
Submitted to the Annals of Probability

MARTINGALE APPROACH TO STOCHASTIC
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By Ioannis Karatzas and Ingrid-Mona Zamfirescu
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We develop a martingale approach for studying continuous-time
stochastic differential games of control and stopping, in a non-Markovian
framework and with the control affecting only the drift term of the
state-process. Under appropriate conditions, we show that the game
has a value and construct a saddle pair of optimal control and stop-
ping strategies. Crucial in this construction is a characterization of
saddle pairs in terms of pathwise and martingale properties of suit-
able quantities.

1. Introduction and Synopsis. We develop a theory for zero-sum
stochastic differential games with two players, a “controller” and a “stop-
per”. The state X(·) in these games evolves in Euclidean space according
to a stochastic functional/differential equation driven by a Wiener process;
via his choice of instantaneous, non-anticipative control u(t) , the controller
can affect the local drift of this state process X(·) at time t , though not
its local variance.

The stopper decides the duration of the game, in the form of a stopping
rule τ for the process X(·) . At the terminal time τ the stopper receives
from the controller a “reward”

∫ τ
0 h(t,X, ut) dt + g(X(τ)) consisting of two

parts: The integral up to time τ of a time-dependent running reward h ,
which also depends on the past and present states X(s) , 0 ≤ s ≤ t and
on the present value ut of the control; and the value at the terminal state
X(τ) of a continuous terminal reward function g (“reward” always refers
to the stopper).

Under appropriate conditions on the local drift and local variance of the
state process, and on the running and terminal cost functions h and g ,
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2 KARATZAS, I. AND ZAMFIRESCU, I-M.

we establish the existence of a value for the resulting stochastic game of
control and stopping, as well as regularity and martingale-type properties
of the temporal evolution for the resulting value process. We also construct
optimal strategies for the two players, in the form of a saddle point (u∗ , τ∗) ,
to wit: the strategy u∗(·) is the controller’s best response to the stopper’s
use of the stopping rule τ∗ , in the sense of minimizing total expected cost;
and the stopping rule τ∗ is the stopper’s best response to the controller’s
use of the control strategy u∗(·) , in the sense of maximizing total expected
reward.

The approach of the paper is direct and probabilistic. It draws on the
Dubins-Savage (1965) theory, and builds on the martingale methodologies
developed for the optimal stopping problem and for the problem of opti-
mal stochastic control problem over the last three decades; see, for instance,
Neveu (1975), El Karoui (1981), Beneš (1970, 1971), Rishel (1970), Dun-
can & Varaiya (1971), Davis & Varaiya (1973), Davis (1973, 1979), Elliott
(1977, 1982). It proceeds in terms of a characterization of saddle points via
martingale-type properties of suitable quantities, which involve the value
process of the game.

An advantage of the approach is that it imposes no Markovian assump-
tions on the dynamics of the state-process; it allows the local drift and
variance of the state-process, as well as the running cost, to depend at any
given time t on past-and-present states X(s) , 0 ≤ s ≤ t in a fairly gen-
eral, measurable manner. (The boundedness and continuity assumptions can
most likely be relaxed.)

The main drawback of this approach is that it imposes a severe non-
degeneracy condition on the local variance of the state-process, and does
not allow this local variance to be influenced by the controller. We hope
that subsequent work will be able to provide a more general theory for such
stochastic games, possibly also for their non-zero-sum counterparts, without
such restrictive assumptions – at least in the Markovian framework of, say,
Fleming & Soner (2006), El Karoui et. al. (1987), Bensoussan & Lions (1982)
or Bismut (1978, 1973). It would also be of considerable interest, to provide
a theory for control of “bounded variation” type (admixture of absolutely
continuous, as in this paper, with pure jump and singular, terms).

Extant Work: A game between a controller and a stopper, in discrete time
and with Polish (complete separable metric) state-space, was studied by
Maitra & Sudderth (1996.b); under appropriate conditions, these authors
obtained the existence of a value for the game and provided a transfinite
induction algorithm for its computation.

In Karatzas & Sudderth (2001) a similar game was studied for a linear
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STOCHASTIC DIFF. GAMES OF CONTROL AND STOPPING 3

diffusion process, with the unit interval as its state-space and absorption
at the endpoints. The one-dimensional nature of the setup allowed an ex-
plicit computation of the value and of a saddle pair of strategies, based
on scale-function considerations and under a non-degeneracy condition on
the variance of the diffusion. Karatzas & Sudderth (2007) studied recently
non-zero-sum versions of these linear diffusion games, where one seeks and
constructs Nash equilibria, rather than saddle pairs, of strategies. Always
in a Markovian, one-dimensional framework, Weerasinghe (2006) was able
to solve in a similar, explicit manner, a stochastic game with variance that
is allowed to degenerate; while Bayraktar & Young (2007) establish a very
interesting convex-duality connection, between a stochastic game of control
and stopping and a probability-of-ruin-minimization problem.

Along a parallel tack, stochastic games of stopping have been treated
via the theory of Backwards Stochastic Differential Equations starting with
Cvitanić & Karatzas (1996), and continuing with Hamadène & Lepeltier
(1995, 2000), Hamadène (2006) for games of mixed control/stopping.

The methods used in the present paper are entirely different from those
in all these works.

• The coöperative version of the game has received far greater attention.
In the standard model of stochastic control, treated for instance in the clas-
sic monograph Fleming & Soner (1992), the controller may influence the
state dynamics but must operate over a prescribed time-horizon. If the con-
troller is also allowed to choose a it quitting time adaptively, at the expense
of incurring a termination cost, one has a problem of control with discre-
tionary stopping (or “leavable” control problem, in the terminology of Du-
bins & Savage (1976)). General existence/characterization results for such
problems were obtained by Dubins & Savage (1976) and by Maitra & Sud-
derth (1996.a) under the rubric of “leavable” stochastic control; by Krylov
(1980), El Karoui (1981), Bensoussan & Lions (1982), Haussmann & Lep-
eltier (1990), Maitra & Sudderth (1996.a), Morimoto (2003), Ceci & Basan
(2004); and by Karatzas & Zamfirescu (2006) in the present framework.
There are also several explicitly solvable problems in this vein: see Beneš
(1992), Davis & Zervos (1994), Karatzas & Sudderth (1999), Karatzas et
al. (2000), Karatzas & Wang (2000, 2001), Kamizono & Morimoto (2002),
Karatzas & Ocone (2002), Ocone & Weerasinghe (2006).

Such problems arise, for instance, in target-tracking models, where one has
to stay close to a target by spending fuel, declare when one has arrived ‘suf-
ficiently close’, then decide whether to engage the target or not. Combined
stochastic control

/
optimal stopping problems also arise in mathematical

finance, namely, in the context of computing the upper-hedging prices of
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American contingent claims under constraints; these computations lead to
stochastic control of the absolutely continuous or the singular type (e.g.
Karatzas & Kou (1998), Karatzas & Wang (2000)).

The computation of the lower-hedging prices for American contingent
claims under constraints, leads to stochastic games of control and stopping;
see Karatzas & Kou (1998) for details.

Synopsis: We set up in the next section the model for a controlled stochastic
functional/differential equation driven by a Wiener process, that will be used
throughout the paper; this setting is identical to that of Elliott (1982) and
of our earlier paper Karatzas & Zamfirescu (2006). Within this model, we
formulate in section 3 the stochastic game of control and stopping that
will be the focus of our study. Section 4 reviews in the present context
the classical results for optimal stopping on the one hand, and for optimal
stochastic control on the other, when these problems are viewed separately.

Section 5 establishes the existence of a value for the stochastic game,
and studies the regularity and some simple martingale-like properties of
the resulting value process evolving through time. This study continues in
earnest in section 6 and culminates with Theorem 6.3.

Section 7 then builds on these results, to provide necessary and sufficient
conditions for a pair (u , τ) consisting of a control strategy and a stopping
rule, to be a saddle point for the stochastic game. These conditions are
couched in terms of martingale-like properties for suitable quantities, which
involve the value process and the cumulative running reward. A similar
characterization is provided in section 8 for the optimality of a given control
strategy u(·) .

With the help of the predictable representation property of the Brownian
filtration under equivalent changes of probability measure, and of the Doob-
Meyer decomposition for sufficiently regular submartingales, this character-
ization leads – in section 9, and under appropriate conditions – to a specific
control strategy u∗(·) as candidate for optimality. These same martingale-
type conditions suggest τ∗ , the first time the value process V (·) of the game
agrees with the terminal reward g(X(·)) , as candidate for optimal stopping
rule. Finally, it is shown that the pair (u∗ , τ∗) is indeed a saddle point of
the stochastic game, and that V ( · ∧ τ∗) has continuous paths.

Notation: The paper is quite heavy with notation, so here is a partial list
for ease of reference:

X(t), W u(t) : Equations (1), (6) and equation (4), respectively.
Λu(t), Λu(t, τ) : Exponential likelihood ratios (martingales); equations (3)
and (25).
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Y u(t, τ), Y u(τ) : Total (i.e., terminal, plus running) cost/reward on the
interval [[ t, τ ]]: equations (8), (23).
V , V and V (t), V (t) : Upper and lower values of the game; equations (9),
(11), (12).
J(t, τ) : Minimal conditional expected total cost on the interval [[ t, τ ]];
equation (14).
Zu(t) : Maximal conditional expected reward under control u(·), from time
t onward; equation (19).
Qu(t) : Cumulative maximal conditional expected reward under control
u(·), at time t ; equation (20).
Ru(t) : Cumulative value of game under control u(·), at t ; equation (36).
τu
t (ε), τu

t : Stopping rules; equation (22).
%t(ε), %t : Stopping rules; equation (33).
H(t, ω, a, p) : Hamiltonian function; equation (72).
Saddle Point: Inequalities (10).
Thrifty Control Strategy: Requirement (66).

2. The Model. Consider the space Ω = C([0, T ];Rn) of continuous
functions ω : [0, T ] → Rn , defined on a given bounded interval [0, T ] and
taking values in some Euclidean space Rn. The coördinate mapping process
will be denoted by W (t, ω) = ω(t), 0 ≤ t ≤ T , and FW

t = σ
(
W (s); 0 ≤ s ≤

t
)
, 0 ≤ t ≤ T will stand for the natural filtration generated by this process

W . The measurable space (Ω,FW
T ) will be endowed with Wiener measure

P , under which W becomes standard n-dimensional Brownian motion. We
shall denote by F = {Ft}0≤t≤T the P−augmentation of this natural filtra-
tion, and use the notation ||ω||∗t := max0≤s≤t |ω(s)| , ω ∈ Ω , 0 ≤ t ≤ T .

The σ-algebra of predictable subsets of the product space [0, T ]×Ω will
be denoted by P , and S will stand for the collection of stopping rules of
the filtration F . These are measurable mappings τ : Ω → [0, T ] with the
property

{τ ≤ t} ∈ Ft , ∀ 0 ≤ t ≤ T .

Given any two stopping rules ρ and ν with ρ ≤ ν , we shall denote by Sρ,ν

the collection of all stopping rules τ ∈ S with ρ ≤ τ ≤ ν .

Consider now a predictable (i.e., P−measurable) σ : [0, T ]×Ω → L (Rn;Rn)
with values in the space L (Rn;Rn) of (n× n) matrices, and suppose that
σ(t, ω) is non-singular for every (t, ω) ∈ [0, T ] × Ω and that there exists
some real constant K > 0 for which
∣∣∣∣ σ−1(t, ω)

∣∣∣∣ ≤ K and
∣∣ σij(t, ω)−σij(t, ω̃)

∣∣ ≤ K
∣∣∣∣ ω−ω̃

∣∣∣∣∗
t
, ∀ 1 ≤ i, j ≤ n

imsart-aop ver. 2007/09/18 file: "AOP_Stoch Games Control & Stop".tex date: October 20, 2007



6 KARATZAS, I. AND ZAMFIRESCU, I-M.

hold for every ω ∈ Ω , ω̃ ∈ Ω and every t ∈ [0, T ] . Then for any initial
condition x ∈ Rn , there is a pathwise unique, strong solution X(·) of the
stochastic equation

(1) X(t) = x +
∫ t

0
σ(s,X) dW (s) , 0 ≤ t ≤ T ;

see Theorem 14.6 in Elliott (1982). In particular, the augmentation of the
natural filtration generated by X(·) coincides with the filtration F itself.

Now let us introduce an element of control in this picture. We shall denote
by U the class of admissible control strategies u : [0, T ]×Ω → A . These are
predictable processes with values in some given separable metric space A .
We shall assume that A is a countable union of nonempty, compact subsets,
and is endowed with the σ−algebra A of its Borel subsets.

We shall consider also a P⊗A−measurable function f : ([0, T ]×Ω)×A →
Rn with the following properties:
• for each a ∈ A , the mapping (t, ω) 7→ f(t, ω, a) is predictable; and
• there exists a real constant K > 0 such that

(2) |f(t, ω, a)| ≤ K ( 1 + ||ω||∗t ) , ∀ 0 ≤ t ≤ T , ω ∈ Ω , a ∈ A .

For any given admissible control strategy u(·) ∈ U , the exponential pro-
cess
(3)

Λu(t) := exp
{∫ t

0
〈σ−1(s, X)f(s,X, us), dW (s)〉 − 1

2

∫ t

0

∣∣σ−1(s,X)f(s, X, us)
∣∣2ds

}

0 ≤ t ≤ T , is a martingale under all these assumptions; namely, E (Λu(T )) =
1 (see Beneš (1971), as well as Karatzas & Shreve (1991), pages 191 and 200
for this result). Then the Girsanov theorem (ibid., section 3.5) guarantees
that the process

(4) W u(t) := W (t)−
∫ t

0
σ−1(s, X)f(s,X, us) ds , 0 ≤ t ≤ T

is a Brownian motion with respect to the filtration F , under the new prob-
ability measure

(5) Pu(B) := E [ Λu(T ) · 1B ] , B ∈ FT ,

which is equivalent to P . It is now clear from the equations (1) and (4) that

(6) X(t) = x +
∫ t

0
f(s,X, us) ds +

∫ t

0
σ(s,X) dW u(s) , 0 ≤ t ≤ T
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STOCHASTIC DIFF. GAMES OF CONTROL AND STOPPING 7

holds almost surely. This will be our model for a controlled stochastic func-
tional/differential equation, with the control appearing only in the drift
(bounded variation) term.

3. The Stochastic Game of Control and Stopping. In order to
specify the objective of our stochastic game of control and stopping, let us
consider two bounded, measurable functions h : [0, T ] × Ω × A → R and
g : Rn → R . We shall assume that the running reward function h satisfies
the measurability conditions imposed on the drift-function f above, except
of course that (2) is now strengthened to the boundedness requirement

(7) |h(t, ω, a)| ≤ K , ∀ 0 ≤ t ≤ T , ω ∈ Ω , a ∈ A .

To simplify the analysis, we shall assume that the terminal reward function
g is continuous.

We shall study a stochastic game of control and stopping with two players:
The controller, who chooses an admissible control strategy u(·) in U ; and
the stopper, who decides the duration of the game by his choice of stopping
rule τ ∈ S . When the stopper declares the game to be over, he receives
from the controller the amount Y u(τ) ≡ Y u(0, τ) , where

(8) Y u(t, τ) := g
(
X(τ)

)
+

∫ τ

t
h(s,X, us) ds for τ ∈ S t , T , t ∈ S .

It is thus in the best interest of the controller (respectively, the stopper)
to make the amount Y u(τ) as small (respectively, as large) as possible, at
least on the average. We are thus led to a stochastic game, with

(9) V := inf
u∈U

sup
τ∈S

Eu(
Y u(τ)

)
, V := sup

τ∈S
inf
u∈U

Eu(
Y u(τ)

)

as its upper- and lower-values, respectively; clearly, V ≤ V .
We shall say that the game has a value, if its upper- and lower-values

coincide, i.e., V = V ; in that case we shall denote this common value
simply by V .

A pair ( u∗, τ∗) ∈ U× S will be called saddle point of the game, if

(10) Eu∗(Y u∗(τ)
) ≤ Eu∗(Y u∗(τ∗)

) ≤ Eu(
Y u(τ∗)

)

holds for every u(·) ∈ U and τ ∈ S . In words: the strategy u∗(·) is the
controller’s best response to the stopper’s use of the rule τ∗ ; and the rule τ∗
is the stopper’s best response to the controller’s use of the strategy u∗(·) .

If such a saddle-point pair (u∗, τ∗) exists, then it is quite clear that the
game has a value. We shall characterize the saddle property in terms of
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simple, pathwise and martingale properties of certain crucial quantities; see
Theorem 7.1. Then, in sections 8 and 9, we shall use this characterization
in an effort to show that a saddle point indeed exists and to identify its
components.

In this effort we shall need to consider, a little more generally than in (9),
the upper-value-process

(11) V (t) := essinf
u∈U

esssup
τ∈St,T

Eu (Y u(t, τ) | Ft)

and the lower-value-process

(12) V (t) := esssup
τ∈St,T

essinf
u∈U

Eu (Y u(t, τ) | Ft)

of the game, for each t ∈ S . Clearly V (0) = V , V (0) = V as well as

(13) g
(
X(t)) ≤ V (t) ≤ V (t) , ∀ t ∈ S .

We shall see in Theorem 5.1 that this last inequality holds, in fact, as an
equality: the game has a value at all times.

4. Optimal Control and Stopping Problems, Viewed Separately.
Given any stopping rule t ∈ S , we introduce the minimal conditional ex-
pected cost

(14) J(t, τ) := essinf
v∈U

Ev (Y v(t, τ) | Ft) ,

that can be achieved by the controller over the stochastic interval

(15) [[ t, τ ]] := {(s, ω) ∈ [0, T ]× Ω : t(ω) ≤ s ≤ τ(ω) } ,

for each stopping rule τ ∈ S t , T . With the notation (14), the lower value
(12) of the game becomes

(16) V (t) = esssup
τ∈St,T

J(t, τ) ≥ J(t, t) = g
(
X(t)

)
, a.s.

By analogy with the classical martingale approach to stochastic control
(developed by Rishel (1970), Duncan & Varaiya (1971), Davis & Varaiya
(1973), Davis (1973) and outlined in Davis (1979), El Karoui (1981)), for any
given admissible control strategy u(·) ∈ U and any stopping rules t , ν , τ
with 0 ≤ t ≤ ν ≤ τ ≤ T , we have the Pu−submartingale property
(17)

Eu (Ψu(ν, τ) | Ft) ≥ Ψu(t, τ) for Ψu(t, τ) := J(t, τ) +
∫ t

0
h(s,X, us) ds,
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or equivalently

(18) Eu
[
J(ν, τ) +

∫ ν

t
h(s,X, us) ds

∣∣∣Ft

]
≥ J(t, τ) , a.s.

A very readable account of this theory appears in Chapter 16, pp. 222-241
of Elliott (1982).

4.1. A Family of Optimal Stopping Problems. For each admissi-
ble control strategy u(·) ∈ U , we define the maximal conditional expected
reward

(19) Zu(t) := esssup
τ∈St,T

Eu (Y u(t, τ) | Ft) , t ∈ S

that can be achieved by the stopper from time t onward, as well as the
“cumulative” quantity

(20) Qu(t) := Zu(t) +
∫ t

0
h(s, X, us) ds = esssup

τ∈St,T

Eu (Y u(τ) | Ft) ;

in particular,

(21) Zu(t) ≥ Y u(t, t) = g (X(t)) , V (t) = essinf
u∈U

Zu(t).

Let us introduce the stopping rules

(22) τu
t (ε) := inf

{
s ∈ [ t, T ] : g

(
X(s)

) ≥ Zu(s)−ε
}

, τu
t := τu

t (0)

for each t ∈ S , 0 ≤ ε < 1 . Then τu
t (ε) ≤ τu

t .
From the classical martingale approach to the theory of optimal stop-

ping (e.g., El Karoui (1981) or Karatzas & Shreve (1998), Appendix D), the
following results are well known.

Proposition 4.1. The process Qu(·) ≡ {Qu(t), 0 ≤ t ≤ T} is a Pu-
supermartingale with paths that are RCLL (Right-Continuous, with Limits
from the Left); it dominates the continuous process Y u(·) given as

(23) Y u(t) ≡ Y u(0, t) = g (X(t)) +
∫ t

0
h(s,X, us) ds, 0 ≤ t ≤ T ;

and Qu(·) is the smallest RCLL supermartingale which dominates Y u(·).
In other words, Qu(·) of (20) is the Snell Envelope of the process Y u(·).

Proposition 4.2. For any stopping rules t, ν, θ with t ≤ ν ≤ θ ≤ τu
t , we

have the martingale property Eu
[
Qu(θ) | Fν

]
= Qu(ν) a.s.; in particular,

Qu( · ∧ τu
0 ) is a Pu−martingale. Furthermore, Zu(t) = Eu [ Y u(t, τu

t ) | Ft ]
holds a.s.
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4.2. A Preparatory Lemma. For the proof of several results in this
work, we shall need the following observation; we list it separately, for ease
of reference.

Lemma 4.3. Suppose that t , θ are stopping rules with 0 ≤ t ≤ θ ≤ T ,
and that u(·) , v(·) are admissible control strategies in U .

(i) Assume that u(·) = v(·) holds a.e. on the stochastic interval [[ t, θ ]] , in
the notation of (15). Then, for any bounded and Fθ−measurable random
variable random variable Ξ , we have

(24) Ev [ Ξ | Ft ] = Eu [ Ξ | Ft ] , a.s.

In particular, with t = 0 this gives Ev
[
Ξ ] = Eu

[
Ξ

]
.

(ii) More generally, assume that u(·) = v(·) holds a.e. on {(u, ω) : t(ω) ≤
u ≤ θ(ω), ω ∈ A } for some A ∈ Ft . Then (24) holds a.e. on the event A .

The reasoning is simple: with the notation Λu(t, θ) := Λu(θ)/Λu(t) from
(3), and using the martingale property of Λu(·) under Pu , we have Eu[ Λu(t, θ) | Ft ] =
1 a.s. In conjunction with the Bayes rule for conditional expectations under
equivalent probability measures, this gives

Eu [ Ξ | Ft ] =
Λu(t) · E [ Λu(t, θ)Ξ | Ft ]
Λu(t) · E [ Λu(t, θ) | Ft ]

= E [ Λu(t, θ)Ξ | Ft ]

= E [Λv(t, θ)Ξ | Ft ] = · · · = Ev [Ξ | Ft ] , a.s.(25)

The second claim is proved similarly.

4.3. Families Directed Downwards. For any given control strategy
v(·) ∈ U and stopping rules t , θ with 0 ≤ t ≤ θ ≤ T , we shall denote by
V[t,θ] the set of admissible control strategies u(·) as in Lemma 4.3 (i.e., with
u(·) = v(·) a.e. on the stochastic interval [[ t , θ ]] ).

We observe from (19), (8) and Lemma 4.3, that Zu(θ) depends only on
the values that the admissible control strategy u(·) takes over the stochastic
interval ]] θ, T ]] := {(s, ω) ∈ [0, T ] × Ω : θ(ω) < s ≤ T } (its values over
the stochastic interval [[ 0, θ ]] are irrelevant for computing Zu(θ) ). Thus,
for any given admissible control strategy v(·) ∈ U , we can write the upper
value (11) of the game as

(26) V (θ) = essinf
u∈U

Zu(θ) = essinf
u∈V[0,θ]

Zu(θ), a.s.
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Lemma 4.4. The family of random variables {Zu(θ)}u∈V[0,θ]
is directed

downwards: for any two u1(·) ∈ V[0,θ] and u2(·) ∈ V[0,θ], there exists an
admissible control strategy û(·) ∈ V[0,θ] such that we have a.s.

Z û(θ) = Zu1
(θ) ∧ Zu2

(θ) .

PROOF: Consider the event A :=
{
Zu1

(θ) ≤ Zu2
(θ)

} ∈ Fθ , and define an
admissible control process u(·) ∈ U via û(s, ω) := v(s, ω) for 0 ≤ s ≤ θ(ω) ,

(27) û(s, ω) := u1(s, ω)·1A(ω) + u2(s, ω)·1Ac(ω) for θ(ω) < s ≤ T .

Consider also the stopping rule τ̂θ := τu1

θ · 1A + τu2

θ · 1Ac ∈ Sθ,T (notation
of (22)). Then from Lemma 4.3(ii) we have

Z û(θ) = Eû[
Y û(θ, τ û

θ ) | Fθ

]

= Eu1[
Y u1

(θ, τ û
θ ) | Fθ

] · 1A + Eu2[
Y u2

(θ, τ û
θ ) | Fθ

] · 1Ac

≤ Zu1
(θ) · 1A + Zu2

(θ) · 1Ac

= Eu1[
Y u1

(θ, τu1

θ ) | Fθ

] · 1A + Eu2[
Y u2

(θ, τu2

θ ) | Fθ

] · 1Ac

= Eû[
Y û(θ, τu1

θ ) | Fθ

] · 1A + Eû[
Y û(θ, τu2

θ ) | Fθ

] · 1Ac

= Eû[
Y û(θ, τ̂θ) | Fθ

] ≤ Z û(θ)(28)

thus also Z û(θ) = Zu1
(θ)·1A+Zu2

(θ)·1Ac = Zu1
(θ)∧Zu2

(θ) , a.s. 2

Now we can appeal to basic properties of the essential infimum (e.g.,
Neveu (1975), page 121), to obtain the following.

Lemma 4.5. For each θ ∈ S , there exists a sequence of admissible con-
trol processes {uk(·)}k∈N ⊂ V[0,θ] , such that the corresponding sequence of
random variables {Zuk

(θ)}k∈N is decreasing, and the essential infimum in
(26) becomes a limit:

(29) V (θ) = lim
k→∞

↓ Zuk
(θ), a.s.

5. Existence and Regularity of the Game’s Value Process. For
any given θ ∈ S , and with {uk(·)}k∈N ⊂ V[0,θ] the sequence of (29), let us
look at the corresponding stopping rules

τuk

θ := inf
{

s ∈ [θ, T ] : Zuk
(s) = g

(
X(s)

) }
, k ∈ N
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12 KARATZAS, I. AND ZAMFIRESCU, I-M.

via (22). Recall that we have Zuk
(·) ≥ Zu`

(·) ≥ g
(
X(·)) for any integers

` ≥ k , thus also τuk

θ ≥ τu`

θ ≥ θ . In other words, the resulting sequence
{τuk

θ }k∈N is decreasing, so the limit

(30) τ∗θ := lim
k→∞

↓ τuk

θ

exists a.s. and defines a stopping rule in Sθ,T . The values of the process
uk(·) on the stochastic interval [[ 0, θ ]] are irrelevant for computing Zuk

(s),
s ≥ θ or, for that matter, τuk

θ . But clearly

τuk

θ = inf
{

s ∈ [τ∗θ , T ] : Zuk
(s) = g

(
X(s)

) }
, k ∈ N

holds a.s., so the values of uk(·) on [[ 0, τ∗θ ]] are irrelevant for computing
τuk

θ , k ∈ N .
Thus, there exists a sequence {uk(·)}k∈N ⊂ V[0,τ∗

θ
] of admissible control

strategies, which agree with the given control strategy v(·) ∈ U on the
stochastic interval [[ 0, τ∗θ ]] , and for which (30) holds.

We are ready to state and prove our first result.

Theorem 5.1. The game has a value: for every θ ∈ S we have V (θ) =
V (θ) , a.s. In particular, V = V in (9). A bit more generally: for every
t ∈ S and any θ ∈ St, T we have almost surely:

(31) essinf
u∈U

esssup
τ∈Sθ,T

Eu (Y u(t, τ) | Ft) = esssup
τ∈Sθ,T

essinf
u∈U

Eu (Y u(t, τ) | Ft) .

PROOF: From the preceding remarks, we get the a.s. comparisons

V (θ) ≤ Euk
[
Y uk

(
θ, τuk

θ

) ∣∣∣Fθ

]
= E

[
Λuk

(
θ, τuk

θ

)
Y uk

(
θ, τuk

θ

) ∣∣∣Fθ

]

= E


Λv (θ, τ∗θ ) Λuk

(
τ∗θ , τuk

θ

)


Y v (θ, τ∗θ ) +

∫ τuk

θ

τ∗
θ

h(s, X, uk
s) ds





∣∣∣Fθ




for every k ∈ N ; recall the computation (25). Passing to the limit as k →
∞ , and using (30), the boundedness of σ−1 , f , h , and the dominated
convergence theorem, we obtain the a.s. comparisons

V (θ) ≤ E [
Λv (θ, τ∗θ ) Y v (θ, τ∗θ )

∣∣Fθ

]
= Ev [

Y v (θ, τ∗θ )
∣∣Fθ

]
.

Because v(·) is arbitrary, we can take the infimum of the right-hand side of
this inequality over v(·) ∈ U , and conclude

V (θ) ≤ essinf
v∈U

Ev [
Y v (θ, τ∗θ )

∣∣Fθ

] ≤ esssup
τ∈Sθ,T

essinf
v∈U

Ev [
Y v (θ, τ)

∣∣Fθ

]
= V (θ).

imsart-aop ver. 2007/09/18 file: "AOP_Stoch Games Control & Stop".tex date: October 20, 2007



STOCHASTIC DIFF. GAMES OF CONTROL AND STOPPING 13

The reverse inequality V (θ) ≥ V (θ) is obvious, so we obtain the first claim
of the Theorem, namely V (θ) = V (θ) a.s.

• As for (31), let us observe that for every given u(·) ∈ U we have, on the
strength of Proposition 4.2, the a.s. comparisons

essinf
w∈U

esssup
τ∈Sθ,T

Ew

(
Y w(θ, τ) +

∫ θ

t
h(s,X,ws) ds

∣∣∣Ft

)

≤ esssup
τ∈Sθ,T

Eu

(
Y u(θ, τ) +

∫ θ

t
h(s, X, us) ds

∣∣∣Ft

)

≤ Eu

(
esssup
τ∈Sθ,T

Eu [Y u(θ, τ)|Fθ] +
∫ θ

t
h(s, X, us) ds

∣∣∣Ft

)

= Eu

(
Eu[

Y u(
θ, τu

θ

) | Fθ

]
+

∫ θ

t
h(s,X, us) ds

∣∣∣Ft

)

= Eu

(
Y u(

θ, τu
θ

)
+

∫ θ

t
h(s, X, us) ds

∣∣∣Ft

)
= Eu[

Y u(
t, τu

θ

)∣∣Ft

]
.

Now repeat the previous argument: fix v(·) ∈ U , write this inequality
with u(·) replaced by uk(·) ∈ V[0,τ∗

θ
] (the sequence of (29), (30)) for every

k ∈ N , and observe that the last term in the above string is now equal to
Ev[ Y v(t, τuk

θ )| Ft ] . Then pass to the limit as k →∞ , to get, a.s.

essinf
w∈U

esssup
τ∈Sθ,T

Ew

(
Y w(θ, τ) +

∫ θ

t
h(s,X,ws) ds

∣∣∣Ft

)
≤ Ev [

Y v (t, τ∗θ )
∣∣Ft

]
.

The arbitrariness of v(·) allows us to take the (essential) infimum of the
right-hand side over v(·) ∈ U , and obtain

essinf
w∈U

esssup
τ∈Sθ,T

Ew [
Y w(t, τ)

∣∣Ft

] ≤ essinf
v∈U

Ev [
Y v (t, τ∗θ )

∣∣Ft

]

≤ esssup
τ∈Sθ,T

essinf
v∈U

Ev [
Y v (t, τ)

∣∣Ft

]
,

that is, the inequality (≤) of (31); once again, the reverse inequality is
obvious. 2

From now on we shall denote by V (·) = V (·) = V (·) the common value
process of this game, and write V = V (0) .

Proposition 5.2. The value process V (·) is right-continuous.
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14 KARATZAS, I. AND ZAMFIRESCU, I-M.

PROOF: The Snell Envelope Qu(·) of (20) can be taken in its RCLL
modification, as we have already done; so the same is the case for the process
Zu(·) of (19). Consequently, we obtain lim sups↓t V (s) ≤ lims↓t Zu(s) =
Zu(t) , a.s. Taking the infimum over u(·) ∈ U we deduce lim sups↓t V (s) ≤
V (t) , a.s.

In order to show that the reverse inequality

(32) lim inf
s↓t

V (s) ≥ V (t) , a.s.

also holds, recall the submartingale property of (17), (18) and deduce from
it, and from Proposition 1.3.14 in Karatzas & Shreve (1991), that the right-
hand limits

J(t+, τ) := lim
s↓t

J(s, τ) on { t < τ } , J(t+, τ) := g
(
X(τ)

)
on { t = τ }

exist and are finite, a.s. on the respective events. Now for any t ∈ [0, T ] and
every stopping rule τ ∈ St,T , recall (16) to obtain

lim inf
s↓t

V (s) ≥ lim inf
s↓t

J(s, s∨τ) = lim inf
s↓t

J(s, τ)·1{t<τ}+ lim inf
s↓t

J(s, s)·1{t=τ} .

But on the event {t = τ} we have almost surely

lim inf
s↓t

J(s, s) = lim inf
s↓t

g
(
X(s)

)
= lim

s↓t
g
(
X(s)

)
= g

(
X(t)

)
= J(t, t)

by the continuity of g(·) ; whereas on the event {t < τ} we have the
a.s. equalities lim infs↓t J(s, τ) = lims↓t J(s, τ) = J(t+, τ) . Recalling (18),
we obtain from the bounded convergence theorem the a.s. comparisons

lim inf
s↓t

V (s) ≥ lim
s↓t

J(s, τ) = Eu
(

lim
s↓t

J(s, τ)
∣∣∣Ft+

)
= Eu

(
lim
s↓t

J(s, τ)
∣∣∣Ft

)

= Eu
[
lim
s↓t

(
J(s, τ) +

∫ s

t
h(r,X, ur) dr

) ∣∣∣Ft

]

= lim
s↓t
Eu

[
J(s, τ) +

∫ s

t
h(r,X, ur) dr

∣∣∣Ft

]
≥ J(t, τ) .

We have used here the right-continuity of the augmented Brownian filtra-
tion (Karatzas & Shreve (1991), pp. 89-92). The stopping rule τ ∈ St,T is
arbitrary in these comparisons; taking the (essential) supremum over St,T

and recalling (16), we arrive at the desired inequality (32). 2
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5.1. Some Elementary Submartingales. By analogy with (22), let
us introduce now for each t ∈ S and 0 ≤ ε < 1 the stopping rules

(33) %t(ε) := inf
{

s ∈ [ t, T ] : g
(
X(s)

) ≥ V (s)− ε
}

, %t := %t(0) .

Since

(34) V (·) = essinf
u∈U

Zu(·) ≥ g (X(·))

holds a.s. thanks to (26), we have also

(35) %t ∨ τu
t (ε) ≤ τu

t , %t(ε) ≤ τu
t (ε) ∧ %t .

For each admissible control strategy u(·) ∈ U , let us introduce the family
of random variables

(36) Ru(t) := V (t) +
∫ t

0
h(s,X, us) ds ≥ Y u(t) , t ∈ S .

For any time t ∈ S , the quantity Ru(t) represents the cumulative cost to
the controller of using the strategy u(·) on [[ 0, t ]] , plus the game’s value
at that time.

Proposition 5.3. For each u(·) ∈ U, the process Ru(· ∧ %0) is a Pu-
submartingale. A bit more generally: for any stopping rules t , ϑ with t ≤
ϑ ≤ %t , we have

(37) Eu [ Ru(ϑ) | Ft ] ≥ Ru(t), a.s.

or equivalently

(38) Eu

[
V (ϑ) +

∫ ϑ

t
h(s,X, us) ds

∣∣∣Ft

]
≥ V (t), a.s.

Furthermore, for any stopping rules s , t , ϑ with 0 ≤ s ≤ t ≤ ϑ ≤ %t , we
have almost surely:
(39)

essinf
u∈U

Eu

[
V (ϑ) +

∫ ϑ

s
h(s,X, us) ds

∣∣∣Fs

]
≥ essinf

u∈U
Eu

[
V (t) +

∫ t

s
h(s,X, us) ds

∣∣∣Fs

]
.

PROOF: For any admissible control strategy u(·) ∈ U , and for any stopping
rules t , ϑ with 0 ≤ t ≤ ϑ ≤ %t , we have Eu

[
Qu(ϑ) | Ft

]
= Qu(t) or

equivalently

(40) Eu
[
Zu(ϑ) +

∫ ϑ

t
h(s,X, us) ds

∣∣∣Ft

]
= Zu(t) ≥ V (t) , a.s.
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16 KARATZAS, I. AND ZAMFIRESCU, I-M.

from (21), (35) and Propositions 4.1, 4.2. Now fix a control strategy v(·) ∈ U ,
and denote again by V[t,ϑ] the set of admissible control strategies u(·) as in
Lemma 4.3 that agree with it (i.e., satisfy u(·) = v(·) ) a.e. on the stochastic
interval [[ t , ϑ ]] ). From this result and (40), we obtain

(41) Ev

[
Zu(ϑ) +

∫ ϑ

t
h(s,X, vs) ds

∣∣∣Ft

]
= Zu(t) ≥ V (t), a.s.

Now select some sequence {uk(·)}k∈N ⊂ V[t,ϑ] as in (29) of Lemma 4.5,
substitute uk(·) for u(·) in (41), let k → ∞ , and appeal to the bounded
convergence theorem for conditional expectations, to obtain

Ev
[
V (ϑ) +

∫ ϑ

t
h(s,X, vs) ds

∣∣∣Ft

]
≥ V (t) , a.s.

This gives (38), therefore also

Eu

[
V (ϑ) +

∫ ϑ

s
h(s,X, us) ds

∣∣∣Fs

]
≥ Eu

[
V (t) +

∫ t

s
h(s,X, us) ds

∣∣∣Fs

]
,

for all u(·) ∈ U. The claim (39) follows now by taking essential infima over
u(·) ∈ U on both sides. 2

Proposition 5.4. For every t ∈ S we have

(42) V (t) = essinf
u∈U

Eu
(

g
(
X(%t)

)
+

∫ %t

t
h(s,X, us) ds

∣∣∣Ft

)
a.s.

As a consequence,

(43) V (t) = essinf
u∈U

Eu
(

V (%t) +
∫ %t

t
h(s, X, us) ds

∣∣∣Ft

)
a.s.

and for any given v(·) ∈ U we get in the notation of (26):

(44) R v(t) = essinf
u∈V[0,t]

Eu (
R u(%t)

∣∣Ft

)
a.s.

PROOF: The definition (11) for the upper value of the game gives the in-
equality (≥ ) in (42). For the reverse inequality (≤ ), write (38) of Propo-
sition 5.3 with ϑ = %t and recall the a.s. equality V (%t) = g

(
X(%t)

)
, a

consequence of the definition of %t in (33) and the right-continuity of V (·)
from Proposition 5.2; the result is

V (t) ≤ Eu
(

V (%t) +
∫ %t

t
h(s, X, us) ds

∣∣∣Ft

)

= Eu
(

g
(
X(%t)

)
+

∫ %t

t
h(s,X, us) ds

∣∣∣Ft

)
a.s.

for every u(·) ∈ U . Now (42) and (43) follow directly, and so does (44). 2
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STOCHASTIC DIFF. GAMES OF CONTROL AND STOPPING 17

Remark 5.1. Proposition 5.3 implies that the process Ru( ·∧%0) , which
is right-continuous by virtue of Proposition 5.2, admits left-limits on (0, T ]
almost surely; cf. Proposition 1.3.14 in Karatzas & Shreve (1991). Thus,
the process Ru( · ∧ %0) is a Pu−submartingale with RCLL paths, and the
process V ( · ∧ %0) has RCLL paths as well.

6. Some Properties of the Value Process. We shall derive in this
section some further properties of V (·) , the value process of the stochastic
game. These will be crucial in characterizing, then constructing, a saddle
point for the game in sections 7 and 9, respectively.

Our first such result provides inequalities in the reverse direction of those
in (37), (38), but for more general stopping rules and with appropriate mod-
ifications.

Proposition 6.1. For any stopping rules t , θ with 0 ≤ t ≤ θ ≤ T ,
and any admissible control process u(·) ∈ U , we have

(45) Eu [
Ru(θ)

∣∣Ft

] ≤ esssup
τ∈St,T

Eu (
Y u(τ)

∣∣Ft

)

and

(46) Eu

[
V (θ) +

∫ θ

t
h(s,X, us) ds

∣∣∣Ft

]
≤ esssup

τ∈St,T

Eu (Y u(t, τ) | Ft) = Zu(t)

almost surely. We also have

(47) essinf
u∈U

Eu

[
V (θ) +

∫ θ

t
h(s,X, us) ds

∣∣∣Ft

]
≤ V (t) a.s.

and

(48) essinf
u∈V[0,t]

Eu

[
V (θ) +

∫ θ

t
h(s,X, us) ds

∣∣∣Ft

]
≤ V (t) a.s.

for any given v(·) ∈ U in the notation used in (26).

PROOF: We recall from (26), (19) and Theorem 5.1 that V (θ) = ess infu∈U Zu(θ) ;
and from Proposition 4.1 that, for any given u(·) ∈ U , the process Qu(·) =
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18 KARATZAS, I. AND ZAMFIRESCU, I-M.

Zu(·) +
∫ ·
0 h(s,X, us) ds is a Pu−supermartingale. We have, therefore,

Eu[
Ru(θ)

∣∣Ft

]
= Eu

[
V (θ) +

∫ θ

0
h(s,X, us) ds

∣∣∣Ft

]

≤ Eu

[
Zu(θ) +

∫ θ

0
h(s,X, us) ds

∣∣∣Ft

]

≤ Zu(t) +
∫ t

0
h(s,X, us) ds

= esssup
τ∈St,T

Eu (
Y u(τ)

∣∣Ft

)
,(49)

which is (45). Now (46) is a direct consequence; and (47), (48) follow by
taking essential infima over u(·) in U and in V[0,t] , respectively. 2

We have also the following result, which supplements the “value identity”
of equation (31). In this equation, the common value is at most V (t) , as we
are taking supremum over a class of stopping rules, Sθ,T , which is smaller
than the class St,T appearing in (11), (12). The next result tells us exactly
how smaller than V (t) this common value is: it is given by the left-hand
side of (47).

Proposition 6.2. For any stopping rules t , θ with 0 ≤ t ≤ θ ≤ T , we
have almost surely:

essinf
u∈U

Eu

[
V (θ) +

∫ θ

t
h(s,X, us) ds

∣∣∣Ft

]
= essinf

u∈U
esssup
τ∈Sθ,T

Eu (Y u(t, τ) | Ft)

= esssup
τ∈Sθ,T

essinf
u∈U

Eu (Y u(t, τ) | Ft) .(50)

PROOF: The second equality is, of course, that of (31). For the first, note
that Proposition 5.4 gives V (θ) ≤ Eu

(
g
(
X(%θ)

)
+

∫ %θ
θ h(s,X, us) ds | Fθ

)

a.s., for every admissible control strategy u(·) ∈ U , thus also

Eu

[
V (θ) +

∫ θ

t
h(s,X, us) ds

∣∣∣Ft

]
≤ Eu

(
g (X(%θ)) +

∫ %θ

t
h(s,X, us) ds

∣∣∣Ft

)

= Eu (Y u(t, %θ) | Ft)
≤ esssup

τ∈Sθ,T

Eu (Y u(t, τ) | Ft) a.s.(51)

Taking essential infima on both sides over u(·) ∈ U , we arrive at the in-
equality (≤ ) in (50).
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For the reverse inequality, note from the definition of (19) that

Zu(θ) +
∫ θ

t
h(s,X, us) ds ≥ Eu(

Y u(t, τ) | Fθ

)

holds a.s. for every u(·) ∈ U and every τ ∈ Sθ,T (in fact, with equality
for the stopping rule τ = τu

θ of (22)). Taking conditional expectations with
respect to Ft on both sides, we obtain

(52) Eu

(
Zu(θ) +

∫ θ

t
h(s,X, us) ds

∣∣∣Ft

)
≥ Eu (Y u(t, τ) | Ft) a.s.

for all τ ∈ Sθ,T , again with equality for τ = τu
θ ; therefore,

(53) Eu

(
Zu(θ) +

∫ θ

t
h(s,X, us) ds

∣∣∣Ft

)
= esssup

τ∈Sθ,T

Eu (Y u(t, τ) | Ft) a.s.

Fix now an admissible control strategy v(·) ∈ U , and consider a sequence
{uk(·)}k∈N ⊂ V[t,θ] such that V (θ) = limk→∞ ↓ Zuk

(θ) a.s., in the manner
of (29) in Lemma 4.5. Write (53) with uk(·) in place of u(·) and recall
property (24) of Lemma 4.3, to obtain

Ev

(
Z uk

(θ) +
∫ θ

t
h(s,X, vs) ds

∣∣∣Ft

)
= Euk

(
Z uk

(θ) +
∫ θ

t
h

(
s,X, uk

s

)
ds

∣∣∣Ft

)

= esssup
τ∈Sθ,T

Euk
(
Y uk

(t, τ)
∣∣Ft

)
≥ essinf

u∈U
esssup
τ∈Sθ,T

Eu (
Y u(t, τ)

∣∣Ft

)
, a.s.

for every k ∈ N . Now let k →∞ and use the bounded convergence theorem,
to obtain

Ev

(
V (θ) +

∫ θ

t
h(s,X, vs) ds

∣∣∣Ft

)
≥ essinf

u∈U
esssup
τ∈Sθ,T

Eu (
Y u(t, τ)

∣∣Ft

)
a.s.

Since v(·) ∈ U is an arbitrary control strategy, all that remains at this
point is to take the essential infimum of the left-hand side with respect to
v(·) ∈ U , and we are done. 2

We are ready for the main result of this section. It says that infu∈U Eu (Ru(·)),
the best that the controller can achieve in terms of minimizing expected
“running cost plus current value”, does not increase with time; at best, this
quantity is “flat up to %0 ”, the first time the game’s value equals the reward
obtained by terminating the game.
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Theorem 6.3. For any stopping rules t , θ with 0 ≤ t ≤ θ ≤ T , we
have

(54) essinf
u∈U

Eu (
Ru(θ)

∣∣Ft

) ≤ Rv(t) a.s.

for any v(·) ∈ U , as well as

(55) inf
u∈U

Eu (Ru(θ)) ≤ inf
u∈U

Eu (Ru(t)) ≤ V (0).

The first (respectively, the second) of the inequalities in (55) is valid as
equality if θ ≤ %t ( respectively, t ≤ %0 ) also holds.

A bit more generally: for any stopping rules s , t , θ with 0 ≤ s ≤ t ≤ θ ≤
T , we have the a.s. comparisons

essinf
u∈U

Eu

[
V (θ) +

∫ θ

s
h(s, X, us) ds

∣∣∣Fs

]
≤

≤ essinf
u∈U

Eu
[
V (t) +

∫ t

s
h(s,X, us) ds

∣∣∣Fs

]
≤ V (s).(56)

The first (respectively, the second ) of the inequalities in (56) is valid as an
equality on the event {θ ≤ %t} (respectively, {t ≤ %s} ).

PROOF: With v(·) ∈ U fixed, and with V[0,t] as in Lemma 4.5, we have

essinf
u∈U

Eu (
Ru(θ)

∣∣Ft

)
=

= essinf
u∈U

(
Eu

[
V (θ) +

∫ θ

t
h(s,X, us) ds

∣∣∣Ft

]
+

∫ t

0
h(s,X, us) ds

)

≤ essinf
u∈V[0,t]

Eu

[
V (θ) +

∫ θ

t
h(s,X, us) ds

∣∣∣Ft

]
+

∫ t

0
h(s,X, vs) ds

≤ V (t) +
∫ t

0
h(s,X, vs) ds = Rv(t) a.s.

where the penultimate comparison comes from (48). This proves (54).

To obtain the first inequality in (56), observe that (49) gives

Eu

[
V (θ) +

∫ θ

s
h(s,X, us) ds

∣∣∣Fs

]
≤ Eu

[
Zu(t) +

∫ t

s
h(s,X, us) ds

∣∣∣Fs

]
a.s.
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for all u(·) ∈ U . Proceeding just as before, with v(·) ∈ U arbitrary but fixed,
and with a sequence

{
uk(·)

}
k∈N ⊂ V[0,t] such that V (t) = limk→∞ ↓ Zuk

(t)
holds almost surely, as in Lemma 4.5, we have

essinf
u∈U

Eu

[
V (θ) +

∫ θ

s
h(s, X, us) ds

∣∣∣Fs

]
≤ Euk

[
V (θ) +

∫ θ

s
h(s, X, uk

s) ds
∣∣∣Fs

]

≤ Euk
[
Zuk

(t) +
∫ t

s
h(s,X, uk

s) ds
∣∣∣Fs

]
= Ev

[
Zuk

(t) +
∫ t

s
h(s,X, vs) ds

∣∣∣Fs

]

for every k ∈ N , thus also

essinf
u∈U

Eu

[
V (θ) +

∫ θ

s
h(s, X, us) ds

∣∣∣Fs

]
≤ Ev

[
V (t) +

∫ t

s
h(s, X, vs) ds

∣∣∣Fs

]

in the limit as k → ∞ . Take the essential infimum of the right-hand side
over v(·) ∈ U , to obtain the desired a.s. inequality

essinf
u∈U

Eu

[
V (θ) +

∫ θ

s
h(s, X, us)ds

∣∣∣Fs

]
≤ essinf

v∈U
Ev

[
V (t) +

∫ t

s
h(s, X, vs) ds

∣∣∣Fs

]

the first in (56). (The reverse inequality holds on the event {θ ≤ %t} , as we
know from (39).) The second inequality of (56) follows from the first, upon
replacing θ by t , and t by s .

Now (55) follows directly from (56), just by taking s = 0 there. 2

7. A Martingale Characterization of Saddle-Points. We are now
in a position to provide necessary and sufficient conditions for the saddle-
point property (10), in terms of appropriate martingales. These conditions
are of obvious independent interest; they will also prove crucial when we try,
in the next two sections, to prove constructively the existence of a saddle
point (u∗, τ∗) for the stochastic game of control and stopping.

Theorem 7.1. A pair (u∗, τ∗) ∈ U× S is a saddle point as in (10) for
the stochastic game of control and stopping, if and only if the following three
conditions hold:

(i) g
(
X(τ∗)

)
= V (τ∗) , a.s.

(ii) R u∗( · ∧ τ∗) is a Pu∗−martingale; and
(iii) R u( · ∧ τ∗) is a Pu− submartingale, for every u(·) ∈ U .
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The present section is devoted to the proof of this result. We shall derive
first the conditions (i)-(iii) from the properties (10) of the saddle; then the
reverse.

PROOF OF NECESSITY: Let us assume that the pair (u∗, τ∗) ∈ U× S is
a saddle point for the game, i.e., that the properties of (10) are satisfied.

• Using the definition of %t , the submartingale property Eu∗[ R u∗(%t) | Ft

] ≥
R u∗(t) from Proposition 5.3, the a.s. comparisons Y u∗(τ∗) ≤ R u∗(τ∗) and
Y u∗(%τ∗) = R u∗(%τ∗) , and the first property of the saddle in (10), we obtain

Eu∗
(
Y u∗(τ∗)

)
≤ Eu∗

(
Ru∗(τ∗)

)
≤ Eu∗

(
Ru∗(%τ∗)

)

= Eu∗
(
Y u∗(%τ∗)

)
≤ Eu∗

(
Y u∗(τ∗)

)
.

But this gives, in particular, Eu∗(Y u∗(τ∗)
)

= Eu∗(R u∗(τ∗)
)

which, coupled
with the earlier a.s. comparison, gives the stronger one Y u∗(τ∗) = R u∗(τ∗) ,
thus also g

(
X(τ∗)

)
= V (τ∗) .

• Next, consider an arbitrary stopping rule τ ∈ S with 0 ≤ τ ≤ τ∗ and
observe the string of inequalities

Eu∗
(
Ru∗(τ)

)
≤ Eu∗

(
Ru∗(%τ )

)
= Eu∗

(
Y u∗(%τ )

)

≤ Eu∗
(
Y u∗(τ∗)

)
= Eu∗

(
Ru∗(τ∗)

)

from Proposition 5.3, the definition of %τ , the first property of the saddle,
and property (i) just proved. On the other hand, from the second property
of a saddle, from property (i) just proved, and from the inequality (55), we
get the second string of inequalities

Eu∗
(
Y u∗(τ∗)

)
= inf

u∈U
Eu (Y u(τ∗)) = inf

u∈U
Eu (Ru(τ∗))

≤ inf
u∈U

Eu (Ru(τ)) ≤ Eu∗
(
Ru∗(τ)

)
.

Combining the two strings, we deduce

(57) Eu∗
(
Ru∗(τ)

)
= inf

u∈U
Eu (Ru(τ)) = inf

u∈U
Eu (Ru(τ∗)) = Eu∗

(
Ru∗(τ∗)

)

for every stopping rule τ ∈ S with 0 ≤ τ ≤ τ∗ . This shows that Ru∗( ·∧ τ∗)
is a Pu∗−martingale (cf. Exercise 1.3.26 in Karatzas & Shreve (1991)), and
condition (ii) is established.
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• It remains to show that, for any given v(·) ∈ U , the process R v( · ∧ τ∗)
is a Pv− submartingale; equivalently, that for any stopping rules t , τ with
0 ≤ t ≤ τ ≤ τ∗ , the inequality

(58) Ev
[
V (τ) +

∫ τ

t
h(s, X, vs)ds

∣∣∣Ft

]
≥ V (t) holds a.s.

Let us start by fixing a stopping rule τ as above, and recalling from (47) of
Proposition 6.1 that

(59) V̂ (t; τ) := essinf
u∈U

Eu
[
V (τ) +

∫ τ

t
h(s,X, us)ds

∣∣∣Ft

]
≤ V (t)

holds a.s. We’ll be done, that is, we shall have proved (58), as soon as we
have established that the reverse inequality

(60) V̂ (t; τ) ≥ V (t) holds a.s.

as well, for any given τ ∈ S with t ≤ τ ≤ τ∗ .
To this effect, let us consider for any ε > 0 the event Aε and the stopping

rule θε given as

Aε :=
{

V (t) ≥ V̂ (t; τ) + ε
} ∈ Ft and θε := t · 1Aε + τ · 1Ac

ε
,

respectively, and note 0 ≤ t ≤ θε ≤ τ ≤ τ∗ ≤ T . From (57) we get

Eu∗
(
Ru∗(t)

)
= Eu∗

(
Ru∗(θε)

)
= Eu∗

[
Ru∗(t) · 1Aε + Ru∗(τ) · 1Ac

ε

]

= Eu∗
[
Ru∗(t) · 1Aε + Eu∗

(
Ru∗(τ)

∣∣Ft

)
· 1Ac

ε

]

= Eu∗
[
V (t) · 1Aε + Eu∗

(
V (τ) +

∫ τ

t
h(s,X, u∗s) ds

∣∣∣Ft

)
· 1Ac

ε
+

∫ t

0
h(s,X, u∗s) ds

]

≥ Eu∗
[
V (t) · 1Aε + V̂ (t; τ) · 1Ac

ε
+

∫ t

0
h(s,X, u∗s) ds

]

≥ ε · Pu∗ (Aε) + Eu∗
[
V̂ (t; τ) +

∫ t

0
h(s,X, u∗s) ds

]
.

That is,

(61) Eu∗
(
Ru∗(t)

)
− ε · Pu∗ (Aε) ≥ Eu∗

[
V̂ (t; τ) +

∫ t

0
h(s,X, u∗s) ds

]
.

As in (48), we write now the random variable V̂ (t; τ) of (59) in the form

V̂ (t; τ) = essinf
u∈U∗

[0,t]

Eu
[
V (τ) +

∫ τ

t
h(s,X, us) ds

∣∣∣Ft

]

= lim
k→∞

Euk
[
V (τ) +

∫ τ

t
h(s,X, uk

s)ds
∣∣∣Ft

]
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for some sequence {uk(·)}k∈N in U∗[0,t ] , the set of admissible control strate-
gies u(·) ∈ U that agree with u∗(·) a.e. on the stochastic interval [[ 0, t ]].
Back into (61), this gives

Eu∗
(
R u∗(t)

)
− ε · Pu∗ (Aε) ≥

≥ Eu∗
[
lim
k
Euk

(
V (τ) +

∫ τ

t
h(s,X, uk

s) ds
∣∣∣Ft

)
+

∫ t

0
h(s,X, u∗s) ds

]

= Eu∗
[
lim
k
Euk

(
V (τ) +

∫ τ

0
h(s,X, uk

s) ds
∣∣∣Ft

)]

= Eu∗
[
lim
k
Euk

(
Ruk

(τ)
∣∣∣Ft

)]

= lim
k
Eu∗

[
Euk

(
Ruk

(τ)
∣∣∣Ft

)]
(bounded convergence)

= lim
k
Euk

[
Euk

(
Ruk

(τ)
∣∣∣Ft

)]
(equation (24), Lemma 4.3)

= lim
k
Euk

(
Ruk

(τ)
)
≥ inf

u∈U
Eu (Ru(τ)) = Eu∗

(
Ru∗(τ)

)
= Eu∗

(
Ru∗(t)

)
.

The last claim follows from (57), the martingale property of (ii) that this
implies, and 0 ≤ t ≤ τ ≤ τ∗ . This shows P(Aε) = 0 , and we get V (t) <
V̂ (t; τ) + ε a.s., for every ε > 0 ; letting ε ↓ 0 we arrive at (60), and we are
done. 2

PROOF OF SUFFICIENCY: Let us suppose now that the pair (u∗, τ∗) ∈
U×S satisfies the properties (i)-(iii) of Theorem 7.1; we shall deduce from
them the properties of (10) for a saddle-point.

The Pu− submartingale property of R u( · ∧ τ∗) in property (iii) gives
Eu (Ru(τ)) ≤ Eu (Ru(τ∗)) for all u(·) ∈ U , thus also

inf
u∈U

Eu (Ru(τ)) ≤ inf
u∈U

Eu (Ru(τ∗)) .

Taking here τ = 0 and using the property (i) for τ∗ , as well as the
Pu∗−martingale property of R u∗( · ∧ τ∗) from (ii), we get

inf
u∈U

Eu (Y u(τ∗)) = inf
u∈U

Eu (Ru(τ∗)) ≥ Ru(0) = V = Ru∗(0)

= Eu∗
(
Ru∗(τ∗)

)
= Eu∗

(
Y u∗(τ∗)

)
.

Comparing the two extreme terms in this string, we obtain the second prop-
erty of the saddle.

• We continue by considering stopping rules τ ∈ S with 0 ≤ τ ≤ τ∗ .
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For such stopping rules, the fact that R u∗( · ∧ τ∗) is a Pu∗−martingale
(property (ii)) leads to

(62) Y u∗(τ) ≤ Ru∗(τ) = Eu∗
(
Ru∗(τ∗) | Fτ

)
= Eu∗

(
Y u∗(τ∗) | Fτ

)
a.s.

and this gives the first property of the saddle for such stopping rules, upon
taking expectations.

• Let us consider now stopping rules τ ∈ S with τ∗ ≤ τ ≤ T .
We shall establish for them the first property of the saddle, actually in the
stronger form

(63) Eu∗
(
Y u∗(τ) | Fτ∗

)
≤ Y u∗(τ∗) a.s.

Now (63) is equivalent to

g (X(τ∗)) ≥ Eu∗
(

g (X(τ)) +
∫ τ

τ∗
h(t,X, u∗t ) dt

∣∣∣Fτ∗

)
= Eu∗

[
Y u∗ (τ∗, τ)

∣∣Fτ∗

]
,

a.s., for every τ ∈ Sτ∗,T , thus to: g (X(τ∗)) ≥ Zu∗(τ∗) , a.s. But from (19),
(21) the reverse of this inequality always holds, so (63) amounts to the
requirement

(64) g (X(τ∗)) = Zu∗(τ∗), a.s.

To prove (64), recall from condition (ii) that Ru∗( · ∧ τ∗) is a Pu∗−
martingale, and from (36) that it dominates Y u∗( · ∧ τ∗) . But from Propo-
sition 4.1, the process Qu∗( · ∧ τ∗) is the smallest Pu∗− supermartingale
that dominates Y u∗( · ∧ τ∗) . Consequently, Ru∗( · ∧ τ∗) ≥ Qu∗( · ∧ τ∗)
and, equivalently, V ( · ∧ τ∗) ≥ Zu∗( · ∧ τ∗) , hold a.s. But the reverse in-
equality also holds, thanks to the expression (26) for V (·) , thus in fact
V ( · ∧ τ∗) = Zu∗( · ∧ τ∗) , a.s. In particular, we get V (τ∗) = Zu∗(τ∗) a.s.
Now (64) follows, in conjunction with condition (i).

• Finally, let us prove the first property of the saddle for an arbitrary
stopping rule τ ∈ S . We start with the decomposition

Eu∗
(
Y u∗(τ)

)
= Eu∗

(
Y u∗(τ)1 {τ≤τ∗} + Y u∗(τ)1 {τ>τ∗}

)

= Eu∗
(
Y u∗(ρ) 1 {τ≤τ∗} + Y u∗(ν) 1 {τ>τ∗}

)

where ρ := τ ∧ τ∗ belongs to S0,τ∗ and ν := τ ∨ τ∗ is in Sτ∗,T . Thus, we
have almost surely

Y u∗(ρ) ≤ Eu∗
(
Y u∗(τ∗) | Fρ

)
and Eu∗

(
Y u∗(ν) | Fτ∗

)
≤ Y u∗(τ∗),
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from (62), (63). Both events {τ ≤ τ∗} , {τ > τ∗} belong to Fρ = Fτ ∩Fτ∗ ,
therefore

Eu∗
(
Y u∗(τ)

)
= Eu∗

(
Y u∗(ρ) · 1 {τ≤τ∗} + Y u∗(ν) · 1 {τ>τ∗}

)

≤ Eu∗
(
Eu∗

(
Y u∗(τ∗)

∣∣Fρ

)
· 1 {τ≤τ∗} + Eu∗

(
Y u∗(ν)

∣∣Fρ

)
· 1 {τ>τ∗}

)

= Eu∗
(
Eu∗

(
Y u∗(τ∗) · 1 {τ≤τ∗}

∣∣Fρ

)
+ Eu∗

(
Y u∗(ν)

∣∣Fτ∗

)
· 1 {τ>τ∗}

)

≤ Eu∗
(
Y u∗(τ∗) · 1 {τ≤τ∗}

)
+ Eu∗

(
Y u∗(τ∗) · 1 {τ>τ∗}

)
= Eu∗

(
Y u∗(τ∗)

)
.

This is the first property of the saddle in (10), established now for arbitrary
τ ∈ S . 2

8. Optimality Conditions for Control. We shall say that a given
admissible control strategy ũ(·) ∈ U is optimal, if it attains the infimum

(65) V = inf
v∈U

Zv(0), with Zv(0) = sup
τ∈S

Ev[Y (τ)].

Here and in what follows, we are using the notation of (19), (22) and (33).
Clearly, if (ũ , τ̃ ) is a saddle pair for the stochastic game, then ũ(·) is an
optimal control strategy.

Theorem 8.1. Necessary and Sufficient Condition for Optimality of
Control. A given admissible control strategy u(·) ∈ U is optimal, i.e., attains
the supremum in (65), if and only if it is thrifty, that is, satisfies

(66) Ru (· ∧ τu
0 ) is a Pu −martingale.

And in this case, for every 0 ≤ ε < 1 we have in the notation of (33):

(67) τu
0 (ε) = %0(ε) , a.s.

PROOF OF SUFFICIENCY: Let us recall from (35) that τu
0 (ε) ≤ τu

0 holds
a.s. for every 0 < ε < 1 , and from Proposition 4.2 that the process Qu( · ∧
τu
0 ) is a Pu−martingale. Therefore, if u(·) is thrifty, we have

V ≤ Zu(0) = Eu

[
Zu (τu

0 (ε)) +
∫ τu

0 (ε)

0
h(s,X, us) ds

]

≤ Eu

[
ε + g (X (τu

0 (ε))) +
∫ τu

0 (ε)

0
h(s,X, us) ds

]

≤ ε + Eu

[
V (τu

0 (ε)) +
∫ τu

0 (ε)

0
h(s,X, us) ds

]

= ε + Eu [Ru (τu
0 (ε))] = ε + V.
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In this string, the second inequality comes from the definition of τu
0 (ε) in

(22); whereas the last equality is a consequence of thriftiness and of the
inequality τu

0 (ε) ≤ τu
0 . This gives the comparison V ≤ Zu(0) ≤ ε + V for

every 0 < ε < 1 , therefore Zu(0) = V , the optimality of u(·) .

PROOF OF NECESSITY: Let us suppose now that u(·) ∈ U is optimal;
we shall show that it is thrifty, and that (67) holds for every 0 ≤ ε < 1 .

• We shall show first that, for this optimal u(·) , we have τu
0 = %0 a.s.,

that is, (67) with ε = 0 .
Let us observe that the Pu−martingale property of Qu

( · ∧τu
0

)
, coupled

with the Pu−submartingale property of Ru
( · ∧ %0

)
from Proposition 5.3,

and the a.s. inequality %0 ≤ τu
0 from (35), give

Zu(0)− Eu
∫ %0

0
h(s,X, us)ds = Eu (Zu(%0))

= Eu
[
Zu(%0) · 1{τu

0 =%0} + Zu(%0) · 1{τu
0 >%0}

]

≥ Eu
[
Zu(%0)1{τu

0 =%0} + g (X(%0)) 1{τu
0 >%0}

]

= Eu
[
Zu(%0) 1{τu

0 =%0} + V (%0) 1{τu
0 >%0}

]

≥ Eu
[
V (%0) · 1{τu

0 =%0} + V (%0) · 1{τu
0 >%0}

]
= Eu [V (%0)] ,(68)

as well as

Zu(0) ≥ Eu
[
V (%0) +

∫ %0

0
h(s,X, us) ds

]

= Eu [Ru(%0)] ≥ Ru(0) = V.(69)

We shall argue the validity of τu
0 = %0 by contradiction: we know from

(35) that %0 ≤ τu
0 holds a.s., so let us assume

(70) Pu(
τu
0 > %0

)
> 0 .

Under the assumption (70), the first inequality in (68) – thus also in (69) –
is strict; but this contradicts the optimality of u(·) ∈ U . Thus, as claimed,
we have τu

0 = %0 a.s. A similar argument leads to τu
0 (ε) = %0(ε) a.s., for

every 0 < ε < 1 , and (67) is proved.

• To see that this optimal u(·) ∈ U must also be thrifty, just observe
that, as we have seen, equality prevails in (69); and that this, coupled with
(67), gives Ru(0) = Eu

[
Ru(τu

0 )
]
. It follows that the Pu−submartingale

Ru( · ∧ %0) ≡ Ru( · ∧ τu
0 ) is in fact a Pu−martingale. 2
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The characterization of optimality presented in Theorem 8.1, is in the
spirit of a similar characterization for optimal control with discretionary
stopping in Dubins & Savage (1965) and in Maitra & Sudderth (1996.a,
page 75). In the context of these two sources, optimality amounts to the
simultaneous validity of two conditions, “thriftiness” (i.e., condition (67))
and “equalization”. In our context, every control strategy is equalizing, so
this latter condition becomes moot.

Proposition 8.2. If the admissible control strategy u(·) ∈ U is thrifty,
then it is optimal; and the pair (u, τu

0 ) = (u, %0) ∈ U × S is then a saddle
point for the stochastic game of control and stopping.

PROOF: The first claim follows directly from Theorem 8.1. Now let us make
a few observations:

(i) By the definition of %0 in (33) and the right-continuity of the process
V (·) , we have the a.s. equality V (%0) = g(X(%0)) .

(ii) The process Ru( · ∧%0) is a Pu−martingale; this is because u(·) , being
optimal, must also be thrifty, as we saw in Theorem 8.1, and because %0 =
τu
0 holds a.s.

(iii) From Proposition 5.3, the process Rv( · ∧ %0) is a Pv−submartingale,
for every v(·) ∈ U .

From these observations and Theorem 7.1, it is now clear that the pair
(u, %0) is a saddle point of the stochastic game. 2

9. Constructing a Thrifty Control Strategy and a Saddle. The
theory of the previous section, culminating with Proposition 8.2, shows that
in order to construct a saddle point for our stochastic game of control and
stopping, all we need to do is find an admissible control strategy u∗(·) ∈ U

which is thrifty; to wit, for which the condition (66) holds. Then the pair(
u∗, τu∗

0

)
will be a saddle point for our stochastic game.

To accomplish this, we shall start by assuming that, for each (t, ω) , the
mappings

(71) a 7→ f(t, ω, a) and a 7→ h(t, ω, a) are continuous,

and that for the so-called Hamiltonian function

(72) H(t, ω, a, p) := 〈p, σ−1(t, ω)f(t, ω, a)〉+ h(t, ω, a),
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t ∈ [0, T ], ω ∈ Ω, a ∈ A, p ∈ Rn, the mapping a 7→ H(t, ω, a, p) attains
its infimum over the set A at some a∗ ≡ a∗(t, ω, p) ∈ A , for any given
(t, ω, p) ∈ [0, T ]× Ω× Rn , namely,

(73) inf
a∈A

H(t, ω, a, p) = H
(
t, ω, a∗(t, ω, p), p

)
.

(This is the case, for instance, if the set A is compact and the mapping
a 7→ H(t, ω, a, p) continuous.) Then it can be shown (see Lemma 1 in Beneš
(1970), or Lemma 16.34 in Elliott (1982)), that the mapping a∗ : ([0, T ] ×
Ω)× Rn → A can be selected to be

(P ⊗ B(Rn)/A)−measurable.

We shall deploy the martingale methodologies introduced in stochastic
control in the seminal papers of Rishel (1970), Duncan & Varaiya (1971),
Davis & Varaiya (1973) and Davis (1973), and presented in book form in
Chapter 16 of Elliott (1982). The starting point of this approach is the
observation that, for every admissible control strategy u(·) ∈ U , the process

(74) Ru (· ∧ %0) = V (· ∧ %0) +
∫ ·∧%0

0
h(t, X, ut) dt

is a Pu− submartingale with RCLL paths, and bounded uniformly on [0, T ]×
Ω ; recall Propositions 5.3, 5.2 and Remark 5.5. This implies that the process
Ru (· ∧ %0) admits a Doob-Meyer decomposition

(75) Ru (· ∧ %0) = V + Mu(·) + ∆u(·).

Here Mu(·) is a uniformly integrable Pu−martingale with RCLL paths and
Mu(0) = 0 , Mu(·) ≡ Mu(%0) on [[ %0, T ]] ; the process ∆u(·) is predictable,
with non-decreasing paths, ∆u(T ) ≡ ∆u(%0) integrable, and ∆u(0) = 0 .

• A key observation now, is that the Pu−martingale Mu(·) can be repre-
sented as a stochastic integral, in the form

(76) Mu(·) =
∫ ·

0
〈γ(t), dW u(t)〉.

Here W u(·) is the Pu−Brownian motion of (4), and γ(·) a predictable
(P−measurable) process that satisfies

∫ T
0 ||γ(t)||2 dt < ∞ and γ(·) ≡ 0 on

[[ %0, T ]] , a.s.
This is, of course, the predictable representation property of the filtration

F = {Ft}0≤t≤T (the augmentation of the filtration FW
t = σ(W (s); 0 ≤

s ≤ t) , 0 ≤ t ≤ T generated by the P−Brownian motion W (·) ) under
the equivalent change (5) of probability measure. For this result of Fujisaki
et al. (1972), which is very useful in filtering theory, see Rogers & Williams
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(1987), p. 323 or Karatzas & Shreve (1998), Lemma 1.6.7. An important
aspect of this representation is that the same process γ(·) works for every
u(·) ∈ U in (76).

Next, let us take any two admissible control strategies u(·) and v(·) in
U , and compare the resulting decompositions (75) on the stochastic interval
[[ 0, %0 ]] . In conjunction with (74)-(76), (72) and (4), this gives

(77) ∆v(·)−∆u(·) =
∫ ·

0
[H (t,X, vt, γ(t))−H (t, X, ut, γ(t))] dt

on the interval [[ 0 , %0 ]] . A brief, self-contained argument for the claims
(76), (77) is presented in the Appendix.

ANALYSIS: If we know that ǔ(·) ∈ U is a thrifty control strategy, that
is, the process Rǔ

(· ∧ τ ǔ
0

)
is a Pǔ−martingale, then Rǔ(· ∧ %0) is a also

a Pǔ−martingale (just recall that we have 0 ≤ %0 ≤ τ ǔ
0 from (35)), thus

∆ǔ(·) ≡ 0 a.s. But then (77) gives

∆v(·) =
∫ ·

0
[H (t,X, vt, γ(t))−H (t,X, ǔt, γ(t))] dt on [[ 0 , %0 ]] ;

and because this process has to be non-decreasing for every admissible con-
trol strategy v(·) ∈ U , we deduce the following necessary condition for
thriftiness:

(78) H (t,X, ǔt, γ(t)) = inf
a∈A

H (t,X, a, γ(t)) , a.e. on [[ 0 , %0 ]] .

This is also known as the stochastic version of Pontryagin’s Maximum Prin-
ciple; cf. Kushner (1965), Haussmann (1986), Peng (1990, 1993).

SYNTHESIS: The stochastic maximum principle of (78) suggests consider-
ing the admissible control strategy u∗(·) ∈ U defined by

(79) u∗t =

{
a∗

(
t,X, γ(t)

)
, 0 ≤ t ≤ %0

a ] , %0 < t ≤ T

}

for an arbitrary but fixed element a ] of the control set A . We are using
here the “measurable selector” mapping a∗ : [0, T ]× Ω× Rn → A of (73).

With this choice, (77) leads to the comparison

∆v(·) = ∆u∗(·) +
∫ ·

0
[H (t, X, vt, γ(t))−H (t,X, u∗t , γ(t))] dt ≥ ∆u∗(·)

on the interval [[ 0 , %0 ]] , therefore also R v
( · ∧%0

) ≥ V + M v(·) + ∆u∗(·)
from (75), for every v(·) ∈ U . Taking expectations under P v , we obtain

0 ≤ Ev
[
∆u∗(%0)

]
≤ Ev [Rv(%0)]− V, ∀ v(·) ∈ U .

imsart-aop ver. 2007/09/18 file: "AOP_Stoch Games Control & Stop".tex date: October 20, 2007



STOCHASTIC DIFF. GAMES OF CONTROL AND STOPPING 31

But now we can take the infimum over v(·) ∈ U in the above string, and
obtain

0 ≤ inf
v∈U

Ev
[
∆u∗(%0)

]
≤ inf

v∈U
Ev [Rv(%0)]− V = 0 .

where the last equality comes from (55) and the sentence directly below it.
We deduce

(80) inf
v∈U

Ev
[
∆u∗(%0)

]
= 0, thus also ∆u∗(%0) = 0 a.s.

from fairly standard weak compactness arguments, as in Davis (1973) p. 592,
Davis (1979), or Elliott (1982) pp. 238-240.

• We follow now a reasoning similar to that used to prove (64) in Theorem
7.1: first, we note from (80) that

(81) Ru∗(· ∧ %0) = V +
∫ ·

0
〈γ(t), dW u∗(t)〉 is a Pu∗ −martingale,

and from (36) that it dominates Y u∗(· ∧ %0) . But from Proposition 4.1, the
process Qu∗(· ∧ %0) is the smallest Pu∗− supermartingale that dominates
Y u∗(· ∧ %0) . We deduce that Ru∗(· ∧ %0) ≥ Qu∗(· ∧ %0) and, equivalently,
V (· ∧ %0) ≥ Zu∗(· ∧ %0) , hold a.s. The reverse of this inequality also holds,
thanks to the expression (26) for V (·) , thus in fact V (· ∧ %0) = Zu∗(· ∧ %0) .

In particular, we have almost surely: Zu∗(%0) = V (%0) = g (X(%0)) (re-
call the definition of %0), thus also τu∗

0 ≤ %0 from (22). Again the reverse
inequality holds, thanks now to (35), so in fact τu∗

0 = %0 holds a.s.
We conclude that the property (81) leads to the thriftiness condition (66)

for the admissible control strategy u∗(·) ∈ U defined in (79). In conjunction
with Proposition 8.2, this establishes the following existence and character-
ization result:

Theorem 9.1. Under the assumptions (71)-(73) of this section, the pair
(u∗, %0) ∈ U×S of (79), (33) is a saddle point for the stochastic game, and
we have %0 = τu∗

0 a.s., in the notation of (22). Furthermore, the process
V (· ∧ %0) is a continuous P− semimartingale.

Only the last claim needs discussion; from (74), (81), (72), we get the
representation

(82) V (t) = V −
∫ t

0
H (s,X, u∗s, γ(s)) ds +

∫ t

0
〈γ(s), dW (s)〉,

t ≤ %0, and the claim follows.
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This equation (82) can be written equivalently “backwards”, as

(83) V (t) = g (X(%0)) +
∫ %0

t
H (s,X, u∗s, γ(s)) ds−

∫ %0

t
〈γ(s), dW (s)〉,

0 ≤ t ≤ %0. Suitably modified to account for the constraint V (·) ≥ g (X(·)) ,
and with an appropriate definition for the “adjoint process” γ(·) on [[ %0, T ]] ,
the equation (83) can be extended to hold on [[ 0, T ]] ; this bring us into con-
tact with the backwards stochastic differential equation approach to stochas-
tic games (Cvitanić & Karatzas (1996), Hamadène & Lepeltier (1995, 2000),
Hamadène (2006)).

10. Appendix. In order to make this paper as self-contained as possi-
ble, we shall present here a brief argument for the representation (76) of the
Pu−martingale Mu(·) in the Doob-Meyer decomposition (75), and for the
associated identity (77).

We start with the “Bayes rule” computation

Mu(t) = Eu [Mu(T ) | Ft ] = Eu [Mu(%0) | Ft ]

=
Eu[Λu(%0)Mu(%0) | Ft ]

Λu(t ∧ %0)
(84)

for 0 ≤ t ≤ T (e.g. Karatzas & Shreve (1991), p. 193); then the martingale
representation property of the Brownian filtration (ibid., p. 182) shows that
the numerator of (84) can be expressed as the stochastic integral

(85) Nu(t) := Eu[
Λu(%0)Mu(%0) | Ft

]
=

∫ t

0
〈ξu(s), dW (s)〉,

0 ≤ t ≤ T , with respect to W (·) of some predictable process ξu : [0, T ]×Ω →
Rn that satisfies ξu(·) ≡ 0 a.e. on [[ %0, T ]] , and

∫ T
0 ||ξu(t)||2 dt < ∞ a.s.

We have recalled in (84), (85) that Mu(·) ≡ Mu(%0) a.e. on [[ %0, T ]] , and
Nu(0) = Mu(0)Λu(0) = 0 .

On the other hand, for the exponential martingale of (3) we have the
stochastic integral equation

(86) Λu(t ∧ %0) = 1 +
∫ t

0
Λu(s)〈ϕu(s), dW (s)〉, 0 ≤ t ≤ T

where we have set ϕu(t) := σ−1(t,X)f(t,X, ut) for 0 ≤ t ≤ %0 , and
ϕu(t) := 0 for %0 < t ≤ T . Applying Itô’s rule to the ratio Mu(·) =
Nu(·)/Λu(· ∧ %0) of (84), in conjunction with (85), (86) and (4), we obtain
then for 0 ≤ t ≤ T ,

(87) Mu(t) =
∫ t

0
〈γu(s), dW u(s)〉, where γu(t) :=

ξu(t)−Nu(t)ϕu(t)
Λu(t)
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is clearly predictable; it satisfies γu(·) ≡ 0 a.e. on [[ %0, T ]] , as well as∫ T
0 ||γu(t)||2 dt < ∞ a.s.
• It remains to argue that the stochastic integrand of (87) does not depend
on the admissible control process u(·) ∈ U , as indeed claimed in (76). Indeed,
for arbitrary u(·) ∈ U and u(·) ∈ U , we have

Rv (t ∧ %0)−
∫ t∧%0

0
[h(s,X, vs)− h(s,X, us)] ds

= Ru (t ∧ %0) = V + ∆u(t) +
∫ t

0
〈γu(s), dW u(s)〉

= V + ∆u(t) +
∫ t

0
〈γu(s), dW v(s)〉

+
∫ t

0
〈γv(s), ϕv(s)〉 ds−

∫ t

0
〈γu(s), ϕu(s)〉 ds , 0 ≤ t ≤ T .

Let us compare now this decomposition with the consequence

Rv(t ∧ %0) = V + ∆v(t) +
∫ t

0
〈γv(s), dW v(s)〉, 0 ≤ t ≤ T

of (75), (87). Identifying martingale terms, we see that γu(·) = γv(·) holds
a.e. on [0, T ] × Ω , thus (76) holds; identifying terms of bounded variation,
we arrive at (77).
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