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A modification of J. M. C. Clark’s formula is established for the stochastic integral representation of
Wiener functionals under an equivalent (Girsanov) change of probability measure. It is shown how this
modified Clark formula leads to the representation of optimal portfolios for a variety of situations in
the modern theory of financial economics. )
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1. INTRODUCTION

In recent years there has been considerable interest in the applications of
stochastic calculus to problems of financial economics. Beginning with the work of
Harrison and Pliska [8, 9] which showed that the martingale representation
theorem and the Girsanov change of probability measure are the “keys™ to
understanding option pricing in the celebrated Black and Scholes model, these
methodologies have been applied with considerable success to questions of
valuation of American options (Bensoussan [2], Karatzas [13]), consumption/
investment optimization (Karatzas et al. [15], Cox and Huang [5, 6]), equiltbrium
(Karatzas et al. [16]), and term structure of interest rates (Artzner and Delbaen
[1], Heath et al. [11]), to name only a few. A recent survey of these developments
appears in Karatzas [14].

For most stochastic optimization problems, posed in general financial market
models, the above-mentioned methodologies are very successful in identifying
closed-form expressions for quantities like the optimal consumption and terminal
wealth levels, but are able to ascertain only the existence of the associated
portfolio strategies. The purpose of this paper is to derive general representation
formulae for the optimal portfolios associated with option pricing, maximizing
utility from terminal wealth, and maximizing utility from consumption (formulae
(3.10), (4.13) and (5.9), respectively. The case of utility from both consumption and
terminal wealth can then be handled by superposition, as in Section 6 of Karatzas
et al. [15].
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138 : D. L. OCONE AND L. KARATZAS

Instrumental in obtaining these representations is an extension of the familiar
Clark formuia (Clark [3], Haussmann [10], Ocone [21]):

F=E(F)+ } E[(D,F)*|#]dW (1) (2.8)

under an equivalent change of probability meaasure; here W(-) is a multidimen-
sional Wiener process on [0, T], &#,=a(W(s); 0£5<1), D is the Malliavin—Fréchet
functional derivative on Wiener space and F is an % -measurable Wiener
functional in the Sobolev space D, ;. This extension, which we believe to be of
sufficient independent interest, is carried out in Section 2, culminating with
Theorem 2.5. In particular, the representation (2.8) is first extended to Wiener
functionals in the space D ; (Proposition 2.1), and is then re-expressed in the
form

F=E(FZ(T))+ f E [(D,F —F f D B(u) dW(u))*lgﬁ] dW(t) (2.20)
0

where W(t) w(e)+ [ 6(s) ds 0=¢<T is Brownian motion under the probability
measure P(A)= E[Z(T)1,] on %, under appropriate conditions on the random
variable F and the bounded, {#,}-adapted process §(-).

In the particular contexts of option pricing, and of utility maximization from
investment and/or consumption, the formula (2.20) leads directly to representations
of optimal portfolios for these tasks; such developments are carried out in Sections
3, 4 and 5, respectively, and lead to the representation formulae (3.10), (4.13) and
(5.9). Much like (2.20), these expressions are fairly general but also quite hard to
manipulate further, as they involve functional derivatives of the Malliavin type,
stochastic _integrals, and conditional expectations under the auxiliary probability
measure P mentioned above. When specialized to the case of logarithmic utility
functions, or to a financial market with deterministic coefficients, the formulae
(4.20), (4.32) provide very explicit expressions for the optimal portfolios, in
feedback form on the current level of wealth. This task is carried out in Section 6,
and extends results of Karatzas er al. [15, Section 7]. It would be interesting to try
to extract more useful information from these formulae in situations with random,
possibly Markovian, coefficients.

A version of formula (3.12), in a more specialized context, was derived by
Colwell et al. [4].

2. THE CLARK FORMULA UNDER AN EQUIVALENT CHANGE OF
MEASURE

Consider a complete probability space (,#,P) and a standard, #%valued
Brownian motion W(t)=(W(r),..., Wy{t))*, 0<t< T defined on it. We shall denote
by {#,} the P-augmentation of the natural filtration
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FV¥=0(W(s)0<sst), 0stsT

As is well known, {#,} satisfies the “usual conditions” of right-continuity and
completion (of #,) by P-negligible sets (Karatzas and Shreve [17, Section 2.7]).

Let now 8(5)=(6,(t),...,04t)*, 0<t<T be an %#*valued, bounded and {F,}-
progressively measurable process, and consider the associated exponential
martingale

H

Z(t)=exp{——_f6"‘(5)6.’”’[7(3)——%3'IE)(S)]2 ds},.?"',; 0<tsT (2.1)
0

0

(where juxtaposition x*y=Y%.; x;y; denotes inner product in #’, and | x| =x*x).
Then the process

W(t) = W(x)+i 0(s)ds, F,; O0=t<T (2.2)
! ,

is a standard, #%valued Brownian motion under the new probability measure

BA)y=[Z(T)dP, VAeF; (2.3)

by virtue of the Girsanov Theorem (ibid, Section 3.5). Note also that, because of
the boundedness of 8(-), we have

E(Z(t)i<o0; Vqe®, OZt<T (2.4)

We shall need to recall the definition of the Malliavin derivative (Nualart and
Pardoux [20, Section 2]; see also lkeda and Watanabe [12, p. 360] and Ocone
[22]). Denote by CX(#™) the set of C* functions f A" % which are bounded
and have bounded derivatives of all orders. Let ¥ be the class of smooth
functionals, 1.., random variables of the form

F(w)=f(W(t1, ), ..., W(ts, @), 2.5)

where (¢y,...,t,) €[0, TT* and the function f(x“,...,x"l,...;xl",...,x"”) belongs to
C2(#"). The gradient DF(w) of the smooth functional F is defined as the
(I%([0, T]))*-valued random variable DF =(D'F,..., D'F} with components

D'F(w)(t)= zn: 0

j=1 Bxij

T, o) ..., Witm o)l ) i=L...d (26

Finally, let ||-|| denote the I*([0, T]) norm; /| will be reserved for the Euclidean

norm on %", n 1. For each p=1, we introduce the norm
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on &, and we denote by D, ; the Banach space which is the closure of & under
I||,... Shigekawa [24, Lemma 2.1] shows that DF is well-defined on D, , by
closure for any p21. Given FeD, ;, we can find a measurable process (¢, w)—
D, F(w) such that for a.e. weQ, D F(w)=DF(w)(t) holds for almost all te[0, T]
(more precisely, t+D,F(w) is in the equivalence class in IX([0, T]) defined by
DF(w)). D,F(w) is defined uniquely up to sets of measure zero on [0, T]x Q. (In
general, if X:Q—I*([0, T]) is measurable, there exists a £([0, T])® # measurable
random variable, {X’ (¢, w); (t, w) [0, T] x Q}, such that X(-. w)=X(w) holds almost
surely. In the remainder of the paper we shall identify X(w)(r) with X(t, ) without
further comment.)

We now state an extension of Clark’s representation formula for Brownian
martingales. For its proof, see the article by Karatzas, Ocone and Li [18].

ProrosiTION 2.1  For every FeD, | we have
T
F=E(F)+ | E[(D,F)*| #,]dW(). (2.8)
0
Remark 2.2 1) From (2.8) it follows also that

| E[F|F1=E(F)+ | E[D,F)|#]aW(s,  OStST 29)

i) We need the extension of Clark’s formula in (2.8) from D, ; to D, ; in order
to give ourselves extra room in Theorem 2.5. In that theorem we shall want to
represent P-martingales E(F|#,) as stochastic integrals with respect to the process
W of (2.2), by using the Bayes formula E(F|#)=(Z(t))"!E[FZ(T)|#,] and then
applying the Clark representation to FZ(T). The extension of (2.8) to D, , is
therefore useful for avoiding unnecessarily restrictive moment bounds on F and
DF. For example, if F e I2(P), it does not follow that FZ(T) e I2(P). However,

E|FZ(T)JP=E(F]PZ(T)»~ 1) S (EF?PIHEZ(TY P~ D2 —P) =012 « o
if1<p<2. 1|

Let L7, denote the set of #%valued progressively measurable processes
{u(s, w); 0 s< T, we Q} such that

i) For ae. se [Os Tjs U(S, ') E(Dl. l)d;

ii) (s, w)— Du(s, w) e (IX([0, T1))*" admits a progressively measurable version; and

i) [lul, =
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T 12 /T 1/2
E[(j |u(s)|? ds) -1-([ |\ Du(s)|1? ds) ]<oo. (2.10)
0 0

Observe that for each (s, @), Du(s, 0)=[Dufs, )] is a dxd matrix of elements in
([0, TT). Thus, in (2.10), ||Du(s)||* should really be written as

1=

10w ()"

1

ij=1

For notational convenience, we prefer to write simply | Du(s)|f?. For ueLy,,, there
exist processes Dju s, ), 1 =1, j<d which are progressively measurable in (t, s, @),
and for which

Diuys)t)=Diuys, ) forae. (€ [0, T}

holds for ds® dP-a.e. (s, w). Here, progressive measurability of a process f(t,s, @)
means that for each r>0, the map (ts, )0, TIx [0,7r] x Q> f(z, s, w) 1S
A([0, T]) ® Z(L0, r]) ® &F,-measurable. Clearly, D,u(s, ) is defined uniquely up to
sets of dt ® ds® dP measure zero. Conversely, if we assume that u(s, -)e(Du)d for

—ae. s, and that (t,s, w)—Du(s, w) admits a progressively measurable version
satisfying -

E {(} ]u(s)]2 d,’s)”2 +(f f Z ]Dfuj(s)lidt ds)m} < o0, (2.11)
0 006,

LJ

then uel$ ; and Du(s, »)(-)=D .u(s, w) for ds@dP-a.e. (s, w). Finally, notice that,
because u is progressively measurable, if ueL] ;, then

Du(s, 0)=0 for all te(s, T)

holds for ds® dP-a.e. (s, w); see Corollary A.7 in the Appendix.
In what follows we shall work with processes of the form

Y(t, w)= } D,u(s, )y dW(s) (2.12)

for ueLls ;. Y(t, ) {s a parametrized stochastic integral, and it will be necessary fo
have a version of it measurable in (¢, w). Rather than proving the existence of a
measurable version by appealing to some gencral theorem, we give Y(t, w) the
following precise interpretation. Let X :Q-»(I([0, T]))* be the random vector

X(w) =i (Duls)) dW(s). (2.13)

oTMCH O
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This stochastic integral is well defined because, from (2.10), P([J || Du(s)||* ds< o) =
1. From the comments preceding Proposition 2.1, we can assume that X(w)(t) is
measurable in (t, w). Corollary A.5 of the Appendix implies that, for almost every
te[0, T], X(w)(t)=Y(t,w) holds almost surely. We shall identify Y(t,w) with
X(w)(t), because X(w)(t) supplies the desired measurable version.

In Proposition A.6 of the Appendix we establish the following result.

ProrosimioN 2.3 Let ueLf . Then [u*(s)dW(s) e D, ,, and
T T
D, § w*(s) dW(s) = [ Duu(s) dW(s) +u(z). (2.14)
0 0

Remark 2.4 i) The Burkholder-Davis—Gundy inequalities imply that there is a
constant ¢, independent of the process u, such that

t

E { max | | u(s) dW(s) }ch {(} |u(s)|? ds)m} (2.15)
ost=T|0 o
and
: T 1/2
E{max [ Du(s) aw(s) }ch {(j' || Du(s)|? ds) } (2.16)
osi=T||0 o

These inequalities are not generally stated in the literature for the vector-valued
case. However, suppose that K is a separable Hilbert space and f:[0, T] x Q—K*
is a measurable process such that P([7Y%|fis)||zds<cc)=1. Then the processes
[ f()dW(s), |Ifo f(s)aW(s)||2 =[5 Y || s)||z ds are continuous local martingales.
This fact is enough to derive the Burkholder-Davis-Gundy inequality

E{ max }ch{(} Y [If,-(s)”fids)m}
05T K 0i=1

by use of the “good i-inequality”; see Rogers and Williams [23, pp. 94-95].
if) From Proposition 2.3 and the inequalities (2.15), (2.16) it follows that

<cE {2 (} u(s)|? ds)”2 + (} || Duts)||? ds)m} < oo
1,1 0 0

g f(s)dW(s)

T
{ u(s) dw(s)

0

for uels ;. I

We can present now the basic result of this section; it states conditions under
which we can give a precise formula for the integrand in the representation of an

Fr-measurable random variable F as a stochastic integral with respect to W

Throughout, we shall let | DF||* denote ¥4 ||D'F||? for notational convenience.
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THEOREM 2.5 Let {6{t);05t< T} be a bounded process such that el ;. Consider
also a random variable F, such that FeD, , and

E[|F|Z(T)] < o (2.17)

E[Z(T)||DF|[]< | (2.18)

T
E []FIZ(T) g DO(s) dW(s) + jj; D&(s)- 0(s) ds

jl<oo. (2.19)

Then FZ(T)eD, ,, and we have the stochastic integral representation

F=E(FZ(T)) +]§F [E(D,prﬁ) —E (F }F D,0(u) dW(u)
)] t

%)]*dﬁ/(t). (2.20)

Proof We write Z(T)=e® where G=—[70%(s)dW(s)—(1/2) [T |6(s)|* ds.
Proposition 2.3 implies that |3 8*(s)dW(s)eD, ;. On the other hand, g |6(s)|* ds is
also in D, , by the following argument: thanks to Lemma A.2 of the Appendix we
may approximate 6 in L4 ; by a uniformly bounded sequence of simple processes
{6%(-)}. For each se[0, T], |0"(s)}|*e D, ; by Lemma A.1, using the boundedness of
6(s). It is then simple to see that [7]6%(s){*ds e D, ; and

T T
D [ |6%s)|* ds=2 [ D8"(s)- 6"(s) ds.
0 0
From the uniform bound on {#"} we obtain

E } [DO"(s) - 6%(s)— DO(s) - (s)] ds
]

gE[ §10°6)[06°9)~ Do(s) s+ [6(3)—9“(3)|||D9(s)|[dsi|

<cE (} || D6"(s)— D&(s)||? als)”2
0

1/2

/T 12 /T
+E|iu|9(s)—6"(s)|2ds) (g [|D6(s)|[2ds) :I

The first term tends to zero as n—oo, since |[|6"—6}||{ ;=0 as n—co; the second
term tends to zero along a subsequence for which 6™(s,w)—0(s,w) for
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ds®dP-almost every (s,w), by dominated convergence. It follows that
§516(s)]*ds € D, ; and D {§|6(s)|* ds=2 [T DO(s) - (s) ds.

We have thus proved that GeD, ;. Lemma A.l shows that if E|Fe%,
E[°||DF|1, E[|F|e||DG]|] are finite, then Fe®eD, ,. But these hypotheses are
precisely those stated in (2.17), (2.18), (2.19); strictly speaking, we should have

imposed

instead of (2.19). However, since 6 is bounded, this condition is implied by (2.19)
and (2.17). We conclude that FZ(T)eD, , and that, by Lemma A.1,

T T
oo > E[|F|e°||DG]] =E[]F|Z(T) “ § DOs) dW(s) +6(-)+ | DO(s)- 6(s) ds
4] 0

D(FZ(T))=Z(T) [D,F— F {B(I) + f D,8(u)d v”V(u)H. (2.21)

From the Bayes formula and Proposition 2.1, we have

Z(t)

—AQ) [E[FZ(T)]+§(E[DS(FZ(T))I=%])*dW(s)} 222)
where

AD) i—Z% =exp {g 0*(s) dW(s) ,_% g |6(s)|? ds}.

Because dA(t) = A(1)%(t) dW(¢), an application of Itd’s rule yields

dr(E[Flsm)=[%E[DI(FZ(T))|ﬁJ+E[F|%]9(r)]*dv‘v(r). 223

But from (2.21) we obtain

1 - 1 _ 1 _
Z0 t)“E[D,(F Z(T')) |71 =70 E[Z(T)D,F|#,] ~Z0 O(E[FZ(T)| #,]
1 T _ -
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T
=E[D,F|#]—-0E(F|#]1-E [F | D.B(u) dW () |347,].

By substituting back into (2.23) and integrating from 0 to T, we obtain the
representation formula (2.20). |

For the purposes of applying Theorem 2.5 we want to specify hypotheses on F
and @ separately.

COROLLARY 2.6 Let {8(t); 05t =T} be a bounded process such that 8eL | and

E (} | Do) ds)r!2 <00
o

for some r> 1. Consider a random variable F such that FED, ; and E[||DF|Fl1< 0
for some p>1, and suppose that F e IX(P) for some q such that (1/g)+(1/r)<1. Then
FZ(T)eD, , and the representation formula (2.20) is valid.

Proof We exploit the fact that Z(T)e L(P) for all v>1 (cf. (2.4)). It follows that
FZ(T)eI9(P) for all ¢’ with 1<q'<g. Let s>1 satisfy (1/s)+(1/p)=1. Then, from
Holder’s inequality,

E(Z(T)||DF|) SE*?||DF||?- E**[Z(T)] < oo.

Let ¢ satisfy (1/¢)+(1/r)=1. Then by Holder’s inequality and the Burkholder—
Davis—Gundy ineguality,

f DO(s) dW(s)
0

} DO(s) dW(s)+ } D6(s)-6(s)ds
L] o

E[Z(T)]FI

g Cj; Do) ds)'”]

<K-EY(Z(T)|F)?-E'" (f || Dos))||? ds)r’2 <ow. |
0

<K- E”“'(Z(T)[Fl)‘f' . Elir[

Finally, we remark that under the hypotheses of either Proposition 2.5 or
Corollary 2.6, we obtain from the proof of Proposition 2.5 that

E[F|#])=E[FZ(T)] +} [E(DSF[.QFS) ~F (F } D.6(u) dW (1) F/T):I* dW(s), (225

for 0<t<T

ey S I Y
R e

T R R by ety

o D
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3. A FINANCIAL MARKET MODEL

Consider now a financial market that consists of a bank account, where deposited
money accrues interest at the rate r(-), and of d stocks with prices-per-share Py(-),
1=i<d governed by the stochastic equations

d

P{ty=P(1) [b,-(t) dt+ ) a,-J{t)dI»Vj(t)J, 0<t=T (3.1)
f=1

j=

The interest rate r(t), the vector of stock appreciation rates b(t)=(by(z),..., b(t)*,
and the matrix o(t)={0,{t)};<;;<a Of stock volatilities, will be referred to
collectively as the “coefficients” of the model; these are bounded random processes,
progressively measurable with respect to {#,} (the augmentation of the natural
filtration {#'} generated by the Brownian motion W=(Wy,..., W))*). The
following nondegeneracy condition will be assumed throughout: there exists a real
number £>0 such that

$*at, w)oX(t, w)e zel|E|’ VEeR?, (1, w)el0, TTxQ (3.2)

This is the Bensoussan [2] model, further expounded upon in Karatzas et al. [15],
Karatzas [13, 14].

Let us introduce now a “small investor” (ie., an economic agent whose decisions
cannot affect the prices), and at time te[0, T] denote by X(t) his wealth, by n,(t)
the amount he invests in the ith stock, and by c(t)=0 the rate at which he
withdraws money for consumption. The resulting  portfolio  {n(t)=
(@ (1),..., m())*, 0=t £ T} and consumption {c(t), 0Lt < T} processes are assumed
to be adapted to {#}, to take values in %° and [0, c0), respectively, and to satisfy
the integrability constraint

T
g{”n(t)““—c(t)} dt<coo,  as. (3.3)

The wealth process X(-) corresponding to such a pair (x, ¢) satisfies the equation

d d

dX(t)= ) nyt) [b,-(t) dt+ zd: cr,-j(t)dwg{t)}+()((t)—z ﬂi(t)) r(t) dt—c(r) dt,

or in vector form
dX () =[r(1)X () — c(e)] dt + =¥ [(b(t) — r()1) de + o(t) AW (D)]
=[r()X(t) —c(t)] dt+n*(t)a(t) dW (1), O0<t<T. (3.4)

Here 1 is the vector in #“ with all entries equal to 1, and W is the process of (2.2)
with '
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6(t) = (a(t)) ™ [B(t) —r()1]- ' (3.3)

In terms of the “discount process”

p(ty=exp {—j[ r(s) ds}, (3.6)

the solution of (3.4), corresponding to a pair (m,c) as above and to a given initial
capital x>0, is

PO X(t)=x —i Bls)c(s)ds +JI' Blsm*(s)o(s)dW(s),  O=tsT (3.7)
G o

We call the pair (r, ¢) admissible for x (and write (7, ¢) € &(x)), if
X(1)=0, YOZt£T

holds almost surely.

3.1. The Portfolio that Attains a Given Level of Terminal Wealth

Consider a non-negative, %,-measurable random variable B with E[BB(T)]=
E[BA(T)Z(T)]=x. From Proposition 4.7 in Karatzas [14], there exists a unique
(up to equivalence) pair (x, ¢) € #(x) with ¢=0, such that the corresponding wealth
process X(:) of (3.7) satisfies X(0)=x and X(T)=B almost surely; this wealth
process is given by

BHX()=E[BH(TD)|#],  0=tsT (3.8)
In other words, the portfolic = attains the level X(T)=B of terminal wealth,

starting with an initial capital X{0)=x.
From (3.8) and (3.7) with ¢=0, one obtains

E[BB(T)|#1=E(BHT)Z(T)) +£ Bls)n*(s)a(s) dW(s). 39

But now, if one imposes the assumptions of Corollary 2.6 on the process 8(-) and
the random variable F= BS(T), one obtains the portfolio n(-) as

T
r() =~ (*(0) [D;(Bﬁ(T)) —BA(T) { D 8(u) dW(u) 9"“:] (3.10)

Blz)

for 0<t< T, by comparing (3.9) and (2.25).
In the case of deterministic coefficients 6(-) and (), the only conditions of

fetmaias S =
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Corollary 2.6 that are non-vacuous amount to FeD, ; and E||DF|P < oo, for some
1 <p < 0. Under these conditions, the portfolio n(-) of (3.10) takes the form

n(t)=e~¥%(a¥(2)) "' E[D,B| # ], (3.11)

provided that #(-) and r(-) are deterministic.

In particular, if for a.e. te{0, T] the right-hand side of (3.10) (or (3.11), in the
case of deterministic coefficients) is in [0, «0)? almost surely, then the portfolio that
steers the initial capital X(0)=x into the terminal wealth X(T)= B does so without
short-selling of any stock.

Example 3.2 (Deterministic Coefficients) Consider a random variable B of the
form B=y(P(T)), where :(0, 0)*—~[0, c0) is a function of class C! and P(s)=
(Py(t),..., Pit))* is the vector of stock prices

P{t)=P{0)-exp { Y jau(s)dW(s)—l y j"a”(s) ds— jr(s) ds}.

j=10 110

If  and its partial derivatives satisfy polynomial growtli conditions, then BeD,
for every pe(l,®), and a simple computation shows that D,B=

4 PATYo/op)(P(T))e{t), where o{t) denotes the ith row vector of the matrix
o(t). Then the portfolio xn(-) of (3.11) becomes

d

n(t)=e (oM )Tt Y alt, P))afr), (3.12)

i=1

where the function a(t, p):[0, T] x (0, c0)?— 2 is defined by

adt, p)ﬁE‘[Pimg—If(Pm)'P(r)=p]

for every i=1,...,d. In particular, if for every (¢, p)e[0, T] x(0, o0)? the vector
(e*(@) 1A 1rx,(t p)cr,(t) is in [0, o0}, the portfolio n() of (3.12) avoids any
short-selling.

4. OPTIMAL PORTFOLIO FOR INVESTMENT

Let U:(0, c0)— 2 be a strictly increasing, strictly concave function of class C?, with
UO+)=lm,,U(c)e[—o0,0) and U'(eo)=lim . U(c)=0. We shall refer to
such a function as a utility function, and denote by [I:[0, U'(0+)]—{0, o] the
inverse of its derivative U'(-). If U{0+) < o0, we set I(y)=0 for yZU'(0+).

In the setting of Section 3, an important guestion in financial economics can
then be formulated as follows: to maximize the expected utility
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E(UX(T)) o (4.1)

from terminal wealth, over all pairs (n,c)e/(x). Here, X()=Xx*"9") is the
wealth process corresponding to the initial capital x>0 and an admissible pair
(m,c) e H(x), as in (3.7).

This problem was discussed in Karatzas et al. [15] (hereafter abbreviated KLS)
and in the review article Karatzas [14, Section 9]. According to the theory of KLS
[15, Section 5], there exists an optimal pair (#,¢&)es/(x) for this problem, with
¢=0 (naturally), corresponding optimal level of terminal wealth

X(T)=I#(x){(T)), (4.2)
and corresponding wealth process X(-) given by

B(0)X(e)=E[B(TX(T)|#.]
_ (4.3)

=x +f B(s)A¥(s)o(s) dW(s), OSt<T
0

In (4.2) we use the notation
{(e) = BOZ() (4.4)

(where f(-) is the process of (3.6) and Z(-) is the exponential martingale of (2.1)
with 6(-) as in (3.5)) and denote by %(*) the inverse of the continuous, decreasing
function

Z(y)=E[BTH(UTNI=ELLTIYUT)E  O<y<cw (4.5)

which we assume maps {0, co) into [0, c0). Furthermore, under additional technical
conditions on the utility function U, it is shown in KLS that the value function

Vix)= inf EUX(T)) (4.6)

{m,c)e F(x)
of this problem can be computed as

V(x)=G(¥(x)), (4.7

where |
G(y)=EU(I(y{(T); 0<y<co. (4.8)
The theory that we have just outlined describes very explicitly the optimal level

of terminal wealth and the value function (in (4.2) and (4.7), respectively), but fails
in general to ascertain anyting more than existence for the optimal portfolio 7.

T e S e e LR
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The goal of this section is to obtain a representation for # (formula (4.13)
below), by applying Theorem 2.5 to the random variable

F=p(T(¥ (x){(T)) (4.9)
suggested by (4.3) and (4.2). In order to do that, it will be necessary to impose

additional conditions on the function I(-) and on the interest rate process r(-).
We shall use extensively the notation

¢(y)=yl(y), O<y<co. (4.10

THEOREM 4.2 (Representation of Optimal Portfolio for Investment) Suppose that
U'(0+)= o0, so that 1 C*0, ), and

I+ SKO*+y™ %), O<y<o (4.11)

holds for some real, positive constants o, B, K. Assume also that the bounded
processes 6 and r belong to L ¢, and that for some p>1 we have

E [(f | Dés)|? ds)plz:| <o, E[(f I1Dris)|? ds)m} . (4.12)
1) 0

Then the optimal portfolio (4.3) admits the representation

a(t)= - 73%5 (*(e) ! {G(t)l?'[ﬁ(T)@ NTIE()UTH|F.]

T T
+E [ﬁ( T)o (W)U T)) { | Dyr(u) du+ | D,6(u) dﬁ/(u)}

9‘;]} (4.13)

Proof Given F as defined in (4.9), it suffices to verify the hypotheses of
Corollary 2.6 and to compute DF. First, because r and hence § are bounded,
assumption (4.11) yields in conjunction with (2.4):

E[FI|<KEZXT)+Z ¥T)i<w, VYqe®*.

(Throughout, K is a generic positive constant, possibly different from equation to
equation.) Therefore Fe IZ(P), for all g>1.

To complete the proof, we shall show that FeD,, and E|DF|" <o for
1=p'<p. Let G be any positive random variable in D, ; such that Ge#(P) for all
ge4, and E[||DG|[1<o for some r>1. Then, using (4.11), the fact that I is
decreasing, and an approximation argument similar to that in the proof of Lemma
A.1l, one can show that

IG), IG) e B(P),  forall g>1, (4.14)
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and

I{G)eD, ,, DIG)=I(G)DG, and (4.15)

E\|DI(G)|” 2(E(|| PG|y ™"(E(I(G) |[p’r/(r —PM =PV < o,
forigp <r. (4.16)

Let G=%(x)KT)Z(T). Clearly GeI4P) for all ge#, and by Lemma A.l in the
Appendix we obtain that GeD, ,, with

DG=-G [f Dr(s)ds+ :jr DO(s) dW(s) + 9(-)]. (4.17)
0 0

From (4.12), Holder’s inequality, and the Burkholder-Davis-Gundy inequality,
we see that E[||DG|[]<oo, for any 1=Zr<p. Thus by (4.14)4.16),
I (x)B(T)Z(T))eD,,,, and

E[||DH#(x){(T)|F 1< for any 1<p <p.

Finally, we can apply Lemma A.l and (4.17) to conclude that F=
B(DI(#(x){(T)yeD, , and

T
DF = —F | Dr(s)ds— (T (x){TI'(F(x){(T))

x [f Dr(s) ds-i—jTDG(s)dW(s)—l-@(‘)]. (4.18)
0 0

Another application of (4.12) and Holder’s inequality proves that
E[||DF||F'I<e forall 1<p'<p.

Therefore, the hypotheses of Corollary 2.6 are satisfied, and we may apply formula
(2.20) to F. A comparison of (2.20) with (4.3) then yields

B(to*(t)i(t) = E(D,F|#)—E [F : f D, 8(u)* dW (1)

g?] (4.19)

By substituting F=B(T)(¥(x){(T)) and the expression (4.18) for DF into (4.19) we
obtain the representation (4.13). |

Example 43 U({x)=logx. In this case I(y)=1/y, and so ¢{y)=1, —yI'(y)=1(p).
The expressions (4.13), (4.3) yield
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(1) =ﬁ—;t—j (0*() O ELBDI@()U(T))|#,]

=(a*(t)) " 'O(1)X(2)

=(o()a™() ~ '[b(t) — (1] X(2). (4.20)
In other words, the entries of the vector (a(t)a*(1))~ '[b(t)—r(1)1] provide, at every
time te[0, T], the proportions of wealth that are to be invested in the individual
stocks. In this special case, we do not need to assume that 8, r belong to L{ ;; the

result is true without regularity assumptions on 8 and r (cf. Section 9.3 in
Karatzas [14]).

Example 4.4 U(x)=(1/6)x’, §<1, 6#0. In this case I(y)=y *1-9 gy)=
y~¥#1=9 and —yI'(y)=[I(y)/(1—&)]. It follows from (4.13), (4.3):

B)o*@(0) = BB UT)| #7600
6 - T
+og | ey § o

)

+ f (DO(u)) d ﬁi’(u)}

or equivalently

i) == [B(E)X'(t) +2 E[B(T)X’(T) { [ Dyrtu) du

B(®)
97:” (4.21)

In particular, if the coefficients r(-), 9(-)- are deterministic, the expression of (4.21)
becomes

+ f (D,0(u)) d ﬁ’(u)}

X0

a(t)=(a(t)o*(t))” " [b(t) —r(9)1] 1—s (4.22)

Example 4.4 (Deterministic Coefficients) In this case the hypotheses on 6 and »
of Theorem 4.2 are satisfied trivially; under the remaining assumptions
U'(0+)=co and (4.11), we have from (4.13):
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()= —(o*(t))”'6(1) E’%))- E[@(x)((DI'@XUT)|#]. (4.23)

On the other hand, (4.3) yields

ti=PD g F o 4.24
X0 30 ELI@ (x| 7). .. (4.24)

We would like to obtain #(¢) as a function of (1), for every t€[0, T]; in other
words, to express at every time ¢ the optimal portfolio in “feedback form” on the

current level of wealth.
In order to do this, introduce the notation

a(t) J 0|2 ds, Y(5)= _f 9*(s)dW(s); OSt=T - (4.25)
t )
y=F(x)H(T) e (4.26)

and assume a(t) >0, V0=t < T. With this notation,

T

) T
YT =H()B(T) exp {—g 0%(s) dﬁf(s)%g 6 ds}

=ye'd), (4.27)

On the other hand, the conditional P law of Y(T), given %,, is normal with mean
Y(t) and variance «(t) (this is because

Y(T)-Y(t)= —? g%(s) AW (s) (4.27")

i

is independent of #,, and is a zero-mean normal random variable with variance
a(t) = [T ||6(s)||? ds). Therefore, with

= y2[2alt)
K(t,x)= [ I(ye*™? dy. 428
(t,x) ;(?e“ ) 27 y (4.28)
the expression {(4.24) becomes
20=LD k@, Y. (4.29)

B(e)
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The function K(z,-) of (4.28) is continuous and strictly decreasing; differentiating
Jormally under the integral sign, we obtain

e~ Yi2al)

— Pl d & x+y d 4.3
K. (1, x) é‘;? (ve )\/m y (4.30)

for its derivative. In conjunction with (4.27), this expression lets us rewrite the
optimal portfolio # of (4.23) in the form

()= — (a*(1)) (1) %Kx(t, Y@). (431)

In other words, the process Y(-) of (4.25) is a sufficient statistic for the
computation of both the optimal portfolio and wealth processes, via (4.31) and
(4.29), respectively.

Even more to the point is the following observation: let A(t,*) be the inverse
function of K(,-), ie. K(t,A(t,&)=¢ Then from (429) we have
Y(t)=A(t, (B(t)X()/B(T))), and substitution of this expression into (4.31) leads to

(0=~ (o*(0) 60 21 1

B(&) Ade, (BE/BT)X (@)Y (432)

a formula that provides the optimal portfolio as a (deterministic) function of the
current level of wealth, as desired.

In Section 6 we shall show that these heuristic considerations can be made
precise, under very weak conditions; in particular, none of U'(0+)=o00, (4.11) will
be necessary. :

Remark 4.5 In this remark we answer a question about optimal portfolio
selection posed to us by Héctor Sussmann. From (4.32) it is clear that in the case
of deterministic coefficients, the ratio

#1) _(0*0) "0
7)) (0*0) 00’

1<i#j<d,

of the optimal portfolios in any two different assets, is independent of the utility
Junction U. Is this true more generally? The answer, in the case of general, random
coefficients, is no. For instance, in the context of Example 4.4 we obtain from
(4.21) and (4.2)4.5);

0= B o0 +6 § Dot
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+6 f (D,6(w)) dVV(u)}

3”":] (4.33)

for 1<i, j<d, with Q)T)=(BAT)Z(T) "~V and «;=E(BT)Z(T))**~ . Putting
=0 in (4.33), we recover the optimal portfolio for the logarithmic case of
Example 4.3. It is not hard to see that, in general, the ratio

zfig is not independent of &[0, 1) (4.34)
0

for i%j. Indeed, take o=1, and 6(-) deterministic; the negation of (4.34) leads to
the relation

0'(1)pi(2) =0/ (1)pi(t); Vte[0,T), 6e(0,1) (4.35)
for all 1<i, j<d, where

E[Q{T) |7 Dir(u) du|#,]
E[Q(T)|#1]

pit) =0

It is not hard to find interest rate processes r(-) and %#%valued functions 6(-), for
which (4.35) is violated for some i#j.

5. OPTIMAL PORTFOLIO FOR CONSUMPTION

Let us now turn our attention to the problem of maximizing expected utility
T
EJ U, c(t) de (5.1)
0

from consumption during the finite interval [0, 7], over all admissible pairs
(m, c) € #(x). We retain the setting and notation of Section 3. In (5.1) the function
U(t, ¢):[0, T] % (0, 0)—>Z is of class C*! and such that, for every te[0, T}, U(t,")
satisfies the properties of a utility function set forth in Section 4; I(t, ) will denote
the inverse of U'(t,*) on [0, U'(t,0+)]1, and I(t, y)=0 for y2U'(t,0+).

This problem was addressed in KLS [15, Section 4] (see also Karatzas [14,
Section 8]). It follows from the theory of this article that there exists an optimal
pair (%, &) e o/(x) for this problem, with

&(2)=1I(t, H(x)(0)), (5.2)

and corresponding wealth process X given by
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[4 T
BOX () + [ Bls)i(s) ds=E [ | B(s)é(s) ds
[4) 4]

d
=X +£ B(s)i*(s)a(s) AW (s) (5.3)

for 0<t< T Here again, x>0 is the initial capital and #/(-) is the inverse of the
continuous, decreasing function

X()=E g B(s)(s, y{(s))ds

=EJ (s, yl(s))ds, O<y<eo (5.4)

Oy

which maps (0, o) into [0, oc), and the value function

Vix)= inf E j‘T U(t, e(t)) dt

(r.c)e A (x) 0
of this problem can be expressed as

V(x)=G(%(x) (3.5)

where

T
G(yY)=E [ U(t, I(t, yi(0)) de; O<y<oo

(under additional technical conditions on the function U(z, ¢)).
By analogy with Theorem 4.2, we have the following representation for the
optimal portfolio # of (5.3).

THEOREM 5.1 (Representation of Optimal Portfolio for Consumption) Suppose
that U'(t,0+)=00 for all te (0, T, I(z, y) e C* ([0, T] x(0, 0)), and let

It ) + 1, 1, )| S K G+ y 78, V(. y) [0, TTx(0, c0) (5.6)

hold for some positive constants o, B, K. Furthermore, let {6(t),0<t<T) and
{r(),0<t<T} be bounded processes such that 6eLi, , rels ; and, for some p> 1,

E(jT ”Dr(u)“?'du)plz'(oo, (5.7)
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and
T . /2
E(j ||D9(u)”2du) <. (58
0

Then the optimal portfolio # of (5.3) is given by

T
#(t) = — B"(_) (o*(1)"" [e(t) E{ ] BN (s, H(x){(s) ds

ﬁ}

T s
+E {I B(s)@'(s, #(x)L(s)) [I D.r(u)du

+f D,B(u) dI;'V(u):| ds]?i,ﬂ, (5.9)

where ¢(t, y)=yi(t, y) and I'(t, y)=(0/0y)I(t, y), §'(t, y) =(6/0y) (L, y)-
Proof Let F= [} B(s)I(s,®(x){(s))ds. To prove Theorem 5.1, it is sufficient to

verlfy that the hypotheses of Corollary 2.6 hold for F. Let y(s) B(s) (s, #(x)(s)).
We shall prove

sup y(s}e 4(P) forallg>1, and (5.10)
[0, 7]

yelf ;. (5.11)

It follows from (5.10) and (5.11) that FeD, ; and
T
DF = [ D[y(s)I(s, %(x){(s))] ds.
0

To prove (5.10), observe that the boundedness of the process r(-) and assumption
(5.6) imply

sup y(s)£K I:(max Z(t))tz + (max Z(t)) -ﬂ:l. (5.12)

[0. 7] [0. T} [0, 71

(Again, K is a generic positive constant, and the K in (5.12) may differ from that
in (5.6).) Because {Z(1);0=t=T} is a martingale with Z(T)eI¥P) for all g>1,
we also have maxy rZ(t)elP), for all g>1. Likewise, because {V(f)=
Z™Yt)exp[—[5|0(s)|* ds], 0<t<T} is a martingale with V(T)e L{(P) for all g> 1,
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maxyg, rZ~ '(t)e B(P), for all g>1. The claim (5.10) follows immediately. By the
same argument, assumption (5.6) also yields

sup |BS)US)I(s, Hx){(s)|eB(P)  forall g>1. (5.13)
[0, T]

To demonstrate (5.11), first note that the proof of Theorem 4.2 shows that for
every s, y(s)eD, ; and

Dy(s) = —(s) g Dr(u) du— BSYHUS) (s, Z()L(S))

X [} DO(u) dVWHu) +0() o o} + js' Dr(u) du]. (5.14)
0 0

Therefore, because of (5.12), (5.13) and the boundedness of 8,

IDy(s)|=x (I +§ || Dr(w)|] du +

fpe(u)dW(u)
0

+f llbﬁ(u)lldu), (5.15)
[4)

where X is a random variable satisfying X eI4(P) for all g>1. If 1<p'<p, we
obtain

T P2 T /T 2 pi2
E( [Py ds) < KEUA[X] (1 LEPIP ( f ( [l du) ds)
0 0 \0

T /T 2 \p2
" Ef( i ( {1p6| du) ds)

0

§ DOu) AW ()

0

T
+ E?/P (_[ sup
00, 7]

2 pi2
dv) , (5.16)

where (1/q)+(p’/p)=1. On the other hand, we have

E (}" (}- ”Dr(u)” du)2 ds)pﬂgKE (} ”Dr(u)“2 du)wz,
o \o 0

and similarly with D8(u); moreover, since

2 \p2
dr) gKEI:sup

0. T]

[ DOGw) aW ()

0

f DO(w) dW(w)
0

E(f sup

0f0, T)

l
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T pi2
§KE(] ||pe(u)||2du)
[¢]
by the Burkholder-Davis-Gundy inequalities, it follows from (5.16) that
T p'i2 |
E( i "Dy(s)-”zds) <co, (5.17)
1]
for 1 Zp’<p. This implies yeLy, . Also, (5.17) implies that
’ T p’
E[”DF”P]gE(j ”Dy(s)”ds) <o, (5.18)
0 .
The inequality (5.18) verifies the remaining hypothesis on F in Corollary 2.6 and

so completes the proof. |

Example 5.2 U(t,c)=e %"9%logc, where p:[0, T]>2 is a bounded, measur-
able function (a deterministic discount factor). In this case I(t,y)= =g~ hoHdds. (1))

and —yI'(t, y)=I{t, y), so (5.11) and (5.3) give
d

=(a*(t) "0 X)) =(a(t)o™(£)) " [b(e) —r ()11 R (1),

T
(1) =E(~—) (a*(t)~*0¢)- E [I Bls) (s, ¥(x){(s)) ds

just as in Example 4.3.

Example 5.3 U(t, c)=e™%#9%(1/5)c’, where p(-) is as in Exampie 5.2 and d<1,
S #0. Then I(t y) e —8) [t pishds yuu a) ¢(t y) e~ - a)jmsm y—5/(1 - and
—yI'(t, ) =(I(t, y)/(1 - 8)); it follows from (5. 9), (5.3) that

[I B(s) (s, H(x){(s)) { § Dyr(u) dus

%}

B @i =20 [j B (s, F()(s)) ds|

_ﬁ_
i

+f (D,6(1)) dﬁf(u)} ds

whence
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#(1) __(o ()~ [G(I)X(t)-i- 30 (j B(s)é(s) {_[D r(u)du

—5
.9‘7,)] (5.19)

In the case of deterministic #(-) and (-}, this portfolio takes the form (4.22).

+}(D,6(u)) dﬁf(u)} ds

6. DETERMINISTIC COEFFICIENTS

This section continues the discussion on models with deterministic coefficients,
started in Example 4.4. The basic observation is that, in this case, the driving
Brownian motion W and the process W of (2.2) generate the same filtration. This
means, in particular, that {#} is also the P-augmentation of {#}. Thus, when
representing P-martingales as stochastic integrals with respect to W via the Clark
formula, we can work on the probability space (Q, &, P). There will be no need to
transform back to the original probability space (£, #, P), as was the case in the
more general representation formulae (2.20) and (2.25). Of course, the formula we
get could be derived from (2.20} with D,8=0. However, the proof of formula (2.20)
required assumptions (2.17) and (2.18), and these become unnecessary if we apply
the Clark formula directly to W, In this way we avoid unnecessarily stringent
conditions.

We place ourselves in the setting of the financial market model of Section 3 with
deterministic coefficients, and address first the question of maximizing the expected
utility from terminal wealth (4.1) over admissible pairs (&, c)e«/(x). The utility
function U will be as in the opening paragraph of Section 4. Recalling the
notation of (4.25)+(4.28), we write the optimal wealth process X of (4.3) in the

~form

X = Bﬁ( (T)') M(t), where (6.1)
M(t)= E[I(y ' ™)| F]=K(z, Y()), (6.2)

e—zlea(t)
K(t,x)={ I(ye**?) dz, (t,x)e[0. T) x A. (4.28)

& 2ot}

We also introduce the function
—z’-]Za(t)

dz; (t,x)e[0, T)x &. (6.3)

Lz, x)—-jm I(ye* z) r——oc(t)

Under the condition
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a(t)>0, VO=St<T, ' (6.4)

the functions K and L of (4.31) and (6.3) are well-defined on [0, T] x £, provided
that (1+|z[)[(e**%) is integrable with respect to exp(—(z*/2«()))dz, for every
(t,x)e[0, T) x #. A sufficient condition will be imposed below (cf. (6.7)), which will
guarantee this.

Remark 6.1 1If I is smooth, a formal integration by parts in '(6.3)' suggests the
computations

0

om O e_zznau)
Lex)==]Ipe )az(m)dz

—~22]2a()\ -
= ex+z Ir ex+z € d
; ’ b ) (. /Zna(t)) :
=K (t,x), (6.5)

if one ignores boundary terms and recalls the other heuristic computation (4.30). It
follows then, from this formula and (4.31):

#(0) = —(*(1) 1600 %%)-L(t, Y(t). 6.6)

Despite the heuristic character of both (4.31) and (6.5), their consequence (6.6)
can be made completely rigorous, as the following theorem demonstrates.

THEOREM 6.2 Let (6.4) hold, and assume

[ () e 1 dz< a0 (6.7)
£
for some p>1, a>a(0). Then the P-martingale M of (6.2) admits the representation
t
M()=EI(y ") L(s, Y(s))0*(s) dW(s), (6.8)
0

and the optimal portfolio & of (4.3) is given by (6.6).

Remark 6.3 Tt is a consequence of the proof that all terms in (6.8) make sense.
This is interesting in the case I ¢ C?, for it is not easy then to see a priori that

T
{ (s, Y(s)) ds< o0, as.
0
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Remark 6.4 Observe that the condition (6.7) implies

I(be), |z]I(be?) € (e~ dz) (6.9)

for every ae(0,a), be#. In particular then, the functions K, L of (4.31), (6.3) are
well-defined on [0, T] x £, and

e 72/ 2a(0)

EI*(y er):é‘e I*(y &%) :/T(O) dz < co. (6.10)

The Proof of Theorem 6.2 will proceed in two steps:

Step 1 Theorem 6.2 holds if, in addition to the assumptions stated there, one
imposes also e C*. :

Step 2 One may relax the assumption I e C!.

Proof of Step 2 from Step 1: Smoothing argument.
Let p:#—[0, c0) be a C™-function with compact support and (4 p(x)dx=1. Let
pox)=np(nx), xe & for n=1, and define

@K@, fo=f+p,

(here * denotes convolution) and

L(y)=fllogy), so f(z)=I,e).

Then it is easy to see that

lim E|1(ye" ™)~ I(y e"P)p =0, (6.12)
LX) | L) S b [ (6.13)
whX)=§ — L (ye""*) ——udz — L{t,x .
: 2 o(t) ’ 2maft)  nowo

for every (¢, x)e[0, T] x &.
Consider now the P-martingales

M(t) = E[I(y " ™)|#,]— El(y ") ' (6.14)
M ()= E[1,(ye"™)|#]~ EL{y *™) (6.15)

for n= 1, which admit the representations
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— I L4
MO =[y*s)dW(s), 0=tsT (6.16)
A

for some {%,}-progressively measurable, %%-valued process ¥ with [T} dt < o,
ass. (from the martingale representation theorem), as well as

M (t)=— } L. (s, Y(5))8*(s) dW(5), 0Zt=T (6.17)
0

(from Step 1). From the Burkholder-Davis-Gundy and Doob inequalities, we have
then

7 P2 " _ _
E[I )+ Lils, YS)OO)? ds] §C1‘E( sup IM,,(t)—M(t)lp)
0 O0=t=T
<C,-E|#1,(T)—M(T)P
< CyE|Ly &™)~ 1y )P,
and by virtue of (6.12) this last expression tends to zero, as n— 0. It follows then
from (6.13) that ¥(s,w)=—L(s, Y(s,w)) 6(s,) holds for dt®@dP-ae. (s,w) on
[0, T] x Q, and therefore we may take ¥(f)= — L{t, Y(1)) - 6(¢) in (6.16).

Proof of Step 1 ; Cut-off argument.
Consider a C*-function ¢:%#—[0, 1] with

¢(x)={1’ leé;}

0, |x| =
and define the functions

P x)=0¢ (%)’ xXeR

D=0 (D(ye?), ze

and the random variables

G=I{ye'™),  G,=f(Y(T))

for n=1,2,.... We are interested in representing the P-martingale M (t)=E(G|#),
0<t<T as a stochastic integral with respect to the P-Brownian motion W, in the
specific form (6.8).

Now every G, belongs to the space D, ;, and so from Proposition 2.1:
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M. () = B(G,|#) = E(G,) + | EID,G,| #1dW(s) (6.18)
4]

for 0Zt<T, n=1,2,.... (Strictly speaking, in (6.18) D denotes the operation of
differentiation with respect to . This does not contradict the representation
formula (2.20) because, when 8 is deterministic, differentiation with respect to w
and with respect to W give the same result) Now recalling (4.27') and the fact that

0(-) is non-random, we obtain

D,G,=F(¥(T)* D, ¥(T)=— f{¥(T))-6(0)
and
_ E[D,G,|#1= ELA(¥Y(T)|#1-60)
= e YO) e
& < 2raft)

—z2}2a(t)

z e
—‘;f,,(z+ Y(1)) ;(—6 \/mdz 8(t)

dz-6(t)

—z2{2alt)

_ s+ven 2 €
95? Gz + YOIy e ™) 20 T2

dz - 6(t)

after integrating by parts. By the Dominated Convergence Theorem, this last
expression converges to

—z2{2a(1}

z+vey 2 €
ég fre ) a(t) . /2noft)

as n— oo, for every (¢, ) &[0, T]x . On the other hand, recalling (6.10) we obtain

dz- 0(t) = L{t, Y(t)) - 6(2)

E|G,—GP =E| f(X(T) - Iy " ™) —0,
and arguing as before we arrive from (6.18) to the desired representation (6.8). 1

Finally, we discuss the question of maximizing the expected utility from
consumption (5.1) over all admissible pairs (1, ¢) € &(x) in the setting of a financial
market with deterministic coefficients. The utility function U(t,c) is as in the
opening paragraph of Section 5, whose notation we recall. By analogy with (4.25),

- (4.26), (6.3) we introduce the additional notation
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ol = j' 0@ du,  3(s)=H(x)B(s) €2, Y(s)=— g 8*(u) dW (u)

_zl‘fzas

L(s, x)= _f_[a—l(u,y(u)e’”)\/ﬂdzdu

THEOREM 6.5 Suppose that I(t, y) is continuous on [0, T] x (0, c0), and that

O<c; |0, w)||PSc,<0; V(L w)e[0, TIxQ

—-zZ{2at

IP(t, e° dz dt <
.r!e ( e),/21mt : *

(= e |

hold, for some constants p>1, a>c,>c¢,;>0. Then the B-martingale

bg‘t)

M) =p) X +i B(s)é(s)ds=E (j; B(s)é(s) ds

and the optimal portfolio #(t) of (5.3) admit the representations

W) =F (f BS)I(s,7(5) €7 ds)wi L(s, Y()6*(5) dW(s)
0 0

and
6(8) »
B(z)

(1) = —(o*(1) " o Lit, Y(0)),

respectively. |

The proof is similar to that of Theorem 6.2; we omit the details.
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APPENDIX

In this appendix we collect and prove some technical results which are used
throughout the paper. The first result is simply the chain rule with proper
attention to function spaces. While the result is simple, it has not been previously
stated in the setting of D, ; except by Enchev [7], section 10, in the context of a
weaker definition of the gradient D.

Lemma Al Let F=(F,,...,F)e(D, ). Let $eC(#") be a real-valued function
and assume that )

E{|¢(F)I+HZ%(F)DF.-”}<oo.
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Then ¢(F)eD,_; and D$(F)=Y (8¢/ox)(F)DF;.

Proof It is easy to see that the lemma is true if ¢ € C3(#"), that is, if ¢ and its

first derivatives are bounded. Now consider the general case. Let i e C3(#) satisfy

W(z)=z, if |2) <1, |¥(z)|<|2| for all ze . For any integer n, let ¢, (x)=n(p(x)/n),
xed#*. For each n, ¢,eCi#*), and thus ¢, (F)eD;; and D@, (F)=
W(@(F)/n) Y. (3¢/dx)(F)DF,. Note that |¢,(F)| <|$(F)| for all n and lim,—., $,(F)=
¢(F) almost surely. Likewise,

|D¢,(F)|<sup

, and

W(x)|

¥ 22 (FyDF,

lim D¢, (F )=Z§—i(F)DF ;, almost surely.

=

by dominated convergence. The result follows because D is a closed operator on
Dl,l' I

Therefore,

09
o, (F)DF;

n—=ow

lim E{lcb,,(F)—qs(Fn +HD¢-,,(F)—Z

The next result extends a technique of Liptser and Shiryayev [19, pp. 92-95},
which is useful for approximating stochastic integrals; see also Karatzas and
Shreve [17, Problem 3.25]. The proof is a minor modification of the arguments in
these references, and so we omit it.

LEMMA A2 Let K be a separable Hilbert space and let f:[0,T]xQ—K be a
measurable function such that

E{(} I f(s)||§ds)m}<oo. (A.1)
Q

Let $,(0)=3"% . 1yom g+ 12(t) and extend f(1) to all te R by setting f(t,w)=0 for
t &[0, T). Then there exists a subsequence {n;} such that

T 1/2
im E[(I ||f(S+klf,.i(t~S))*—f(t)llidt) }o,

for almost every se[0, T].

Remark A.3 For every (n,s), f™(t)=f(s+y,(t—s)) is a simple function, and
F® is adapted to a filtration if f is. Therefore, Lemma A.2 establishes the existence

A
A
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of adapted, simple approximations to adapted vector-valued processes. Recall now
the definition of L ; from Section 2, and the norm

=2 F ol ) (T Slipweoneas) )

CoroLLARY A4 Simple processes are dense in L3 ; with respect to |||l ;-
Proof Apply Lemma A.2 to the process

f(t, @) =(u(t, ®), Duy(t, @), ..., Dut, w)) € B x (L0, TT))* x -+~ x (E([0, TI)™

It follows that we may choose a subsequence {n;}, such that if we define

uSm(s) =ul§+ (s — )
then
N —ulllf, =0, as n—o0, for ds-ae. 5. (A.2)
However, u(s)eD, , only for Lebesgue-almost every s, and so we must in addition

choose § so that u®"(s)eD, , for all s. This can always be done. Let N ={s[u(s)
fails to be in D, ,}. If

¢B= | U(-Z{;er),

j=—won<0

then u(§+j/2") belongs to D, , for all j, and hence so does

; «, J
u>"(s) =Zu(s+§;) Ljponss-s2+1y2m

for all 5. Because the Lebesgue measure of B is zero, we can choose §¢ B so that
(A.2) holds.

CorOLLARY A.5 Let f:[0, T]x Q—(I([0, T]))® be an {%,}-progressively measur-
able process satisfying

sl £{( sl as) ) < ®3)

Let Y:[0,T]xQ—%® be a measurable function such that for P-almost every o,
Y(, w)=[§ f(s)* dW(s). Then
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~ T
Y(t, 0)= | F(t, 5, ) dW(s), a.s., for almost every t€[0, T], (A4)
0

where J:[0, T]x [0, T1x Q% is progressively measurable, and J(-,s,w)=f(s, )
for ds@dP almost every (s, ®).

" Remark Note that for almost every t, (s, @) f(t, s, w) is progressively measur-
able, and from (A.3) P(f5|7(t s, @)|? ds< o) =1. Hence the right-hand side of (A.4)
is well-defined for almost every te[0, T].

Proof Corollary A.5 is certainly true for simple processes. To prove the general
case, let f™ be the approximating sequence of processes obtained by Lemma A.3.
Then pass to the limit using almost surely converging subsequences and the
Burkholder—Davis-Gundy inequality for Hilbert space valued integrands (see
Remark 2.4(1)).

ProrosITION A.6 Let ueLd ;. Then [Ju(s)dW(s)eD, ,, and
| T T
D, { u(s) dW(s)= | D,u(s) dW(s) +u(z). (A.5)
0 0

Proof Eq. (A.5) is written as an identity between processes. However, from
Corollary A.5 and the remarks preceding Proposition 2.3, Eq. (A.5) is equivalent
to the identity between (I*([0, T]))*-valued random vectors:

D } u(s)dW(s)= } Du(s) dW(s) +u(-). (A.6)
0 0

We shall prove (A.6). Let u™(s)=u(S+y,{s—5) be chosen as in the proof of
Corollary A.4, such that «™(s)e D, , for every s, for all m;, and

lum—us. >0 as n—oo. A7)

Now observe that

E(u"(s))* W(s)=, u* (§+2in)[w(§+j ;’"1)— W (s+§’——)] (A8)

Because u(§+j/2")eD,;, for ‘each j, and the random vectors u(S+ j12m,
W(E+(j+1)/2m— W(5+j/2") are independent, Lemma A.l implies that each term
on the right-hand side of (A.8) is in D, ; and '
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D(u( .zi.)m(swm/z") W(s+1/2")])

= [Du (§+ zi)] (W(§+ G+ 1/20—W(E+ j/2”])

+ulS+J2) s h jiam s+ G+ 1y2m()-

It follows that
T T
D (_[ (u"(s)*d W(s)) = | Du(s}dW(s) +u"().
0 0
Now, by the Burkholder-Davis—~Gundy inequalities (2.15) and (2.16), we have

E } (u™(s))* dW(s)— ]’: u*(s)dW(s)| <cE (} Iu""(s) — u(s)]2 ds)ll2
0 0 0

Zc||wi—ullls s =0, as n—oo,

<cE {(}r " (5) — u(s) |2 ds)112}+cE {(f || Du(s) — Dum(s)||? ds)lfz}
o 0

=cl||lu—ull|;,, =0, as n—co.

and

L — il .

It follows that [ u*(s)dW(s)eD, ;, and that D {§ u*(s) dW(s) is given by Eq. (A.6).

CoroLLary A7 (g Du(sydW(s)=|T Du(s)dW(s) for almost every t. Indeed,
Du(s, w}=0 for t>s for ds® dP-a.e. (s, w).

Proof Let u™ be defined as in the proof of Proposition A.6. Then by the
adaptedness of u, Du"(s, w)=0, for T=1>s. for ds® dP-almost every (s, ). Thus
J§ Du(s) dW(s)= T Du"(s) dW(s) for every n,. Now take limits as n,— 0.



