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21. INTRODUCTIONOn a given probability space (
;F ;P), let W (�) = fW (t); 0 � t � Tg be standard, one-dimensional Brownian motion on the �nite time-horizon [0; T ], and let B be an independentrandom variable with known distribution � that satis�es(1:1) �(f0g) < 1; Z< jbj�(db) <1:Neither the process W (�) nor the random variable B is observed directly, but the process(1:2) Y (t) 4=W (t) +Bt; 0 � t � Tis; we shall denote by F = fF(t); 0 � t � Tg the augmentation of the natural �ltration(1:3) FY (t) = �(Y (s); 0 � s � t); 0 � t � Tgenerated by the observation process Y (�) of (1.2).For a given initial position xo in the interval S = [0; 1], the state-space of ourproblem, consider the class A(xo) � A(xo; 0; T ) of F { progressively measurable processes� : [0; T ]� 
 �! < which satisfy(1:4) Z T0 �2(t)dt <1and(1:5) 0 � X(t) 4= xo + Z t0 �(s)dY (s) � 1; 0 � t � Talmost surely. This is the class of our admissible control processes for the initial positionxo. As we shall see (cf. Remark 3.1 below), for every process �(�) in this class A(xo), thecorresponding state-process Xxo;�(�) � X(�) of (1.5) is absorbed at the endpoints of theinterval S = [0; 1], namely(1:6) X(�) = X(� ^ �); where � 4= infft 2 [0; T );X(t) 62 (0; 1)g ^ T:



3The objective of our stochastic control problem will be to choose the process �(�) 2A(xo) so as to maximize the probability of reaching the right-endpoint of the intervalS = [0; 1] by the time t = T . That is, we shall try to compute the value function(1:7) V (xo) 4= sup�(�)2A(xo) P[Xxo;�(T ) = 1]; xo 2 [0; 1]and to single out an optimal control process �̂(�) 2 A(xo) that attains the supremum in(1.7), namely(1:8) V (xo) = P[Xxo;�̂(T ) = 1]; xo 2 [0; 1];if such a process exists.We call this problem adaptive control of the state-process X(�) to the goal x = 1,because we are trying to steer (\control") the process X(�) to the right-endpoint x = 1(our \goal") without having exact knowledge of the drift parameter B in (1.2). This driftis modelled as a random variable with known \prior" distribution �, which has to beupdated continuously (\adaptive" control) as the information F(t); 0 � t � T about theobservations-process Y (�) keeps coming in.In the case where we have exact knowledge about the drift-parameter B = b 2 <nf0g(i.e., with � = �b; b 6= 0), this control problem was solved in the very interesting paper ofKulldor� (1993). Kulldor� computed the value function of (1.7) and the optimal controlprocess �̂(�) of (1.8) in the form(1:9) V (xo) = �(��1(xo) + jbjpT )(1:10) �̂(t) = sgnbpT � t '�Y (t) +pT��1(xo)pT � t �= sgnbpT � t (' ���1)(Xxo;�̂(t)); 0 � t < Trespectively, with the notation(1:11) �(z) 4= Z z�1 '1(u)du; 's(z) 4= 1p2�se�z2=2s; z 2 <; s > 0



4and '(�) � '1(�): Kulldor�'s approach was later simpli�ed by Heath (1993), who derivedthe results (1.9), (1.10) using a martingale approach combined with the celebrated Neyman-Pearson lemma from classical hypothesis-testing in statistics. We shall employ in section5 a modi�cation of Heath's argument, to deal with a general distribution � as in (1.1) forthe random variable B.Our initial interest in this problem was to decide whether the so-called certainty-equivalence principle, of substituting in place of b in (1.10) the conditional expectation(1:12) B̂(t) = E[BjF(t)]; 0 � t � Tof the unobserved random variable B, given the observations up to time t, would lead toa control law(1:13) �CE(t) = sgnB̂(t)pT � t (' � ��1)(Xxo;�CE (t)); 0 � t < Twhich is optimal for the problem of (1.7). Such a simple substitution principle does in factlead to an optimal law in the context of partially observed linear-quadratic-gaussian control(cf. Fleming & Rishel (1975)), as well as in the context of the partially observed controlproblem of Bene�s and Rishel (see Bene�s et al. (1991), or Karatzas & Ocone (1992)). Forthe goal problem of (1.7), the control law (1.13) that results from this simple substitutionprinciple, turns out to be optimal only in very special cases, namely when �([0;1)) = 1or when �((�1; 0]) = 1; see sections 6 and 7. The law of (1.13) fails to be optimal evenfor distributions � that are symmetric around the origin, as we demonstrate in section8. For such symmetric distributions it is still possible to obtain an explicit expression forthe optimal law in terms of the current state X(t) and the current estimate B̂(t) of Bas in (1.12); this expression (8.8) is, however, quite di�erent from that mandated by the\certainty-equivalence" principle of (1.13).1.1 An Interpretation: Suppose that the price-per-share S(�) of a common stock followsthe geometric Brownian motion processdS(t) = S(t)[Bdt+ dW (t)] = S(t)dY (t); S(0) = s > 0



5where B is an unobservable drift-parameter, the \appreciation rate" of the stock. Wemodel this unobservable rate as a random variable, independent of the Brownian motionW (�), with known distribution �; this distribution quanti�es our \prior knowledge" aboutthe possible values that B can assume, as well as their respective likelihood. Based on theobservations F(t) = �(S(u); 0 � u � t) = �(Y (u); 0 � u � t)of the stock-prices over the interval [0; t], we choose our \portfolio" �(t) at time t (thatis, the amount of money to be invested in the stock at that time). Our \wealth process"corresponding to the portfolio �(�) is thenX(t) = xo + Z t0 �(s)dY (s); 0 � t � Tas in (1.5), where xo 2 (0; 1) stands for our \initial capital". We are interested in attainingthe level of wealth x = 1, before time t = T and without going into penury (i.e., reachingthe level x = 0). If our objective is to maximize the probability P[X(T ) = 1] of achievingthis, we are exactly in the context of problem (1.7).2. SUMMARYWe provide a careful formulation of the stochastic control problem (1.7) in section 3, withthe help of the Girsanov theorem and of enlargement of �ltrations; and in section 4 weembed this problem in the standard framework of �ltering, stochastic control, and dynamicprogramming. In particular, we write down the Hamilton-Jacobi-Bellman (HJB) equationof Dynamic Programming for the problem of (1.7), and notice that this equation reducesafter normalization (or change of probability measure) to the Monge-Amp�ere-type equation(2:1) 2QxxQs = det(D2Q);where(2:2) det(D2Q) 4= QxxQyy �Q2xy:



6Here x 2 [0; 1] stands for the state-variable X(t) of (1.5), y 2 < stands for theBrownian-motion-with-drift Y (t) of (1.2), s 2 [0; T ] is the \time-to-go" T � t until the endof the horizon, and det(D2Q) is the determinant of the Hessian matrixD2Q of second-orderderivatives in the spatial variables. The identi�cation with (1.7) is through(2:3) V (xo) = Q(T; xo; 0)for the value of the stochastic control problem. To our knowledge, the equation (2.1) isstudied here for the �rst time.In section 5 we solve the problem of (1.7) very explicitly and we identify an optimalcontrol process �̂(�) as in (1.8), by adapting to our situation the methodology of Heath(1993). This methodology relies on the celebrated Neyman-Pearson lemma from classi-cal hypothesis testing, and on the martingale representation property of the Brownian�ltration. The precise answers that we obtain via this methodology allow us(a) to solve explicitly the appropriate, in our context, initial-boundary value problem forthe Monge-Amp�ere-type equation (2.1), and(b) to decide whether the optimal control process �̂(�) is in the form (1.3) of the \certainty-equivalence principle."This program is carried out in sections 6, 7, 9 for the cases(i) �([0;1)) = 1;(ii) �((�1; 0]) = 1, and(iii) �((0;1)) � �((�1; 0)) > 0;respectively. It turns out that the certainty-equivalence principle holds in cases (i) and(ii); but fails to hold even for symmetric distributions � with �((0;1)) = �((�1; 0)) > 0(cf. section 8, Remark 8.1).\Goal" problems have been studied by Probability theorists, in the context of stochas-



7tic games, at least since Breiman (1961) and Dubins & Savage (1965). For various for-mulations of such problems, the reader is referred to the papers by Pestien & Sudderth(1985), Heath et al. (1987), Orey et al. (1987), Sudderth & Weerasinghe (1989), and tothe recent book by Maitra & Sudderth (1996).The classical, elliptic Monge-Amp�ere equation det(D2Q) = f , in the notation of (2.2),has a long and venerable history in both Analysis and Geometry; see for instance Pogorelov(1964, 1978), Cheng & Yau (1977), Lions (1983), Krylov (1984, 1987) and Ca�arelli (1990,1991), Ca�arelli & Cabr�e (1995). Parabolic versions of this equation were introduced byKrylov (1976, 1987) and were further studied recently, from the point of view of existence,uniqueness and regularity of solutions to initial- and initial/boundary-value problems, bySpiliotis (1992, 1994, 1997) and Wang & Wang (1992, 1993).3. FORMULATIONLet us start with a given complete probability space (
;F ;Po), and on it(i) a Brownian motion Y (�) = fY (t); 0 � t � Tg on the �nite time-horizon [0; T ], as wellas(ii) a real-valued random variable B, independent of the process Y (�) under the probabilitymeasure Po, and with distribution Po[B 2 A] = �(A); A 2 B(<) that satis�es theconditions of (1.1).We shall denote by F = fF(t); 0 � t � Tg the augmentation of the natural �ltration (1.3)generated by the process Y (�); and by G = fG(t); 0 � t � Tg the augmentation of the�ltration(3:1) FB;Y (t) 4= �(B; Y (s); 0 � s � t); 0 � t � T:Then it can be checked that Y (�) is a (G;Po) { Brownian motion, and that the exponential



8process(3:2) Z(t) 4= exp [BY (t)� B2t=2]; 0 � t � Tis a (G;Po) - martingale; in particular,(3:3) P(�) 4= Eo[Z(T ) � 1�]; � 2 G(T )is a probability measure, equivalent to Po. Under this probability measure P, the process(3:4) W (t) 4= Y (t)�Bt; G(t); 0 � t � Tis standard Brownian motion independent of the random variable B, by the GirsanovTheorem (e.g. Karatzas & Shreve (1991), section 3.5); and we have P[B 2 A] = Po[B 2A] = �(A); A 2 B(<):In other words, on the �ltered probability space (
;F ;P) with F = fF(t); 0 � t � Tg,we are in the setting of the Introduction (section 1, formul� (1.1)-(1.8)), and we areinterested in the stochastic control problem (1.7) posed there. This problem will be thefocus of the remainder of the paper.3.1 Remark: It develops from (1.5) that the continuous processes X(�); 1 � X(�) areboth non-negative local martingales (hence also supermartingales) under the probabilitymeasure Po; for every xo 2 [0; 1] and �(�) 2 A(xo): From a well-known property of non-negative supermartingales (e.g. Karatzas & Shreve (1991), Problem 1.3.29), both theseprocesses are absorbed at the origin when they reach it, namelyX(t) = 0; 8 t 2 [�0; T ] a.e. on f�0 < Tg1�X(t) = 0; 8 t 2 [�1; T ] a.e. on f�1 < Tgwith �j 4= inf ft 2 [0; T );X(t) = jg ^ T and j = 0; 1. Our claim (1.6) follows from this,since � = �0 ^ �1:



94. FILTERING AND DYNAMIC PROGRAMMINGIn this section we shall place the problem of (1.7) within the standard framework of Stochas-tic Control and Dynamic Programming as expounded, for instance, in Fleming & Rishel(1975), Chapter 6, or Fleming & Soner (1993), Chapter 4. Let us start by introducing the(F;Po)� martingale
(4:1) Ẑ(t) 4= Eoh dPdPo jF(t)i = Eo[Z(T )jF(t)]= Eo�Eo[Z(T )jG(t)]jF(t)� = Eo[Z(t)jF(t)]= Eo[ exp (BY (t)� B2t=2)jF(t)]= �F (t; Y (t)) ; 0 < t � T1 ; t = 0 � ;where(4:2) F (t; y) 4= Z< exp (by � b2t=2)�(db); (t; y) 2 (0;1)� <:Let us also write the (F;P) { martingale of (1.12) as
(4:3)

B̂(t) = E[BjF(t)] = Eo[BZ(T )jF(t)]Eo[Z(T )jF(t)]= 1Ẑ(t) �Eo[B �Eo(Z(T )jG(t))jF(t)]= 1Ẑ(t) �Eo[BZ(t)jF(t)]= 1Ẑ(t) �Eo[B exp (BY (t)�B2t=2)jF(t)]= �G(t; Y (t)) ; 0 < t � TR< b�(db) ; t = 0 �with the help of the \Bayes rule" (Lemma 3.5.3 in Karatzas & Shreve (1991). We have set(4:4) G(t; y) 4= 1F (t; y) Z< b exp (by � b2t=2)�(db) = �FyF �(t; y); (t; y) 2 (0;1)�<:Then it is straightforward to verify that the process(4:5) N(t) 4= Y (t)� Z t0 B̂(s)ds = Y (t)� Z t0 G(s; Y (s))ds; 0 � t � T



10is an (F;P){martingale with continuous paths and quadratic variation < N > (t) = t for0 � t � T . In other words, N(�) is an (F;P)-Brownian motion process; it is the familiarinnovations process of �ltering theory (recall the P. L�evy Theorem 3.3.16 in Karatzas &Shreve (1991)).4.1 Remark: The functions F; G of (4.2), (4.4) are of class C1;2 on (0;1) � <, andsatisfy on this strip the equations(4:6) Ft + 12Fyy = 0; Gt + 12Gyy +GGy = 0respectively.The innovations process N(�) of (4.5) will allow us to embed the problem of (1.7)within the usual Dynamic Programming framework for Stochastic Control, as follows. Letus re-write the equation (4.5) in the form(4:7) dY (t) = ~G(T � t; Y (t))dt+ dN(t); T � s � t � T and Y (T � s) = yon the interval [T � s; T ], with ~G(T � t; �) � G(t; �) and with arbitrary initial conditiony 2 < for the observations process Y (�); let us also re-write the equation (1.5) as(4:8) dX(t) = �(t)[ ~G(T � t; Y (t))dt+ dN(t)]; T � s � t � T and X(T � s) = x;again on the interval [T � s; T ] and with arbitrary initial condition x 2 S = [0; 1] for thestate-process X(�). Thus, we can re-express the value of (1.7) as(4:9) V (xo) = U(T; xo; 0);where(4:10) U(s; x; y) 4= sup�(�)2A(x;T�s;T ) E[1f1g(X(T ))]; (s; x; y) 2 [0; T ]� [0; 1]�<:



11We expect the function U : [0; T ]� [0; 1]� < �! [0; 1] of (4.10) to be of class C1;2;2on (0; T ) � (0; 1) � <, and to satisfy in this strip the Hamilton-Jacobi-Bellman (HJB)equation of Dynamic Programming(4:11) Us = 12Uyy + ~GUy +max�2<h(�2=2)Uxx + �( ~GUx + Uxy)i= 12hUyy � 1Uxx ( ~GUx + Uxy)2i+ ~GUyassociated with the dynamics of (4.7)-(4.8), along with the inequality(4:12) Uxx < 0; on (0; T )� (0; 1)� <;the initial condition(4:13) U(0; x; y) = 1f1g(x); (x; y) 2 [0; 1]�<;and the boundary conditions(4:14) U(s; 0+; y) = 0; U(s; 1�; y) = 1; 0 < s < T; y 2 <:The initial-boundary value problem (4.11)-(4.14) for the non-linear equation of (4.11)looks quite complicated. It can be simpli�ed somewhat by use of the transformation(4:15) Q(s; x; y) 4= �U(s; x; y) � F (T � s; y) ; 0 � s < Tlimu%TQ(u; x; y) ; s = T � ; (x; y) 2 [0; 1]� <into the following Initial-Boundary Value Problem(4:16) Q(0; x; y) = F (T; y) � 1f1g(x); (x; y) 2 [0; 1]�<(4:17) Q(s; 0+; y) = 0; Q(s; 1�; y) = F (T � s; y); 0 < s < T; y 2 <(4:18) Qxx < 0; on (0; T )� (0; 1)� <



12for the parabolic-Monge-Amp�ere-type equation(4:19) 2QxxQs = QxxQyy �Q2xy; on (0; T )� (0; 1)� <:4.2 Remark: Subject to the inequality of (4.18), the Monge-Amp�ere-type equation (4.19)can be written as(4:19)0 Qs = 12Qyy +max�2<h(�2=2)Qxx + �Qxy)i; on (0; T )� (0; 1)� <since the expression in brackets is maximized by(4:20) �� = �QxyQxx :The equation (4.19) is then the HJB equation of Dynamic Programming, for the problemof maximizing the probabilityP[X(T ) = 1] = Eo[Ẑ(T ) � 1fX(T )=1g] = Eo[F (T; Y (T )) � 1f1g(X(T ))]over �(�) 2 A(x;T � s; T ), subject to the dynamicsdX(t) = �(t)d�(t); X(T � s) = x 2 [0; 1]dY (t) = d�(t); Y (T � s) = y 2 <on the time-interval [T � s; T ] ; here �(�) is (F;Po) { standard Brownian Motion.4.3 Remark: From (4.9), (4.15) we obtain, formally at least,(4:21) V (xo) = Q(T; xo; 0):On the other hand, we expect from (4.20) that an optimal control process �̂(�) 2 A(xo),as in (1.8), should exist, and should be given in the feedback-form(4:22) �̂(t) = �QxyQxx (T � t; X̂(t); Y (t)) � 1[0;T )(t);



13where X̂(t) = Xxo;�̂(t); 0 � t � T:5. THE MARTINGALE APPROACH OF D. HEATHWe present in this section the solution of Problem (1.7), which is based on the Neyman-Pearson lemma of classical hypothesis-testing and on the martingale methodology, as de-veloped by Heath (1993) for the case of constant B � b 6= 0:The starting point of this approach is the observation that, for every xo 2 [0; 1] and�(�) 2 A(xo), the process X(�) � Xxo;�(�) of (1.5) is an (F;Po){local martingale withvalues in the interval [0; 1], hence an (F;Po){martingale. In particular, we have(5:1)Po[Xxo;�(T ) = 1] = Eo[Xxo;�(T ) � 1fXxo;�(T )=1g] � Eo[Xxo;�(T )] = xo; 8�(�) 2 A(xo):Since the event fXxo;�(T ) = 1g belongs to the �-algebra F(T ), it follows from (5.1) that(5:2) V �(xo) 4= sup�2F(T );Po(�)�xo P(�)dominates the value of our control problem (1.7):(5:3) V �(xo) � V (xo) 4= sup�(�)2A(xo) P[Xxo;�(T ) = 1]:The point here, made by Heath (1993) for constant B � b 6= 0, is that(i) the \auxiliary value" V �(xo) of (5.2) is very easy to compute, and that(ii) equality actually holds in (5.3), so that in turn(iii) we get to compute V (xo) as well. As a by-product of this last computation, we shallbe able to obtain an optimal control process �̂(�) 2 A(xo):In order to make headway with this program, let us observe that the optimizationproblem of (5.2) is the same as that encountered in the classical setting of testing a sim-ple hypothesis versus a simple alternative. The solution of this problem is given by thefollowing celebrated result (e.g. Lehmann (1986)):



145.1 Lemma (Neyman-Pearson): Suppose that we can �nd a number k = �(xo) > 0, suchthat the event �k 4= nEoh dPdPo jF(T )i � kohas Po(�k) = xo; then V �(xo) = P(�k):Proof: For any � 2 F(T ) with Po(�) � xo and with Ẑ(T ) = Eo[ dPdPo jF(T )] as in (4.1),we have P(�k)�P(�) = Z�k\�c Ẑ(T )dPo � Z�ck\� Ẑ(T )dPo� k[Po(�k \ �c)�Po(�ck \ �)]= k[Po(�k)�Po(�)] = k[xo �Po(�)] � 0: }In order to �nd a number k > 0 with the properties of Lemma 5.1, let us notice thatfor every t > 0 the function y 7�! F (t; y) of (4.2) is strictly convex, and that with(5:4) f(t) 4= infy2<F (t; y); t > 0we have one of the following three possibilities:(5.5)(i) �([0;1)) = 1 : Then F (t; �) is strictly increasing on <, with F (t;�1) = f(t) = �(f0g)and F (t;1) =1:(5.5)(ii) �((�1; 0]) = 1 : Then F (t; �) is strictly decreasing on <, with F (t;�1) = 1 andF (t;1) = f(t) = �(f0g):(5.5)(iii) �((0;1)) � �((�1; 0)) > 0 : In this case the in�mum of (5.4) is attained at somey� = �(t) 2 <; the function F (t; �) is strictly increasing on (�(t);1) and strictlydecreasing on (�1; �(t)), with F (t;�1) =1.As a consequence, the function(5:6)h(k) 4= Po(�k) = Po[Ẑ(T ) � k] = Po[F (T; Y (T )) � k] = Zfz;F (T;z)�kg 'T (z)dz; k > f(T )



15is continuous and strictly decreasing, with h(f(T )) 4= limk&f(T )h(k) = 1 and h(1) 4=limk%1h(k) = 0: Thus, for every xo 2 [0; 1], there is a unique k = �(xo) in [f(T );1] withh(�(xo)) = xo; and for this k we have(5:7) V �(xo) = P(��(xo)) = Eo[Ẑ(T ) � 1fẐ(T )��(xo)g] = Zfz;F (T;z)��(xo)g F (T; z)'T (z)dzin the notation of (1.11), (5.2), from Lemma 5.1 and (4.1).Suppose now that we are able to �nd a control process �̂(�) 2 A(xo), such that(5:8) fXxo;�̂(T ) = 1g = ��(xo); mod: P(Po):Then we have(5:9) V �(xo) = P(��(xo)) = P[Xxo;�̂(T ) = 1] � V (xo)from (5.7), (1.7); and in conjunction with (5.3), this proves both the equality(5:10) V (xo) = V �(xo)and the optimality (1.8) of �̂(�) for the problem of (1.7).In order to �nd a process �̂(�) 2 A(xo) with the property (5.8), let us consider the(F;Po){martingale
(5:11) X̂(t) 4= Eo[1��(xo) jF(t)] = Po[Ẑ(T ) � �(xo)jF(t)]= Po[F (T; Y (t) + (Y (T )� Y (t)) � �(xo)jF(t)]= X (T � t; Y (t)); 0 � t � Twhere(5:12) X (s; y) 4= � 1fF (T;y)��(xo)g ; s = 0; y 2 <Rfz;F (T;y+z)��(xo)g 's(z)dz ; s > 0; y 2 <:�



16The process X̂(�) of (5.11) takes values in the interval S = [0; 1] and starts out atX̂(0) = X (T; 0) = h(�(xo)) = xo, by virtue of (5.6) and (5.12). From the martingale rep-resentation property of the Brownian �ltration (e.g. Karatzas & Shreve (1991), Theorem3.4.15), there exists a process �̂(�) 2 A(xo) such that(5:13) X̂(t) = Xxo;�̂(t) 4= xo + Z t0 �̂(s)dY (s); 0 � t � Tholds Po{almost surely; and this process �̂(�) is unique, modulo (�
Po){a.e. equivalence,where � stands for \Lebesgue measure". In particular,(5:14) Xxo;�̂(T ) = X̂(T ) = 1��(xo) ; a:s:so that (5.8) holds.The process �̂(�) of (5.13) can be identi�ed explicitly, in the following manner: noticethat the function(5:12)0 X (s; y) = Zfz;F (T;z)��(xo)g 's(y � z)dzof (5.12) is of class C1;2 and satis�es the heat equation(5:15) Xs = 12Xyy; on (0;1)� <:Therefore, an application of Itô' s rule to (5.11) yieldsX̂(t) = xo + Z t0 Xy(T � s; Y (s))dY (s); 0 � t � T ;and from the uniqueness of the stochastic integral representation (5.13), we conclude�̂(t) = Xy(T � t; Y (t)) � 1[0;T )(t); 0 � t � Twhere Xy(s; y) = Zfz;F (T;z)��(xo)g�z � ys � 's(y � z)dz; s > 0; y 2 <:



17We have proved the following result.5.2 Theorem: The value-function of the stochastic control problem (1.7) is given by theexpression of (5.7). An optimal control process �̂(�) 2 A(xo); and its corresponding state-process X̂(�) � Xx0;�̂(�); are given as(5:16) �̂(t) = Xy(T � t; Y (t)) � 1[0;T )(t); X̂(t) = X (T � t; Y (t)); 0 � t � Tin the notation of (5.12).5.3 Remark: Let us look at the value-process(5:17) �(t) 4= E[1��(xo) jF(t)] = P[X̂(T ) = 1jF(t)]; 0 � t � T:This is an (F;P){martingale with �(0) = V (xo); �(T ) = 1f1g(X̂(T )); a:s: ; from the Bayesrule, it can be written as(5:18)�(t) = Eo[Z(T ) � 1��(xo) jF(t)]Eo[Z(T )jF(t)]= 1Ẑ(t) �EohF (T; Y (T )) � 1fF (T;Y (T ))��(xo)gjF(t)]i= 1Ẑ(t) �EohF (T; Y (t) + (Y (T )� Y (t))) � 1fF (T;Y (t)+(Y (T )�Y (t)))��(xo)gjF(t)]i= � H(T�t;Y (t))F (t;Y (t)) ; 0 < t � TH(T; 0) ; t = 0 �where(5:19) H(s; y) 4= � F (T; y) � 1fF (T;y)��(xo)g ; s = 0; y 2 <Rfz;F (T;y+z)��(xo)g F (T; y + z)'s(z)dz ; s > 0; y 2 <:�This function is of class C1;2 and satis�es the heat equation(5:20) Hs = 12Hyy; on (0;1)� <:In particular, we have(5:7)0 V (xo) = H(T; 0)



18from (5.19), (5.7).In sections 6-9 we shall compute the quantities of Theorem 5.2 (optimal control process�̂(�), optimal state-process X̂(�), value function) even more explicitly, in each of the threecases of (5.5). We shall also show, in each of the three cases, how to compute a functionQ : [0; T ]� [0; 1]� < �! [0; 1] which solves the initial-boundary value problem of (4.16)-(4.19) for the Monge-Amp�ere-type equation (4.19), and satis�es(5:21) V (xo) = Q(T; xo; 0); xo 2 [0; 1]as well as(5:22) H(s; y) = Q(s;X (s; y); y); (s; y) 2 [0; T ]� <(5:23) Xy(s; y) = �QxyQxx (s;X (s; y); y); (s; y) 2 (0; T ]�<in the notation of (5.12), (5.19), and in accordance with (4.22), (5.16).6. THE CASE �([0;1)) = 1:This is the case of (5.5)(i): for every t > 0, the function F (t; �) is strictly increasing,and maps < onto (�(f0g);1) with F (t;�1) = �(f0g); F (t;1) = 1. If we denote byF�1(t; �) : (�(f0g);1) �! < the inverse of this mapping, the function of (5.6) becomesh(k) = Z 1F�1(T;k) 'T (z)dz = ���F�1(T; k)pT �; k > �(f0g):We have thus F�1(T; �(xo)) = �pT��1(xo); and the quantities of (5.12), (5.19) become(6:1) X (s; y) = ( 1[�pT��1(xo);1)(y) ; s = 0; y 2 <��y+pT��1(xo)ps � ; s > 0; y 2 <)(6:2)H(s; y) = ( F (T; y) � 1[�pT��1(xo);1)(y) ; s = 0R y+pT��1(xo)�1 F (T; y � z)'s(z)dz = Rps��1(X (s;y))�1 F (T; y � z)'s(z)dz ; s > 0)



19for y 2 <. As a consequence, the optimal state-and control-processes of (5.16) take theform(6:3) X̂(t) = ( 1[�pT��1(xo);1)(Y (T )) ; t = T��Y (t)+pT��1(xo)pT�t � ; 0 � t < T )and(6:4) �̂(t) = 1pT � t '�Y (t) +pT��1(xo)pT � t � � 1[0;T )(t)= 1pT � t (' � ��1)(X̂(t)) � 1[0;T )(t); 0 � t � Trespectively. Notice that these formul� (6.3), (6.4) do not depend on the particular formof the distribution � at all.6.1 Remark: In this case the function G of (4.4) is strictly positive, and so the sameis true for the estimate B̂(t) = E[BjF(t)] = G(t; Y (t)) of (4.3). Therefore, the optimalcontrol-process �̂(�) is trivially of the \certainty-equivalence" form (1.13).From the expression (6.2) for H(s; y); it is now not hard to construct the function Qthat satis�es (5.22).6.2 Proposition: The function(6:5) Q(s; x; y) = � F (T; y) � 1f1g(x) ; s = 0; x 2 [0; 1]; y 2 <R ps��1(x)�1 F (T; y � z)'s(z)dz ; 0 < s � T; x 2 [0; 1]; y 2 <�solves the initial-boundary value problem (4.16)-(4.19) for the parabolic-Monge-Amp�ere-type equation (4.19), and satis�es the conditions (5.21)-(5.23).Elementary computations lead to this result; some of these are facilitated by writingthe second expression of (6.5) in the form(6:5)0 Q(s; x; y) = Z ��1(x)�1 F (T; y � zps)'(z)dz= Z[0;1) exp [by � b2(T � s)=2] �(��1(x) + bps) �(db);



20on (0; T ]� [0; 1]�<: The details of these derivations are left to the care of the reader, whoshould also notice the discontinuity of the function Q in (6.5), as s& 0:Q(0+; x; y) 4= lims&0Q(s; x; y)= Z[0;1) exp [by � b2T=2] �(��1(x)) �(db)= xF (T; y) 6= Q(0; x; y); 0 � x < 1; y 2 <:6.3 Example: In the special case � = �b; b > 0 considered by Kulldor� (1993), thefunctions F;G and Q of (4.2), (4.4) and (6.5) become respectively F (t; y) = exp [by �b2=t]; G(t; y) = b and Q(s; x; y) = F (T � s; y)U(s; x; y); where(6:6) U(s; x; y) = � 1f1g(x) ; s = 0; 0 � x � 1�(��1(x) + bps) ; 0 < s � T; 0 � x � 1�is the function of (4.10) in the present context. This function does not depend on y 2 <;it solves the initial-boundary value problem (4.11)-(4.14) for the HJB equation (4.11),which now takes the much simpler form(6:7) Us + b22 U2xUxx = 0; s > 0; 0 < x < 1:7. THE CASE �((�1; 0]) = 1:Here we are in the setup of case (5.5)(ii). It is straight-forward to see that the analoguesof (6.1), (6.2) and (6.5) are now(7:1) X (s; y) = ( 1[pT��1(xo);1)(y) ; s = 0; y 2 <�(pT��1(xo)�yps ) ; s > 0; y 2 <;)(7:2) H(s; y) = ( F (T; y) � 1[pT��1(xo);1)(y) ; s = 0; y 2 <R ps��1(X (s;y))�1 F (T; y + z)'s(z)dz ; s > 0; y 2 <;)and(7:3) Q(s; x; y) = � F (T; y) � 1f1g(x) ; s = 0; x 2 [0; 1]; y 2 <R ps��1(x)�1 F (T; y + z)'s(z)dz ; 0 < s � T; x 2 [0; 1]; y 2 <�



21respectively; that the function Q satis�es the initial-boundary value problem of (4.16)-(4.19); and that the optimal processes of Theorem 5.2 areX̂(t) = X (T � t; Y (t)); 0 � t � Tand �̂(t) = �1pT � t '�pT��1(xo)� Y (t)pT � t � = sgnB̂(t)pT � t (' � ��1)(X̂(t)); 0 � t < T:In other words, the \certainty-equivalence principle" of (1.13) leads again to an optimalcontrol process.8. THE SYMMETRIC CASEBefore we tackle the general case �((�1; 0))��((0;1)) > 0 of (5.5)(iii) in the next section,let us consider here a symmetric distribution �, that is�(A) = �(�A); 8A 2 B(<)with �((�1; 0)) = �((0;1)) > 0: In this case, the functiony 7�! F (t; y) = �(f0g) + 2 Z(0;1) e�b2t=2cosh(by)�(db); t > 0is evenly symmetric and strictly convex; it is also strictly increasing on [0;1) with F (t;1) =1; and f(t) = F (t; 0) = �(f0g)+2 R(0;1) e�b2t=2�(db) in the notation of (5.4). This func-tion maps [0;1] onto [f(t);1]; we denote by F�1(t; �) : [f(t);1] �! [0;1] the inverse ofF (t; �) on [0;1]; so that F (T; z) � k () jzj � F�1(T; k)h(k) = 2h1� ��F�1(T; k)pT �ifor k � f(T ), and thus F�1(T; �(xo)) = pT��1(1�(xo=2)) in the notation of (5.6), (5.7).Similarly, the functions of (5.12), (5.19) become(8:1) X (s; y) = L(s; y;pT��1(1� (xo=2))); H(s; y) =M(s; y;pT��1(1� (xo=2)))



22where(8:2)L(s; y; p) 4= � 1fjyj�pg ; s = 0; y 2 <; p > 0Rfjzj�pg 's(y � z)dz = 2� �(p�yps )� �(p+yps ) ; s > 0; y 2 <; p > 0�and(8:3) M(s; y; p) 4= � F (T; y) � 1fjyj�pg ; s = 0; y 2 <; p > 0Rfjzj�pg F (T; z)'s(y � z)dz ; s > 0; y 2 <; p > 0:�Notice that, for every given p > 0, the functions of (8.2), (8.3) satisfy the heat equation(8:4) Ls = 12Lyy; Ms = 12Myy on (0;1)� <:With this notation, the optimal control-process �̂(�) and the optimal state-process X̂(�) ofTheorem 5.2 are given as(8:5) �̂(t) = Ly(T � t; Y (t); p�) � 1[0;T )(t); X̂(t) = L(T � t; Y (t); p�); 0 � t � Twhere p� = pT��1(1� (xo=2)):8.1 Remark: In the notation of (1.11), (8.2) we have(8:6) Ly(s; y; p) = 1psh'�y � pps �� '�y + pps �i ; s > 0:Observe from this, that the function X (s; �) of (8.1) is evenly symmetric, and strictlyincreasing on (0;1) with X (s; 0) = 2[1��(��1(1�(xo=2))pT=s)]; X (s;1) = 1: Denotingby Y(s; �) : [X (s; 0); 1] �! [0;1] the inverse of this mapping, we get jY (t)j = Y(T�t; X̂(t))and thus also(8:7) �̂(t) = sgnY (t) � Ly�T � t; Y(T � t; X̂(t)); p��; 0 � t < Twhere p� = pT��1(1� (xo=2)):Now it is not hard to see that the function G(t; �) of (4.4) is oddly symmetric on<, with sgnG(t; y) = sgn(y); t > 0: Thus sgnY (t) = sgnB̂(t); and we can re-write theexpression (8.7) for the optimal control process as a function(8:8) �̂(t) = sgnB̂(t)pT � t h'� y � ppT � t�� '� y + ppT � t�i ��� y=Y(T�t;X̂(t))p=pT��1(1�(xo=2))



23of the current state X̂(t) and the current estimate B̂(t) = E[BjF(t)] of the unobservabledrift-parameter B. The expression (8.8) is quite di�erent from (1.13), the feedback lawpostulated by the \certainty-equivalence principle". Again, however, the formul� (8.5),(8.7) do not depend on the particular form of the \prior distribution" measure � at all.For every �xed (s; y) 2 (0;1)�<, the mapping p 7�! L(s; y; p) of (8.2) is continuousand strictly decreasing on (0;1) with L(s; y; 0+) = 1 and L(s; y;1) = 0; we shall denoteby P (s; y; �) : [0; 1] �! [0;1] the inverse of this mapping.8.2 Theorem: The function(8:9) Q(s; x; y) 4= � F (T; y) � 1f1g(x) ; s = 0; (x; y) 2 [0; 1]� <M(s; y;P (s; y;x)) ; 0 < s � T; (x; y) 2 [0; 1]� <�solves the initial-boundary value problem (4.16)-(4.19) for the parabolic-Monge-Amp�ere-type equation (4.19), and satis�es the conditions (5.21)-(5.23).The computations required for the proof of this result are a little heavier than thoseneeded for Theorem 7.2; we leave them again to the attention of the reader, but note thatthe veri�cation of the boundary conditions (4.17) is facilitated by the formula(8:10) M(s; y; p) = Z< eby�b2(T�s)=2 L(s; y + bs; p)�(db)which links the functions of (8.2) and (8.3).9. THE CASE �((�1; 0)) � �((0;1)) > 0We are now in the setup of case (5.5)(iii). For every t > 0, let us denote by F�1+ (t; �) :[f(t);1] �! [�(t);1] and F�1� (t; �) : [f(t);1] �! [�1; �(t)], the inverses of the functionF (t; �) on [�(t);1] (respectively, on [�1; �(t)]), and set ��(�) 4= F�1� (T; �). The functionsof (5.6) and (5.12), (5.19) are now given ash(k) = � Z ��(k)�1 + Z 1�+(k) �'T (z)dz; k � f(T );



24and(9:1) X (s; y) = L(s; y; +; �)(9:2) H(s; y) = M(s; y; +; �)on [0;1)�<, where we have set � 4= ��(�(xo)) and(9:3) L(s; y; p; r) 4= ( 1[p;1)(y) + 1(�1;r](y) ; s = 0�R r�1+ R1p �'s(y � z)dz = 2� �(p�yps )� �(y�rps ) ; s > 0)
(9:4) M(s; y; p; r) 4= 8<:F (T; y) � �1[p;1)(y) + 1(�1;r](y)� ; s = 0�R r�1+ R1p �F (T; z)'s(y � z)dz ; s > 09=;= Z< eby�b2(T�s)=2 L(s; y + bs; p; r)�(db); y 2 <;for �1 < r � p < 1. For any such given pair (p; r), the functions of (9.3), (9.4) satisfythe heat equation, as in (8.4). Furthermore, we have the expressions(9:5) �̂(t) = Ly(T � t; Y (t); +; �) = 1psh'�y � +ps ��'�y � �ps �i ��� s=T�ty=Y (t) ; 0 � t < T(9:6) X̂(t) = L(T � t; Y (t); +; �); 0 � t � Tfor the optimal processes of Theorem 5.2.On the other hand, for �xed (s; y) 2 (0; T ]�<, the equations(9:7) L(s; y; p; r) = x(9:8) F (T; p) = F (T; r)determine a unique pair (p; r) 4= (P (s; y;x); R(s; y;x)); �1 < r � �(T ) � p <1, for anygiven x 2 [0; 1]. In terms of the resulting functions P and R; we have then the followinganalogue of Theorem 8.2.



259.1 Theorem: The function(9:9) Q(s; x; y) 4= 8<: F (T; y) � 1f1g(x) ; s = 0; (x; y) 2 [0; 1]�<M(s; y; p; r) ��� p=P(s;y;x)r=R(s;y;x) ; 0 < s � T; (x; y) 2 [0; 1]�<9=;solves the initial-boundary value problem (4.16)-(4.19) and satis�es the conditions (5.21)-(5.23).We shall leave again the necessary computations to the care of the diligent reader.
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