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1. THE MAIN RESULT

Let us consider a standard Brownian motion process
W= [W(t); t20] on a suitable probability space (Q,3 P). We

define the occupation times
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meas{Ogs<t; WSzO}

>
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meas{Ogsgt; WS<O] = t—F+(t),

their inverses

-1 .
T, () = inf{ta0; Fi(t)>T]3 T20,

as well as the local time of W at the origin

-

L{t) = lig E% meas{Ogs<t; [WS|<e} 5 t20.
<l

It is fairly well-known (c.f. Ikeda g Watanabe (1981), p. 122)

that the processes

Wi(T) = i W(T;I(T)) ; 720

are independent reflecting Brownian motions, with local times

. 1l
L (1) = 1lim x= meas{Osoer; W, (0)s€}
+ €10 2¢€ =
given by
. 1
L (r) =L(r “(r)) ;5 =0

*




Besides, the processes

are independent Brownian motions, with

Li(T) = max B (g) ; T20.
Oggsr *

We fix now t>0 and consider the portion of the Brownian

path {W(s); Ogsst} on [0,t]. Let us consider the last exit -~

time from zero, before time' : t:

Y£_= sup{sst; s>0, W(s) = 0}.

We are now ready to dissect the path {W(s); Osss<t} .and re-

assemble it in a way that preserves its "Brownian" character.

THEOREM 1: Brownian path decomposition. .

The process

ﬁ(s) = B+(s) 3 Oss<P+(Yt)
(1.1) = B_(v,-s) 3 T (v, )ss<v,
= W(s) i Y ssst

Ls Brownian motion on [0, t].

iy
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This result has several interesting implications. In order
to discuss them, let us introduce, for each Ogugt, the random

variables

M(u) = max W(s), g8(u) = arg max W(s),
Ogsgu Ozs<gu

as well as their counterparts for the process in (1.1),

M(u) = max ¥W(s) , = B(u) = arg max Ti(s).
Cgsgu Ogsgu

We recall here that, for Brownian motion, the location g of

the maximum M 1is a.s. unique. The basic observation is that,

P‘ﬂ\a.g;,
(Le2) (@), v (v ), B(v,)) = (W)Y L (E),m (%))

The first two identities are obvious; for the third and fourth,

let us notice that

WL (Y)=) = Bo(T, (v)) = T (T, (Y,)) - (T, (v,))

H

L(Yt) - W(Yt) = L(Y.t) = L(t)

and

+
Il

) = BP_(Y0)) = L(r_(Y)) = W_(P_(v,))

= L(Y_ ) + w(y

t t)

hold with probability one. It follows that W 1is a.s. con-

i
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tinuous at 8 = T+(Yt); it is also continuous at s

.tJ

since

W(Y,-) = B_(0) = 0 = W(¥)
On the other hand,

O‘SI;I?T—(Yt) B+(S) = L+(r+(Yt)) = L(Yt) = B.]_(r_l_(Yt))
and

max B“(yt-s) =  max B_{s) = L_(T_{v))
r+(yt)sssYt OsssP_(Yt)
= L(vy) = B_(v T (vy))

It follows that
M(Yt) = L(Yt)J B(Yt) = T_l_(Yt)

hold a.s. P, and this corcludes the verification of (1.2).

In particular, this latter gives

Tl

(1.3) (W(e)s Yo B()s B(t)) = (W(t)svpL(t),m ()3

on {W(t)<o},

P -~ a.s. DNow.it is fairly well-known (P. Lévy (1965), p. 201)

that the triple (W(t),M(t},e8(t)) has the density
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P{W(t)eda; M(t)edb; a{t)edu]

(1.4) : -
5 ,
b(b-a) . { b° _ (b-a) .
- exp{~ 2 - ET%:ET}dadbdu, b>a, b>0,
-nUB/E(t--u)B/2 <u<t,

From Theerem 1, (1.3) and (1.4) we conclude that the density

of the triple (W(t),L(t),F+(t)) is given as follows:

P[w(t)eda; L(t)edb; r+(t)edu] =

R € R N O
(- 55 gt...u) 3 asJib,
( i’ ? (tu)?/2 S
b (b+a) : b° (o+a)"
éxp{— - } dadbdu; a>0,
2(t-u) 2u

3/2 3/2
\ o’ () | b>0, 0<u<t.

-

The above equality for a>»0 1s obtained from the case a<d and
the fact that the triples .(W(t),L(t),r+(t)) and.

(-w(t),L{t),t-r (t)) are equivalent in law.

This trivariate density was derived in our earlier work (Karatzas
& Shreve (1984)) using different techniques, and was employed
fhere in the computation of the transition probabilities for a
Brownlan motion with two-valued drift. It was the striking
similarity of the results (L.4) and (1.5) that provided the

original motivation for the present investigation.

With the help of (1.4), one can compute the guadrivariate

density‘



P[W(t)eda; M(t)edb; Y, eds; o(t)edg] =

(1.6) o |
= 2(-a)b" | exp {, sh2 ) 52 } tedbas 461
(2ma(s-8) (t-5))>/2 2g(s-8) 2(t-s)

t

0<alst, al0<h.

We present a derivation in section 6 (Appendix}. The identity

~

(1.3),'and the fact that the process W 1is Brownian motion,

account for the result

P[wW(t)eda; L(t)edb; Y eds; T+(t)€de] =
(2lelb exp{- L8 a” } daadvasds ;
- 2e(s-8)  2(t- 6 ;
:(3_-7) (2-”-9(5_8) (t-—S))B/g B(_S ) ( S)
_< 0< <8<t a<0<b
2ab2 exp{~ (t S?i t)
2(t-9)(ets-
(2mi(t-8) (srs-t) (t-5))°" 2 |
\ 2

- §%¥:§T} dadbdsdg;

Olt-g<s<t, a>0, b>0.

The formula in (1.7) for a<0 follows directly from (1.6);
the formula valid for a>0 is derived from thé former and from
the fact that, under P, the quadruples (W(t),L(t)sysT (t))

and .(“W(t):L(t):Yt:t-F+(t)) are equivalent in law.



2. SUMMARY

In section 3 we review basic facts about the Wiener
(Brownian motion), Bessel and Brownian Bridge probability
measures on C[O,m)’ the space of continuous functions on [0, ).
Our aim is to discuss the behaviour of these measures under
appropriate forms of conditioning. This is accomplished in

Theorems 2-4.

The main result (Theorem 1) is proved in section 5, after
it has been cast into a more convenient form in terms of a path
transformation suggested by the nature of the "welded" process
W in Theorem 1. Certain properties of this transformation
are discussed in sections 4 and 7 {Appendix on measurability).
Once the basic motation, definitions and properties have been -

laid out, it becomes a matter of combining the results of section

5 with a path decomposition result of D. Williams (Theorem 5)

to establigh Thecrem 1,

The derivation of the quadrivariate density (1.6), as well

as the proof of Theorem 2, are relegated to section 6 (Appendix).




5. BROWNIAN; BRIDGE AND BESSEL MEASURES

From now on We'take as our sample space (, the set C[O,m)
of continuous, real-valued functions w = {w(t); t20} on [0,=).
Q 1s thus a Polish (complete, separable metric) space under

the topology of uniform convergence on compact subéets of [T, ).

Let 3(3t) be the g-field of Borel subsets of (re-

C

‘ [O: °°)

spectively, C[O t])' 3(3t) coincides with the smallest

L]

g—field on C[O,m) (resp., C[O,t]) such that, for every s20

(resp., Oss<t);, the map o - o(s): C[O -) ™ R is ¥/® - mea-

surable {resp., 3t/a - measurable). We have denoted by &

the Borel g-field R(R} on R. For a detailed study of the .

space C[O 17’ the reader is referred to Parthasarathy (1967},
-’ -

Chapter VII.

In this section we recall three standard probability mea-

sures on (0,3), and we discuss certain relations that they

bear to one another.

3.a: Wiener (Brownian Motion) measure PX5 XER.

This measure satisfies Px[m(o) = x] =1, and it has

finite- dimensional distributions given by

l)edxl;...gm(tn)edxn] = p(tl;x,gl)dx

Px[w(t 1

p(t —tl; X, X rl_l; Xn—i’xn

5 1 E)dXE""' p(tn—t

7 2.
: n BN [ 1x-
for O<t ’...<tn,(xl,...,xn)€ﬁ s p(t;x,y)AJ§#F exp - i_g%l }.




3.b: Brownian Bridge meagsure B;ﬂb; ™0, acR, beR.

With given >0, acgr, beR, this measure satisfies
B;qb[w(ﬁ) = a; w(s) = b: ¥ s=2r] = 1,

and it has finite-dimensional distributions given by

T A . _ . -
(3.1) Baqb[w(ti)gdxi' leisn] A Pa[m(ti)edxi. lgisgn] .

p(r-t; xn,b)

-

p(T; a,b)

n
for O<t <...<t = t<dr, (x -»X JeéR". This assignment cor-

1 n 177
responds to the intuitive notion of "Brownian motion conditioned
(tied-down) by w(7) = b", since the expression in (3.1) coin-

cides with
Pa[m(ti)edxi: lsign|w(T) = bl; for a.e. DbeR.

In particular, for every 0<td{s, we have

-t t),b
(3.2) Bl L [A] = Ea[lA p(r-t; o(t),b)

]5 A4 Ae&t.
p(TB asb)

To simplify notation, the measure B; , Will be denoted simply

T
by 'Ba'
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For later convenience, let us agree that s>0 1is an

entrance time to b, beR, for the path weqQ, iff w(s) =Db

and there exists a strictly increasing sequence {Snlzzl with

lim s = 8, such that w(sn) # b for every nszl. With fixed

o=Y--)

t>0, beR define:

yt(w) A sup{sst; s>0 1is an entrance time to zero,
(3.3)° ' for w}
A O if f...} =4
3.4 o, {w) A sup{s<e; s>0 1is an entrance time to b, for
b =
A O3 if ...} = .

Under most measures we consider, Y is a.8. equal to the last

exit time from zero before t; a notable exception 1s Brownian
Bridge measure Bg with t>r. TUnder Bessel measure QX defined
in 8§3.c, o, is a.s. the last exit time from b,

The following result is intuitively very plausible (and
undoubtedly quite well-known, although we have been unable to

cite any particular reference). Its preoof is given in the

Appendix (section 6).

THEOREM 2: Brownian motion Py conditioned by the value Ye = T

of its last entrance to zero prior to t, is Brownian Bridge on

[0,7]. In other words, with fixed 0<s<t, we have for any

Aeas:
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(3.5) PO[A]Yt=T] = Bg[A]; for a.e. Te(s,t).

3.c: Bessel measure QX; x>0,

The Bessel process g(t) = J/Wi(t) + wg(t) + Wg(t); t20
is the radial part of Brownian motion W(t) = (W (t)’wz(t)’WB(t))
in three-dimensional space. As is well-known (Mc Kean (1969),

Benef {1975)), this process SatleleS the stochastlc differential

equation:

de (t) = % Fdb(t); t>0

x>0,

R
[
il

where [b(t); t=0} ig a one-dimensional Brownian motion, and it
induces & measure QX on - C[O,m)? henceforth called Bessel
measure, which, when restricted to any Et’ is.absolutely
continuous with respect to Wiener measure Px' The correspond-

ing Radon-Nikodjm derivative is

ao, '
Y = exp s i .1 P
dp., {j (DES% 2 O e (s)} (To>t]

where T, 1s the first passage time at the origin. Now Itd's

rule shows that the exponent can be written as log Eéjlv and

thus
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ro(t) 1

(3.6) Qx[A] = EXL = ¥ x>0, t>0, Aex, .

An{TO>t}]5 t

In particular, the transition probabillities for this measure

are given by (3.6) as

(3.7) .Qx[w(tjedy] = % Px[a{t)edy; Tot] = % a(t; x,y)dy ,

+
for t>0, x>0, y>0, where: q(t; x,y) A (p(t; x,y)-p(t; x,-y))

Begsides, with x>0, z>y>0 we have

Qx[cygt; w(t)edz] Q [w(t)edz].q [min @(s)>y]

20

Z-y

q(t; x,z)dz. —=

il

becaguse the QZ - distribution of min w(s) 1is uniform on
s20
(0,2); c.f. Williams (1974). 1Integrating ocut =z over (y,=)

in the above expression, we obtain

(3.8)  xq0.st] = ta(tsxy)+(ey). 8 G+ (o). [1-8 () ]
and
(3.9) Qulo,cat] = g% : q(ts X,y); 0.

This last equation appears in Williams (1974), p. 751, without

proof. Here and in the sequel, §(.)} denotes the standard
X
[ eXp{;%-z?}dz; X€R.

1
N

normal distribution:function $(x) =




1%

3.d: Local Time and Maximum for Brownian Bridge.

The distribution under Wiener méasure, and further properties

of standard local time at the origin

(3.10) L(t,w) A lig-ﬁg measf{Osgsgt; |w(s)ise); tz20, weq
€l

have been studied extensively. In particular, with

e
x T

ont3

bl

we have from p.45 of Tto - Mc Kean (1975), as well as from

relation (4.6) in Karatzas & Shreve (1984):

(3.12) Px[w(t)eda; L(t)edb] = 2h(t; 2b+|x|+{a|)dadb; aecR, b>U,
whence

(3.13) P [L(t)sm] = 2@(223%51) - 13 m20, 50, XeR .

Besides, with

(3.14) M(t,w) & sup o(s), m{t,w) o inf o(s), m(e,®) A inf ®(s) ,
Ogset = Ogogt s=D

we have

(3.15) Po[w(t)eda;“M(t)edb] = 2h{t; 2b-a)dadb,

with t>0, b>D, alb. DNow let us consider (3.15), and (3.12)

~— 2
with x = 0; upcn multiplying by V/%:E-exp[— 5%?:%71 s We



1o

obtain the joint densities of (w(t), L(t)) and (w(t), M(t})
under Brownian Bridge measure BJ, with >t; recall (3.2).
in the resulting expressions we can integrate out a (over R
and (-w,b), respectively), and then let tt¢r, %o obtain:

by - T

(3.16) By [L(T)edb] = BJ[M(7)edb] = —e db; b>O.
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J.e: Brownian Bridge Bg conditioned to accumulate m wunits

of local time.

Corresponding to any given numbers >0, m>0, we wish to

construct a probability measure Bgim on (0,%) with

(3.17)  BJ*"[w(0) = 05 w(s) = 01 ¥ sar] =1

corresponding to the intuitive notion of "Brownian Bridge con-
ditioned to accumulate m units of local time on [O,r1]".

In other words, we want that for every 0<tdT, Aegt, we have

(3.18) BS[AIL(T) =m] = Bgsm[A]; for a.e. m>0.
We start by selecting numbers: X
0 = t0<tl< .<tn = t{7<e
n }

x = (Xl,- ,xn)ER E Xy = Vs X5 = O

0 = ao<al< . <an"l<a = bh<{m,
and introducing the nctation
(3.19) D(m) 2 {a = (al,...,an)eﬁ |O<a1<...<an<m}.
With 0<e< Tét,_ we have, by virtue of (3.12) and of the

Markovian character of Brownian motion:
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Po[a(ti)edxi: leign; w(r~€e)edz; L(t-¢)edm]
n
- f...figl P fw(ty-ty g)edx;; L(t,-t, | )eda -a, ]
) = i-1
.Py[m(¢-t—€)edzg L{r~t-e)edm-b]

=2[.. . [B(ts x.2) D(r-t-e; 2(n-b)+|y|+|z])da. axdzan,
- D(m)

where
n
) .

>
no
= =

(3.20} H(t; x,a h(ti-t.

o153 2lagmag g )Hlxg itlx

'i—ll-)'

i=1

The corresponding Brownian Bridge computation can now be obtained
— 2
thanks to (3.2}, upon multiplying by the factor V/g-exp{— gE] :

Bg[aﬂti)edxi: igisn; w(r-¢)edz; L{s~-e)edm] =

2.
-z
2}...fH(£; ﬁ’%)'h(T_t-E5 Q(mfb)+‘y|+fz|)vgﬁe / 2¢
D (m) ,
da.dxdzdm .

The terms involving z 1in the above expression can be written, -

with 8 = 2(m-b)H|y]>0, n= =% B and o = E_(:T"E;E_) :

- o
n(r-t-cs g+|z])/ T expp- oy = L2t /T

o(r-t-e)yem '

_Uzlw)® 8
exp{ o2 E(T“t)}
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The integral of this expression with respect to =z, over R,

20T

e, 1l
(2" g

e -T- 25 €
[J(T—t)(T t- ej (r=t)lr-t=e) _til-@(/ﬁ_" B )}]’

M-t JT-C-€

and thus: B, Tre(t )edx lsign; L{t-€)edm]

2
- o[- itz Sy exor- LREEIy ag 00 an
D{m)
pe 1/2 € (2(m-0)+[y])"
= IR CaID

e (o)

2(2(m-b (m=b)+!y} 1
+ 20 (T_t)+lyl [l @(/ ’ = €ty )j].

Letting now €30, we obtain by the Dominated Convergence

Theorem:

Bg[w(ti)edxi: lgigny L{r)edm] =

;'gf...fH(gsz,a)JznTh(w-t;e(m-b)+|xn|)da.azgm.
D (m)

But from (3.16): Bj[L(r)edm] = 2/Bmr h(r;2m)dm, for m>O.

Therefofe, for a.e. m>0, we have
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Bola(t, )edx, : 1sign|L(r) = n] =

» .
= IIH(,E’ % 2) h(T. th(2.(m22§frxn\) da.dx .
D(m) Tx

The expression on the right-hand side is defined and continuocus
for every m>0. Thus, in accordance with (3.18), we decree
that the sought probability measure BT:™ has the finite-

0
dimensional distributions

Tim . . A
(3.21) BO_ [w(ti)edxi. leign] £
nfr-ts2(m-b)+ix,|)
¢ [[5es ma) S " dadx
] hir; 2m)
D(m) ‘
as long as O<t1<"'<tn = t{r. We regard Bgsm as a measure
on C rather than just ocn C s by stipuiating (3.17).
[0, °°) _[O:T)
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3.f: Brownian motion PO conditioned to first attain m

unites of local time at the instant .

For any given numbers m>O, 70, we want now to construct

a probability measure Pg5T on (0,%) with

(3.22)  PyPT[@(0) = 05 w(s) = O, Y sar] = 1,

in accordance with the intuitive notion of "Brownian motion

1

conditioned by L ~(m) = ¢"; i.e., such that for any t>0, m>0,

Aegt, we have

(3.23) PO[AIL*l(m) = 1] = Pg5+[A]; for a.e. T>t.

With the notation of (and just preceding) (%5.19), we have:
P.lw(t,)edx, : lsisn'Lml(m) ] =
0 i i 2 2T

Po[w(ti)edxi: lgigng L{r)sm] =

n :
N {m(ti)edxig L{t,)eda,}; L(r)sm] =

f...j Pl

D (m) i=1

n .
[ I B, teo(bsmsy g )edxy s DR, -t Jeday ey ]
D(m)

Py[L(T—t)sm—b] =

(s xa) [eeERtily 1) ggox,
)

joee —

D{m
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by virtue of formulae (3.12), (3.13) and (3.20). Differentiating

the above expression with reépect to g1, we obtailn

. -1
| Poﬁb(ti)edxi: lgign; L “(m)edr] =

= I...f H(t; x,2) . h(7-t; 2(m~b)+]xn\)da.dx dr.

D(m)
But th(m) is identical in law, under 'P,, to the first
passage time T, at level ©2m (Itd - Mc Kean (1974), p.25);

in particular,

PO[L_l(m)edT] = PO[T2m€d¢]

1l

hir;2m)dr; 0.

Therefore, for a.e. &>t, we have -

Il

Poﬁu(ti)edxi: 1sisn{L_l(m) ] =

h(r-t; 2(m-b)+ix, |)
- [T 28—

As before, the expression on the right-hand side is defined

and continuous for all +>t; so, in accordance with (3.23),

we require that the sought probability measure Pgif have the

finite-dimensional distributions

C e s ' .
(3.24) P, T[w(ti)edxi. lgign] A



01~

hr-t; 2(m-b)+{x_})

4 I...f H{t; x,a) - da.dx ,
D (m) hr; 2m)
as long as O<t1<...<tn = tdr. We regard Pg5T as a measure

on C[O o) rather than merely on ¢ by stipulating (3.22).
b

[O:T)’

The identity of the two expressions in definitions (3.20)

and (3.22) yieldslthe following characterization:

THEOREM 3: Brownian motion PO conditioned to first attain m

units of local time at the instant ¢, 1is equivalent to Brownian

Bridge [O,r] conditioned to accumulate m units of local time.

More precisely, for all m>0, >0, Ack we have

(3.25) Pg‘” [a] = B ™ [A]. o

Remagrk: Despite its value as anh intuitive interpretation, the

first sentence of Theorem 3 has actually nc mathematical meaning.

It appears to state that for Aest and +>t,

1
(

(3.26) Po[A|L " (m) = 7] = BJ[A[L(r) = m].

However, the expression on the left-hand side of (3.26) ig-a
function of ¢ defined only up to almost‘evefywhere'equivalence,
but the expression on the right is a function of m, also defined
up to a;mostjeverywhere equivalence. Thus, the two expressgioris
cannot Be meéningfully equaﬁed. The content of Thebrem 3 appears

in the second sentence.
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3.2: Brownian Bridge B’ conditioned by the value

a--ab,

m(e)=m{r) =m of its minimum.

The objective here is to construct a probability measure
3;52 on (Q,&), such that for any given >0, acR, DER, m<aab,
we have

BTl Lw(O):a; w(s)=b: ¥Yszr; -min w(s):m} = 1.
Ogsgr

- This measure will play the role of "Brownian Bridge conditiocned

by the value m of its minimum"; i.e., with O<t<T, ¥ Aegt,

(3.27) B;qb[A\m(T)=m] = é;ig[A]; for a.e. me(-w, aab).

For the construction, one takes 0 = t0<tl<...<tn = L{T-eLT

and real numbers a = XO’XI""’Xn = X,%,b,m, such that
min( min X;52,b) > m. From (3.2) one then has
Ogisgn . -

B;qb[w(ti)ﬁdXii lgign; w(r-€)edz; m(r~-¢) > m] =

il

P_[w(t,)edx, : lgien; w(r-c)edz; m(r-¢) > m] RL&3 z,b)
a i 1 :
: p(Ts a:b)

- p(Ts3a,D)




2B -

Intégrating out ZE(m,m) in the above expression and

using the notation o° = Ei%f%:fl., L = ex+(::g"€)b and

_ g(em-x)+(T-t-€)D

we i
Y p— s obtain

T .
p(T; a,b) . Baqb[w(ti)dei: lgign; m(r-€) > m] =

hi cﬂti—ti_lg“xi_l—m,xi—m)dxi

i=l ;
SR (T-1)

x=-b 2 _ l2m-x~b 2
= D(r-t) - 2( --tj—l -
(e ZUTTE gEye U 8 (D) ],

and in the limit as €}0:

p(T; a,b) . B;ﬁb[w(ti)dei: lgign; m{t) > m] =
(3.28) "

= 'Hl q(ti—ti_lg xi_l—m,xi—m)dxi . d(7-t; x-m,b-m).
1= .

Similarly, ohe.Obtains
(3.29) (73 a0b) BJ ym(r)>m] = g(r; a-m,b-m),

and the differential forms of (3.28), (3.29) point out that,

for a.e. me(-» min( min "x.,b)}, we have
: Ogisgn
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By plo(ty)edx,: lsisn|m(7) = m] =

(3.39)

- n
%— H a(t, ‘tl 13 X -1 m,Xi—m)q(Tnt; xh—m,b-m)]

_ =1
dxl. .o an.

= g {r; a-m,b-m)

Now again, the expression on the right-hand side of (3.30) 1is

defined and continuous for every real m < min{ min x;sb).
: ) Ogign
Therefore, given any aeR, beR, ™0 and mlaasb, we can decree

in accordance with (3.27) that the sought probability measure

Ba 5 nhas finite - dimensional distributions

(3.31) B b[w( )edxl: lgisn] 4 RHS of (3.39)

for O<t,<...<{t = t<r, (Xl,..;,xn)eﬁn, min x,>m.
lgign

Remark: The symmetry of Brownian motion allows Us now to compute
easily, for any given 1>0, acR, beR, m>avb, a probability

measure BTib on (Q,%) with

éT’b[w( )=a; w(s)=b: ¥ sav; max o(s) =m] = 1,
& OgserT

which corresponds to the intuitive notion of "Brownian Bridge

conditioned by the value of its maximum"; i.e., with O<t<r,

Y Aegtf
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V. .
(3.32) B;_,b[AlM(T):m] = B;_’E[A]; for a.e. mec(avb,=),
Indeed,

(3.33)  BIP(a] = B3 4,
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%.h: Bessel process Q,a conditioned by the value m{=)=m

of its minimum.

et us consider real = <t <...<t = t<7 =
L us o eal numbers O to\ 1< <ty t<T tn+l’
{m=h<z, as well as XO = a,xl,...,xn = X’Xn+1 = z with
min x.>m>0. We have
Ogigntl

Qa[m(ti)edxi: lgign; w(rt)edz; 0, 87; m(m)>m] =

b
Qa{m(ti)edxi: lsisng w(r)edz; m(7)>n] . Q [m(=)>b] =

z=-b
&

z, .

g-Pa[w(ti)edxi: lgigh; w{t)edz; m(T)>m] ,
by virtue of the Markovian property, formula (3.6), and the
fact that the Q - distribution of m(e») 1s uniform on (0,z).

It follows that

(3.34) a.Qa[w(ti)edxi: lsisn; w(t)edz; o =7; m{=)>m] =

b
n
- t -t . + -t -
(z-D) iElPXi[w( (~Byq)edx s T >t -t o]
n
igl q(ti?ti-ls Xi_l—m,xi—m)dxi . (z-b) q(T~t; X~@,z~m)dz,

With b=m, we obtain, since from the definition (3.4) we have

o, =90 on (m{e) > m}
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a-Qa{m(ti)edXi: lsigntl; m(w)>m] =

n+1
(Xn+l_m) ifi Q(ti'ti_li Xi_l—m,xi~m)dxi.

But now: Qa[m(m)edm] = 525 {m<a, and thus, for almost every

m in the interval (0, min x, )¢
lgign+l b

Qa[w(ti)edxi: leigntl|m(=) = m] =

(3.25)
n+1

n+l-m) 131 q(ti—ti_l; xi_l—m,xi-m)]dxl...dxn+l.

The right-hand side of (3.35) is well-defined and continuous

at any me(0, min_  x.). So, we can fix <m<a and define
1gign+l * :

oot TN v
s v ek e R

a measure Q  on (Q,F) with

ém[m(O) = a; min o(s) =m] =1
a
S';O

and finite-dimensional distributions given by

Qg[m(ti)edxi: lgigntl] =

(3.36)
3 n+1 :
= - a—m[ (Xl’l-l"l—m)j_:nl q(ti_ti-ls Xi_l—m,xi-m)}dxl,_ ,dxn+l
) ; n+i . ;
for any numbers (Kl’---:x +1)€ﬁ : min x.>m. Accerding
o " 1sign+tl *

to (3.35), this new measure corresponds to "Bessel process Q,
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conditioned by the value m(=) = m of its minimum": for every

Acd,
(3.35)"  Q_[A|m(w) = n] = QE[A]; for a.e. me(0,a).

Now let us integrate out =z 1in expression (3.34) over the interval

{by=), . using the equality

@0

j (z—b)q(w;t; x-m,z-m)dz = (7-t)q{r-t; x-m,b-m) +
b

+ (x-b) @(j%?F) + (bt+x=2m) {l-@(Eiéé%g)} s

to obfain, after differentiating with respect to r:

2a.Qa[w(ti)edXi: lgisn; o, €d7; m(e)>m] =

b

q(timti_l; xi_l—m,xi—m)dxi.q(w—t;hxfm,b—m)de

Therefore, with O = t <t . {...<t_ = t{T1, a = xo,b>m>0 and

min X.>m, we have
Osign

m .
: 1 4 =
gQa[m(ti)edxi <ign; UbedT]

= —.gﬁ{iHIQKti_ti—l3'Xi-l_m’xi_m)dxi'q(T"tsx_m’b_m)]dT’

and in 3 similar fashion we can obtain
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20, [ €dr] = = 9= q(r-t; a-m,b-m)dr.

From the last two identities we conclude that, for a.e. >t,

we have
_ - |
(3.37) Qa[w(ti)edxi: ISISH]szT] -
a n
§m'[i§1 a(t;-t, 13 ¥y y-mx;-m) a(r-t; x_-m,b-m)]
) - dx

gﬁ'q(T; a-~m,b-m)

From the identity of the expressions in (3.31),. (3.37), we

deduce ocur third characterization of conditional processes:

THEOREM 4: Bessel process Qa’ 2>0, conditioned by the wvalue

m_ of its minimum and by the last entrance time ¢ 1in level

b, 1is equivalent on [0,r] to Brownian Bridge from a to b,

conditioned to attain a minimum m. Moré precisely, for any

a>0, b>0, 0<mlaab, t>0 and any Aegt, we have

(3.38) QE[A\Ub = 1] = B;iE[A]; for a.e. >t.

1"

.. dx
n
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Jii A PATH TRANSFORMATION

In this section we introduce a path transformation, which
will help us recast our main result, Theorem 1, into a more
.convenient form. The study of this transformation will require
a brief digression, involving the space D of right-continuous,
-

left-1limited functions on [0, w}.

172
valued, right-continuous functions @ = fw(t); t=20} which have

- For Ot <t . $x, let D[tl,tg) be the set df all real-

2

we endow D[tl’tQ) with the Skorohod metric dtl,tg(wl’wQ);

see Parthasarathy (1967), p. 234. On D[tys =), the metric

left-1limits everywhere on (tl,tE]n(O,w). When t is finite,

d (0, w,) is defined by g 27 7[a
t1) x l 2 N nzl tl’

topology associated with the Skorohod metric generates the

t1+n(ml,m2)Al]. The

smallest g-field with respect to which the projections w - w(t)
are measurable, for every te[tl,tg); ¢.f. Parthasarathy (1967),

p. 249. We denote this g-field by . We shall use

Hepsty)

the notation D =Dpy s G = Gy -

For fixed >0, D can be regarded as the Cartesian product
D[O,t) x D[t,=), and ¢ = Gro, £) 2 Gresm)” we demote'by Q. -

the .g-field- of subset
. wﬁQ;i %.;T subsets of -D, of: the form AXD[t,m)’ Aeq[o £y

The space Q = C[O ) < D of continuous functions « on
, =

R+ ig given the topology of uniform convergence on compact
subsets of R+, which coincides with the relative topology
of Q ‘as a sub-space of D (Parthasarathy (1967), p. 248),

and under which  is complete. Therefore, { 1s a closed,
( L
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hence measurable, subset of D.

Motivated by the considerations of section 1, let us define
the following mappings from E+XQ into R: the occupation

times

(4.1) r+(t,w)

il

meas{Ogsst; w(s)z0]

(h2) T (te)

It

mees{0ssst; w(s)<0} = t-r (t, o)
and thelir inverses

..1(

(4.3) I (Tsw) = inf{ta0; r (tw) > 71,

the staﬁdard local time at the origin

— 1 :
3.10 " L{t,w) = 1lim measf{Osgsst; |w(s)|sel,
(3:19) ~i(t0) = T 77 5 l(s)]

as well as the mappings

(B8 W () = st (r,0)

(4.5)  L(T,0) = L(T;(T,0),0)

(4.6) B, (Ts0) = L (T,0) -W, (r,0) + (0(0))*

(4.7) M (t;0) = sup B (s,0), m (t,w) = inf B (s,0).

Ogssgt ‘ ‘ Jgsgt

We recall (c.f. Tkeda & Watanabe (1981), pp. 122-123) that under
Wiener measure Px’ Wi = {Wi(T); T20} are independent reflecting

 Brownian motions with W, (9) = x*, almost surely, and that
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B, = {Bi(T); r20} are independent Brownian motions with Bi(O) = 0,

almost surely.

With the help of the above mappings we can introduce now
our basic path transformation: for any teR+, we consider

the mapping Py N - I given by

(@) (8) = B, (s,0) : 0se<T, (t,0)
(h.8)

B (t-s,w) ; I‘+(t,m)ss<t

= w(s) : s szt.

The motivation for the introduction of this mapping comes of
course from Theorem 1, which will be proved in section 5 by
a method that employs the properties of Py and the results

of section 3.

In section 7 (Appendix) we discuss the measurability of
the mappings (4.1)-(4.8). 1In particular, we éstablish the

following result:

PROPOSITION 1: For any fixed ©>0, the mapping ¢, : @ - b

is .3t/qt - measurable. Besldes, the mapping @ R+XQ - D

is ﬁ+ﬁ 3/@ - messurable.
a

Here and in the sequel, we denote by @(g&) the g-field

of Borel sets in R (respectively, ﬁ+).

Now let us fix =x20, md>0 with x # m, and define
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m>x

If
0
-
w
.
H

T

I}

m, o) inf{s20; Mi(s,w)

(4. 9)

il

inf{sa0; mi(s,m) £ m-x}; 1f m<x

with the convention inf @ = +w, set

(4.10) T(m,w) = T+(m,w) + T (m,w),
and congider the "auxiliary" path transformation 4,0 @~D
given by
¢m(m)(s) = x + B (s,w) 3 Oss<T, (m,w)
(4.11)

il

x + B (T(m,w)-s,w); T+(m,w)ss<T(m,w)

w(s) ; saT{m,w).

The measurability of this mapping is discussed in section 73

in particular, it is shown:

PROPOSITION 2: The mapping t,: @D Iis %/G - measurable,

0
Under Wiener measure PX; xz0, the processes L, Li
and Bi are almost surely continuous, and Ti(m) are then
passage times to level m~x for the two indepéndent Brownian

motions Bi. Besides, with x = 0 and m>»0, we note that




r, (7 ) (2 m)) = L m)

-
=
It
-

)
+
£

I

£)
i

hold P, - almost surely. It follows then from (X.8), (4.11)

that

(4,;2) ¢m(w) = @L_l(m’w)(w), for P, - a.e. weqQ.

m;T[L"l(m,w) = 1] = 1, for every

1

Remark: TFor fixed m>0 we have

TeG(m), where the set G(m) ¢ (0, ) satisfies PO[L_ (m)eG(m) }=1.

-1
Now {L "(myw) = 7} < {L(v,0) = m}, so Theorem 3 implies

T

m;"l“
P 0

(L me) = 1] = BI™[L{r,0) = m] = 1; rcG(m).
Thus, for TeG(m): 1 '
Fi(T’w) = Li (myw) = Ti(m,w\

hold for ng;m and Pg5T - almost every weq. On the other hand,

w(s) = 0, ¥ sar; for Bg5m, Pg;T - a.e. weQ,
and thus
(4.13) b (@) = WT(w); for BS;m, ngT - a.e. weQ, TEG(m).

O

In terms of the path transformation ¢m in (M.ll), one

can provide a concise formulation of a path decomposition result

due to D. Williams (1974; Theorem 3.5):
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THEOREM 5: D. Williams (1974)

Welding back-to-back the pieces of two independent-Brownian

motions started at' x>0 and run until their respective first

passage times at Ievel m{0<m<x) yields the piece of a Bessel

process started at X and run until its last entrance time

to this level, conditioned by {m(=) = m}.. More precisely,

for any Ac¥ and a.e. me(0,x):
(k.1 éﬁ[{w(tacx); t203en] = P [{y, (©) (taT(m)); ta0len].

5:  RESULTS
We are now in a position to put the various results together.

THEOREM Q: Welding back-to-back the pieces of two independent

Brownian motions started at the origin and run until their

respectivé passage times at level m>0, and conditioning on

the sum of these two independent passage times being equal to

>0, yields a Brownian Bridge on {9,7] conditioned to achieve

t

a maximum m. Specifically, for any >0, Ae€F and for a.e.

m>0, we have

(5.1) PO{¢51A]L—l(m) = 1] = ég;m[A]; for a.e. f1>t.

Proof: First, let ug notice that ¢Q1A€3, geccording to Prq—

prosition 2.
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From Theorem 5, we have for a.e. m>»0, with x = 2m:

-1 om
Poplly &1T(m) = 1] = Q, [Ale,, = 7] for a.e. ot.

Theorem Y4, on the other hand, provides a characterization of
the right-hand side in the above identity, in terms of a "con-

ditional" Brownian Bridge:
égm[Alqgm = 7] = ﬁgém[A]; for a.e. T>t{
It follcws that
PEm[wélAlT(m) = 1] = ﬁg%m[A]; for a.e. ot,

and by symmetry:

-

-1 . vTm _
Po[¢m A|T(m)=T]= BO’ [A]; for a.e. 1>t.

1

But under P T(m) = L""(m) holds almost surely, and this

OJ‘

yields (5.1)-. -

THEOREM 7: Brownian Bridge Decomposition.

For any fixed >0 and every AeST, we have
] s, -1 ‘
(5.2) BolA] = Bylg,~ A); for a.e. sd>r.

Proof: We start by noticing that mglAeﬁs, for every s=aT,
by virtue.of Proposition 1. Now from Theorem 3 we have, for

every - m>0:
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Poliy 8117 (m) = 8] = B3*°1y7a1 = 53 "4 AL,

for a.e. s>v., Comparing with (5.1), Theorem 6, we obtain

’S sm sme =1
(8] = B[4, AL ¥ AeT

for a.e. s>r and a.e. m>0. But, under Bg’m, we have
¢m(w)'= pg(w), for :8eG(m) and a.e. weQ (relatlon (4.13)).
Therefore, for every Aeg s we have for a.e. m>0s

S:m[A] Bo3 m[w;l Al; for a.e. séG(m)n(T,m).

and thus by definition

-1
B;[A]M(s) =m] = BS[¢S A|L(s} = m]; for a.e. m>O.

Integrating both sides over {0,«) with respect to the common

density (3.16), we obtain (5.2). -

We discuss now the relation between the pre- and post - Yt

processes, under PO. To that effect, we choose 0O = to/tl\...
<tnst and Xy = 0, (xl,...,xn)eﬁp_ Let t,<1<t, ., and com-
pute '
. fent . v. - O . L en
PO[w(ti)EdXi- leign; y edr] = 57 Po[w(ti)edxi. lsisn; vy ST]dT
. . lcic t e

= 37 Zz_mPO[w(ti)edXi. 1sigk] . ka[w('l' t,)edz] .

(5.3) . Pz[w(tiuT)edxi: kilsisn; To>t—T}dT
k-1 n-1
= BOP(y gty XXy T Al -ts xg, x4,

1=0 i=k+1
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IO)

I(tkj T’t )Xm-..an dT_,

k1 Xk Fral

o/
4

where:

=]

f p(r-s; x,z) alt-T; z,y)dz

-

I(S:T: T3 X:y)

1=

Computations analogous to those employed in §6.a (Appendix)

yield

(5;4)‘ g? I(s,T,t; X,y) = %%% p(T-s: x,0) P(t-1: 0,¥),

and substituting back into {5.3) we obtain

. k-1

P [w(t,)edx, : leign: - P

Q[m( i) X, leign; YtEdT] iEop(ti+l ti‘ XisXy 0
(5.5) ' ‘

n-1 ' | x o

k1t
. - t - . — ; N
iEk+1q(ti+l 13 F30%54q) - P(T-t5%,,0) AL

Ydx_ ...d%
n

Pty T3 05Xy, 0dx,

In particular,

Po[w(ti)edxi: lgigk; ytedT} =

= [ polo(t,)edx, : lsigk; w(t)edz; y edr]

-

(5.6)
= ey PUTt 3k’q)120 pﬁti+1'ti5"xi’xi+1)qul"
From (5.5), (5.6) we obtain now, for a.e. Té(tk,tk+1) and
. k
a.e. (Xl""’xk)ER :

dar.

.dx

k

dT.
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Po[m(ti)edxi: k+lgign]w(ti) = X 1gisk; ve = 1] =

(5.7) I
‘XK_,_]_ I',‘/Q-n-(t_’r)

T p(t, . -73 9,x )

k+1 7 Tk+1

k41 T/

n-1

t. -t a ...dx .
i=£qu( g1 bed Xyr Xy g )Xy e edxy

Remark: If we multiply the expression in (5.7) by
dr

m/T{t-T)

for the distribution of a Brownilan meander. Whereas Chung

Po[ytedf] = s Wwe obtain Chung's formula (1976, Eg. 3.1)

computed the unconditional distribution, we have conditioned on

the pre - Yy Pprocess.

THEOREM 8: Under P., the processes {o(say,); sa0}  and

OJ
{m(SVYt); 5201 are independent when conditioned on Yo

Proof: The conditional distribution in (5.7) does not depend

SE D

For other results of this type, in the context of general

Markov Process theory, the interested reader is referred to

the survey article by Millar (1977), and to the papers cited

there. We have preferred to derive Theorem 8 from first

principles.

Remark: Let %

lig>

: 0 nd
g(w(SAYt) sz0) an 3,

A o(w(svy): s20).

Yy Yt

Then yt is both s‘y and gay - measurable, and since
' t t



we see from Proposition 1 that the process

is X%
. Y
t

18 32Yt - measurahle.

- -

re(t, st

- k+l) we have

Po[w(ti)gdxi: 1sign\yt =

(5.8)

Py

Py

“hn.

(@ ar)) ()

w( . v u)
(@) (s

; for

w(u) ; for

[wyt

Yt

u‘Yt

uZYt;

Theorems 8 and 2 imply now that,

T]

PO[Q(ti)edXi: lslslet = T].

Po[m(ti)edxi: K+lslsn|Yt=T]

- measurable, while the process {o (w)(uvvt}5 uz0}

if

<...<tnst and (xl,...,xn)eﬁn, then for almost every

-
= B . : . 3 —
O[w(ti)edxi. lgigk]. Po[m(ti)edxi. k+151$n[yt

and

ngmyt(w)(ti)edxi: lsign|y,

I

THEOREM 1: Brownian Path Decomposition.

For fixed >0,

(5.10)

PolAl = Byle,

we define

1
t

Y

¥ Aed, .

Als :

by (3.3).

T] =

We have:

(@) (uay,); u207

T}

Po[wyt(m)(ti)dei: lsisk|Yt=T]. Po[w(tiﬁedxi: k+leignly, =7]

T . 3 o . : -
BO[th(w)(ti)edxi. lgigk]. Po[w(ti)edxi. k+lslsn|yt—T].




1

Proof: Theorem 7 implies that the last expression in (5.8)
agrees with the last expression in (5.9), for almost every

Te(t st Integrating with respect to PO{YtedT], and

k k+l)'

summing up over Kk, we obtain the desired result:

Po[w(ti)edxi; lgign] = PO[¢Yt(m)(ti)edXi; lgign].
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6. APPENDIX

6.a: Derivation df the guadrivariate density (1.6).

With x(O,. we compute:

Po[m(t)eda; M(t)edb;lytss; w(s)edx; @(tleds] =

il

_Po[m(s)edx; M(s)edb; a(s)eds]. Px[w(t—s)eda;_To>t—s]

b2 ( -x) 2 '
= b (b-x) e - 2(s-9) bdedx .
n85/2(s-g)3/2
. gxza)z _ (Xiazg
a -8 2(t-s
'J%n = | e e ]

by virtue of (1.5) and the reflection principle. Integrating

out x, we obtain

Pg[w(t)eda; M(t)edb: Y %53 a(t)eds =
_p2
_2be 28 | dbdpda
(Qﬁ)B/EGB/E(S 9)3/2( 8)1/2

(6.1)

2 R
gb+x x+a\2 _ (x-a)
—_ 1
b+x 2(s-8 2(t-s’ _ e 2(t-s dx.

A bit of algebra gives

(b+x)2 - (Xi-a)2

(6-2) S—B t—S = 2 t_S x




h : = o = 2
wnere: 'Ei, t_ﬁ 3 = t

The integral in (6.1) is thus written as

(x+u, ) (x+u_)

- © 2 - ‘ 20
. 2(E-3 j (bix)e 25 ax - e 2(678 Io(b+x)e dx,

(x5 ) ul
e - .2
(6.3) I (b+x)e 2o dx = oe 29 E—ﬁ(b+a\UJ [1 $( Guii]

Finally, the observation

0
(b+a) b
(6.4) ;? tT-6 t—s s-6

yields, when the computations (6.3) are substituted back into

(6.1):

v
| pe °F dadbdé
P [w(t)eda; M(t)edb; vy, ss: 8(t)ede]=
o t 3/2 3/2
e T (t- 9)

(6.5)

_ !b‘a32 B _ (bta e
(omaye 208 a(- Lu)-(rmre 270 (o 2w,

Differentiation with respect to s ylelds the desired formula

(1.6) for the guadrivariate density, after a bit of algebra.

L
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It is helpful to note, in carrying out this programme, the

observation (6.4) and the computation

3 (L, ~(t-0)1/2
55(5 h,) = ( )1/2

75 (o5 * v

2{t~-s)"" “(s-8) . 3

6.b: Proof of Theorem 2.

With O<tl< 2<...<tn = g{7<t, and real numbers
Xl’xg""’xn = X,a8, we have

Po[w(ti)edxi: Isign; v, >7; w(r)edaj =

= Po[m(ti)edxi: lsisn]. PX[m(T-s)eda]. Pa[TO\t—T].

Therefore, integrating out a over (-w, =), we obtain

Po[w(ti)edxi: lgign; yt>T]

Po[m(ti)sdxi: lgign]

® QiT—Sj
- = ) [ e (1 - sl e,

21‘]’(‘1’—5 — e

X 2

Jis - L. o a1/2
d/étj_w e 2 q1-3(% ?éjT?%/2 )} dy +




b5 o

- I B . 1/2
+ f y e 2 @(X y{r 81/2 ) dy]

(t-1)
Ve

We differentiate now with respect to , and observe that

(rog) 172

__{X TTo8 ) , where L A x'o o
-7 th T)TT‘SY 2% t-s ’

02 A E:; We obtain, using the identity
2 2
L (x=y /- 52 _ (), %

y t-T e t-s

Po[w(ti)edxi: lgign; YtEdT] =
2
_ X

- ar 2{T1-5 _ , ,
= e . Po[w(tiygdxi. l<ign] .

ﬁV(t"T)(T"S)

dr

ndT(tuT}

Finally, the arc-sine law: Pofytedw] = is employed

to show that, for a.e. 7te(s,t):

Po[w(ti)edxi: 1slsn\yt = 1] =

- Q/T e 2(r-s) . Pg[w(ti)edxi: leign]

T . :
= Bo[m(ti)ggxi. lgisnld,

by virtue of (3.1). Relation (3.5) is established.
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Y. APPENDIX

We devote this section to certain questions »f measurability.
Let us begin by considering a continuous function pt R - [0, =},
with support in [0,1] and with jp(s}ds = 1. We define the

mapping 6: D - 0 by

a{aw)(t) & I w(t+s) p(s)ds = Im (s) p(s-t)ds; ta0.
Y0

©
0

It is not hard to verify that @8 1is actually a continuous

mapping from_ D, equipped with the topology induced by the
Skorohod metric, into (@, eqguipped with the topology of uni-

+
form convergence on compact subsets of R .

Lemma 1: The evaluation mapping e: ﬁ+XDqR defined by

el{t,n) = w(t); t=20, wed, is nfﬁﬁ‘q/@ - measurable.

Proof: For each positive integer n, define the continuous

mapping 6, ° Do by

9, (@) (£) 4 j:w(t+s> o (s)ds;  tao,

where ‘pn: R - [0,=) 1is continuous, with support on [O,%]
and with Ipn(s)ds =1,

Consider also the mapping e: R X o - R, defined by e(t,w) =

w(t). It is easily checked that e 1is continuous, and sc the

mapping en(t,w) & an(w)(t) from RT x D into R, Dbeing the

L
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A

composition of (t,w) — (t,en(w)) and e, 1is also continuous.

Since we have:

e(t,w) = lim en(t,w); ¥ taD, weD,

N-e
e 1s measurable.
The following result is also easy to verify:

Temma 2: Let f: R - R be a bounded and Borel-measurable func-

tion, and define F: R+ XD R by

t
F(t,w) A f f{w(s)ds; t20, weD.
= g ! _

Then F is ﬁ+ 2 G/B - measurable.
- O

ILemma %: Let ' D D be q/q - measurable and assume that

for some fixed ©,>0, t >0, p(w) and @(m')'rrgstricted to
[O,te) agree, whenever o and w” restricted to [O,tl)
agree. Then g is qtl/qt2_~ measurable.

Procf: We write D =D so that web has

x D 3
[0, tl) [t1~‘ m)

the form o = (wl,w For any

5)
fixed te[O,tg) and Bem, we know that the set

E & {{wps0,) |@{w,sw,) (E)eB) is a member of Q[O’tl) 2 q[tl’m)’

‘and we must show that E 1is of the form A n D where

[tl, CD),
AEQ[O,tl) By assumption, however, @(wl,wg)(t) eB 1if and

only if ¢(wl,wé)(t)eB, for a1l
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) where, with

It follows that E = AnD[t

'w2ED[tl,m)'
arbitrary but fixed &@ED

10 %
[tl’ @) :
A = [w,€D w,,m,)€E] € .
foy [o,tl)\( 10 @) €E] Gro,t,) o
We are now in a position to discuss the measurability
properties of the various mappings in section 4. The joint
measurabllity of ri(t,m) on R+ x D follows directly from
Lemma 2. In order to prove that the mappings r;l(T,w):
R x D = R in (4.3) are ﬁ+§§ G/B - measurable, fix £>0, cbserve:

that ri(t,.) is /8 - measurgble, and argue that
-1 7 L
{(’UCD)!I“:b (T,0)<t} = {(r,0) |7, (t,0)-r>0}c8" 2 g.

In order to establish the measurability of local time

in (3.10), we appeal again to Lemms 2 for the measurability of

Ke(t,w) A %E jol[_a,&}(w(s))ds; t=0, weD,

for every ¢>0. For fixed (t,w), K_(t,») is right-continuous

&
in e, and so
K .(t,w) o TIm K _(t,w) = lim  sup K. (t,w).
0 = [ 1 o)
n

5 rational

_}.
It follows that KO: R xD o R is ﬁ+_® Q/ﬁ - measurable,

and non-decreasing in t; in order to select a right-continuocus
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veréion as in (3.10), we recall the sequence of Tfunctions

{(p 31 used in the Proof of Lemma 1, and set
Prin=1

L{t,w) = lim | K.(t+s,w) p_(s)ds.
N JO o n

Then L{t,w) = K,(t+,w), and Fubini's theorem implies that

5
+ . +
L: R x D~ R 1s B 2 G/8& - measurable.

By composition, one can show the @' 2 G/B - measurability

of the mappings in (4.4) - (4.6).

PROOF OF PROPOSITION 1: Because (Q 1is a measurable subset

of D, it suffices to show that

(1) for any fixed t>0, the mapping g0 D -D 1is /G -

measurable, and that

(ii) the mapping ¢: R+ xD D is ﬁ+'® G/G - measurable.

From the preceding discussion it fellows that, as a func-
tion of (t,s,0) inte R, ‘g, (w)(s) in (4.8) is r' 2 st 2 /8 -
measurable. As a function of (tyw), p maps R+ x D into D,

and since for each fixed s20, Bef:
+
[(t,0)|p, (@) (s)eB}e 8" 2 g;

we see that the function (t,w) +— mt(m)(.) is @+ 2 G/g -
measurable. For fixed >0, the function o r— ¢ (0)(.)
from D into D is thus /¢ -~ measurable, and since s ()

restricted to [0,t) agrees with @t(m’) restricted to [0,t)
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whenever o and o restricted to [0,t) agree, we see from

Lemma 3 that the mapping o —» @t(w) is qt/qt - measurable.
-

In order fo discuss the measurability of Mi in (4.7),

cbserve that

0
Mi(t,w) A sup

1 (t)Bi(wa)s ta0, weD
aépt {(qs =)

g rational

is B2 G/B - measurable, and that it is the left-continuous

version of M, : Mi(t,m) = sup B (s,w).
Ogs<t
Therefore, '
.0
M (t,w) = Lim f M (t+s,w)p (s)ds; ta0, weD
+ Now ¥o % n

-

where again {pn}w 1s the seguence of functions used in the

ne1
proof of Lemma 1. It follows that Mi is ﬁﬁ'ﬁ q/ﬁ - measurable .
A similar argument establishes the measurability of mi, and

it follows that the mapping Ti(m,.): D~ R in (4.9) is

Q/ﬁ+ - measurable.

PROOF OF PROPOSITION.g: Again, it suffices to show that, for

fizxed m>0, x20, x#m, the mapping 4,* D~ D defined in (4.11)

is G/G - measurable.

Since ;21]1 functions involved are measurable, the mapping

(8,0) +— wm(w)(S) is a7 9 G/B - measurable. Consequently,
for fixed ser', the mapping o > pp(w)(s) 1is G/B -

measurable, and so the conclusion follows.
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