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Consider a complete probability space (R, 7, P) and a standard, R? - valued Brownian
motion W (%) = (W1(2),...,Wu(t)), 0<t < T defined on it. We shall denote by {F:} the
P.augmentation of the natural filtration

F =o(W(s) 0Ss<#)AN, 0<t<T,

where A is the class of P-negligible sets. Let F dencte an integrable, Fpr-measurable
random variable. Then by the well-known martingale representation theorem (see Karatzas
and Shreve (1988), pp. 182-184), there is an R%-valued, progressively measurable process
1 satisfying j;T |ll#(s)}|? ds < oo almast surely, such that

(1) M(t) = E[F | 7] = E[F| + /0 t;b*(s)dW(.s), 0<t<T.

Assuming that F' is Fréchet differentiable, Clark (1970) gave an explicit formula for ()
in terms of the Fréchet derivative of F. Haussmann (1979) extended this formula to the
case in which F is a functional of the solution to a stochastic differential equé.tion driven
by a Brownian motion. Later it was realized that the Clark-Haussmann formulae were
consequences of the adjoint relationshp between the gradient and divergence operators
defined on Wiener space, and therefore, they remained true under much more general
hypotheses when appropriately formulated; see, for example; Ustunel (1987), Ocone (1984),

or Yan (1987). In this note we establish another extension in this direction.

We shall need to recall the definition of the gradient on Wiener space, sometimes called
the Malligvin derivative (see Nualart & Pardoux (1988), section 2; Tkeda and Watanabe
(1989), p. 360; or Ocone (1988)). Denote by C3P(R™) the set of C™ functions f : R™ — R
which are bounded and have bounded derivatives of all orders. Let S be the class of smooth

functionals, i.e., random variables of the form
Fw) = f(W(t1,w)y..., W(ta,w)) ,

where (21,...,1,) € [0,T}* and the function flz,.. 2%, 0,21, 2%) belongs to

C{°(R*™). The gradient DF(w) of the smooth functional F is defined as the (Z2([0,1]))*
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- valued random variable DF = (D'F,... » D®F) with components

D'F(w)(¥) = E 3o (W (t1,0), oo, W(tn, w))1jg,41(8)

=1
i =1,...,d. Finally, let || - || denote the L?([0,7]) norm: [ +] will be reserved for the

Euclidean norm on R™,n > 1. For each ? 2 1, we introduce the norm

d
HEFpa = (B{|F|? + (Z ||DEF)2)2/2) )1 e

i1
on S, and we denote by D, ; the Banach space which is the closure of S under I g
Shigekawa (1980), Lemma 2.1 shows that DF is well-defined on Dy,; by closure for any
p 2 1. Given F e Dp,1, we can find a measurable process (¢, w) = Dy F(w) such that for
a.e. w e}, D:F(w) = DF(w)(t) holds for almost all ¢ ¢ [0, T] (more precisely, ¢ > D F(w)
is in the equivalence class in L%([0,T]) defined by DF(w)). D.F(w) is defined uniquely up
to sets of measure ze;'o on {0, T] x . More generally, for a positive integer k > 1, indices

J1y-++33ky 1 < j; < d and a smooth functional F, we define

. . g*
(DY F@) = 3 ol (), Wt (02 - T ()
$1yeeeyin
=Di...DAF.
Then Dy denotes the Banach space which is the closure of S under the norm I} - 1lp.k
defined by

IFllps = (B{FP+( Y [[(D*)fris p||2)e/2)) P,

Ftreens

where |[(D*)%-4|| denotes the L*([0,T]*) norm of the higher-order derivative. From

these Sobolev spaces we construct also the projective limit
Dco = nP)LEZIDP!k

and its topological dual
Do = Ups1.121(Dp.1) s
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where (Dj,x)' denotes the dual of D, :. These spaces are the setting for a theory of
distributions over Wiener space; see the book by Ikeda and Watanabe {1989).

Let us now return to Clark’s formula. If F € D3 then it can be shown that
T
@ F=E(F)+ | EDEYIFIaW) .
1]

For a proof see, for example, Ocone (1984),(1988) or Nualart & Pardoux (1988), Ap-
pendix A. Recognizing that the esential point behind (2) is an adjoint relationship between
stochastic integration and D, Ustunel (1987) showed how to extend this formula to any
distribution F' € D_, by defining an integral for distribution-valued processes. His results

were further expounded upon and simplified by Yan (1987).

It is the purpose of this note to show that (2) is also valid for functionals F € D ;.
We have found this extension useful in an application to optimal portfolio representation
in Ocone & Karatzas (1989), because it simplifies the technical hypotheses one needs to

impose.

Remark: The space Do, is naturally embedded in its dual D_.,, by associating to each
G € D the distribution defined by the duality pairing '

(3) (G,F)=E(GF) VFe€D,.

D31 is not contained in D_, in the sense that this embedding does not extend to Dq1.
To see this, let T = 1 and consider the simple functional G = ¢(Wi(1)) where 4(z) =
(1 +z*)~1e="/2, A calculation shows that

T
E[p(W(D) +( [ |6/ (W()DW (D) d8)?] < oo

because

T
B([ 16 (WD W & ? = B4 (1))] < oo
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It follows from Lemma A.1 in Ocone & Karatzas (1989) that G € D, ; and
D:g(W(1)) = ¢'(W(1))110,4(2)-

In order to extend the embedding of (3) to Dy ;, we would need that E(GF) be defined
and finite for every F' € Dy, and, in particular, for every polynomial function of Wi(1),
since all polynomial functionals of W{(-) are in the space of test functions D,. However
1+ Wftl))G’ is not integrable, and so the extension fails.

Theorem: For every F ¢ D, ; we have

T .
(4) F=EF)+ /0‘ E((D.FY"|FJdW () .

Proof. For F ¢ Dy, consider a sequence {F,}%2, C S such that lim,_.o || Fn —
F|l1,1 = 0. The martingales M(t) = E[F|F;] and M,(t) = E[F,|F:] admit the respective

representations
M) = EF)+ [ 4 ()m()
and

M) = BE) + [ g (s)aw(s)

where 3 is an R? - valued, progressively measurable process satisfying foT N (s)|]2ds < co
almost surely. By (2), ¥a(t) = E[D:F,|F;]. The submartingale inequality (Karatzas and
Shreve (1988), p. 13) yields

(5)  Plmsx IMa(t) - M| > ©) < * EIMu(T) ~ M(T)| = = E|Fa —F| =0

as n — 0o, for every ¢ > 0. The “good A - inequality” of Burkholder-Gundy (cf Rogers
and Williams (1987), pp. 94-95), namely

P[< N >1> 4X%, max [Ny € )] € 8 P[< N >¢> A?]
0<t<T
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for all A > 0,4 € (0,1}, valid for local martingales N with continnous paths, leads to
T

®) P ald) ~ )t > 7] < 6+ Plmas [Ma(8) - () > 5

. 0 -— -
for all A > 0,4 € (0,1). It follows from (5) and (6) that

T P
@ [ a0~ 90Pat 20 25 n . ,
0
However, at the same time, the Cauchy-Schwarz inequality implies
T T
E f [¥n(s) - E[D,F|F,]lds < E / |D(Fn — F)|ds
0 0

T
(8) < TV g / \Dy(Fr — F)[2ds)!/?]
0
< TY3)|Fo = Fll1a — 0

as 7 — oo. It follows from (7) and (8) that E[D.F|F;] = ¢(t), dt® dP - almost surely.

Remark: Notice that the Theorem implies
T )
f |E[D,F|F,}’ds < o almost surely ,
0 .
for every F' € D;,;. It does not seem possible to argue this fact using only that

T
E||DF|| = E{( jo ID,FPds)/*} < oo .
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