, at all times,

just as in Remark 3.14. From Theorem 7.1, this strategy T
˜
∗(·) attains the supremum of

expected discounted reward

(8.9) Φ(0
˜
)
4
= sup

T
˜

(·)∈A(0
˜
)

E
d∑

i=1

∫ ∞

0

e−αtηi(Wi(Ti(t)))dTi(t).
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Consider now the nonnegative processes

(8.10)
Si(t)

∆= Ri(T ∗i (t)) = (Wi −Ai)(T ∗i (t))

= ν−1
i (Mi(T ∗i (t)))− ν−1

i (N(t)), 0 ≤ t < ∞, i = 1, ..., d

and notice that

Si(t) > 0 ⇐⇒ T ∗i (t) ∈ D0
i ⇒ N(t) ∈ Di.

In particular, at most one of the Si(t), i = 1, ..., d can be strictly positive at any given time

t > 0, and we have

(8.11)
∫ ∞

0

1{Si(t)>0}dN(t) = 0 (i = 1, . . . , d), whence
∫ ∞

0

1{S(t)>0}dN(t) = 0

for the sum S(t) ∆=
∑d

i=1 Si(t) of the processes in (8.10). This can be written as

(8.12) S(t) = W (t) + L(t)

where W (t) ∆=
∑d

i=1 Wi(T ∗i (t)) is standard Brownian motion, and L(t) ∆= −ν−1(N(t)),

in the notation of (8.3), is a continuous, increasing process with
∫∞
0

1{S(t)>0}dL(t) = 0

according to (8.11). From the theory of the Skorohod problem for reflecting Brownian

motion (e.g. Karatzas & Shreve (1991), pp.211–212) it develops then that S(·) is a reflecting

(standard, one–dimensional) Brownian motion, and that

L(t) = −ν−1(N(t)) = limε↓0
1
2ε

meas{0 ≤ u ≤ t /S(u) ≤ ε}

is its local time at the origin. The distribution P [L(t) ∈ d`] = 2(2πt)−1/2 exp(−`2/2t)d`,

` > 0 of this random variable is well known (ibid, eqs. (3.6.28) and (2.8.3)), and leads in

conjuction with (7.9) and

(8.14) N(t) = ν(−L(t)) =
( d∑

i=1

ν−1
i

)−1

(−L(t)), 0 ≤ t < ∞

to the computation

(8.15) Φ(0
˜
) = E

∫ ∞

0

αe−αtN(t)dt =
∫ ∞

0

αe−αtE[ν(−L(t))]dt =
∫ ∞

0

ν
(
− z√

2α

)
e−zdz
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for the value of the problem (8.9).

8.1 The case d=2, and the “skew Brownian motion”: The special case d = 2 is

studied in detail in section 9 of El Karoui & Karatzas (1994). Here, let us consider the

difference

(8.16) X(t) = S1(t)− S2(t) = B(t) + V (t), 0 ≤ t < ∞

of the processes in (8.10), where B(t) ∆= W1(T ∗1 (t))−W2(T ∗2 (t)) is Brownian motion and

(8.17) V (t) ∆= (ν−1
2 − ν−1

1 )(N(t)) = ϕ(L(t))

a process of bounded variation; we have set

(8.18) ϕ(`) ∆= (ν−1
2 − ν−1

1 )(ν(−`)).

Because S1(·)S2(·) ≡ 0, we have S1(·) ≡ X+(·), S2(·) ≡ X−
1 (·); thus X(·) = B(·) + V (·) is

a semimartingale, and |X(·)| = S(·) is a reflecting Brownian motion with symmetric local

time at the origin

(8.19) LX(t) ∆= limε↓0
1
2ε

meas {0 ≤ u ≤ t/|X(u)| ≤ ε} = L(t)

from (8.13). We conclude that X(·) solves the stochastic equation

(8.20) X(t) = ϕ(LX(t)) + B(t), B(·) = Brownian motion.

If ν1 ≡ ν2 (η1 ≡ η2), then ϕ = 0 and X(·) is a Brownian motion. If we have ν2(αx) =

ν1(x),∀x ∈ R, for some 0 < α ≤ 1, then φ(`) = β` with β = 1−α
1+α and X(·) is a so–

called skew Brownian motion (cf. Harrison & Shepp (1981), Walsh (1978)). In general,

the function ϕ(·) of (8.18) is of class C1(0,∞), and satisfies |ϕ′| ≤ 1. It might be of

independent interest, to develop a general theory for equations of the type (8.20).
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