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Abstract

We study stationary Markov equilibria for strategic, competitive games,
in a market-economy model with one non-durable commodity, fiat money,
borrowing/lending through a central bank or a money market, and a con-
tinuum of agents. These use fiat money in order to offset random fluctu-
ations in their endowments of the commodity, are not allowed to borrow
more than they can pay back (secured lending), and maximize expected
discounted utility from consumption of the commodity. Their aggregate
optimal actions determine dynamically prices and/or interest rates for
borrowing and lending, in each period of play. In equilibrium, random
fluctuations in endowment- and wealth-levels offset each other, and prices
and interest rates remain constant.

As in our related recent work, KSS (1994), we study in detail the indi-
vidual agents’ dynamic optimization problems, and the invariant measures
for the associated, optimally controlled Markov chains. By appropriate
aggregation, these individual problems lead to the construction of station-
ary Markov competitive equilibrium for the economy as a whole.

Several examples are studied in detail, fairly general existence the-
orems are established, and open questions are indicated for further re-
search.
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1 Introduction

In a previous paper (KSS, 1994), we constructed a stationary Markov equilibrium
for an infinite horizon stochastic game with a continuum of players which modeled
a simple economy with one nondurable commodity and a constant money supply.
The players received random endowments during each period and had to decide how
much of their current wealth to spend on consumption and how much to save for
the future. Each agent sought to maximize the expected value of his or her total
discounted utility.

Here we study a generalization in which agents are allowed to borrow and lend (or
deposit) money during each period. Two simple lending mechanisms for borrowing
and lending will be considered.

1.1 A Central or Outside Bank

We adopt a very simple model for a central bank which sets an interest rate for
borrowers and another for depositors, and seeks only to balance the books by taking
in as much money as it pays out. The bank is the only source of loanable funds in
this model.

There are other interesting models for banking which we do not treat here, such
as mutual banks, merchant banks, and stockholder-owned commercial banks.

We hope to consider some of these models in future work.

1.2 A Money Market

In this model agents offer money for loans and bid for loans in a money market. An
interest rate is formed endogenously by dividing the aggregate bids for loans by the
aggregate of the funds offered for loans.

This Cournot-style mechanism has been employed previously both in oligopoly
theory and the study of strategic market games. A much more complicated model, in
the manner of Bertrand and Edgeworth, would have each agent specify the quantity
he or she wishes to borrow or lend, together with an interest rate above or below
which the agent will leave the market. (See Dubey (1982) for a one-period game of
this variety.)

There is a difficulty which arises in strategic market games when agents are al-
lowed to borrow. If someone borrows money today with a promise to repay it at a
later date, it is possible that the system may evolve to a state where the promise
cannot be fulfilled. In other words, agents “can go bankrupt.” We will sidestep this
difficulty by restricting our attention to “secured lending” models, where agents are
permitted to borrow only up to the lower bound of their income. We plan to consider
models with active bankruptcy in a future paper.



1.3 Preview

In Section 2 we give a careful definition of the two models we will study and of
what we mean by “stationary equilibrium.” The dynamics for each model are fully
specified, but we leave open the interesting question of how the models behave when
they are not in equilibrium.

If either game is in equilibrium, then each individual agent faces a one- person
game that is equivalent to a discounted dynamic programming problem for which the
price of the commodity and the interest rates are fixed parameters. This one-person
game is introduced in Section 3. It is pointed out that there always exists an optimal
stationary strategy m for an agent « playing in the one-person game and that the
stochastic process S§, ST, ..., corresponding to the player’s wealth during successive
periods, is a Markov chain when the strategy 7¢ is used.

Two properties of the Markov chains {S%} are the key to the construction of
stationary equilibria for the many-person games in Section 4. Indeed, if we assume
that each agent’s Markov chain has a stationary distribution p, with finite mean,
and that the total interest paid by borrowers equals that received by lenders, then
we are able to give an explicit construction of an equilibrium in terms of the g, .

Section 5 is devoted to a number of simple examples where the one-person games
can be solved analytically and then used to construct a stationary equilibrium for the
many-person game. An example is also presented where no such equilibrium exists
for the money market model.

In Section 6 we return to treat the one-person game in more detail; we determine
the structure of the optimal stationary strategies and give sufficient conditions for
the corresponding Markov chains to have stationary distributions with finite means.

Most of Section 7 is devoted to proving the existence of stationary equilibrium for a
modified form of the money market game in which there is “government intervention”
to keep interest rates bounded.

2 Formulation of the Games with a Continuum of Agents

In this section we will define both the game with an outside bank and the game with
a money market. Most of the notation is the same in both games.

Let I = [0,1] and let ¢ be a nonatomic probability measure on the Borel o—field
B(I). The set I is an index set for the collection of agents and ¢ represents the
“spatial” distribution on this collection. Each agent a € [ has a utility function
u® : [0,00) — [0,00) with u*(0) = 0 which is nondecreasing, concave, and has a
finite right-hand derivative at the origin.

In every period n > 1 each agent « receives a random endowment Y,*(w) in units
of a nondurable commodity. For each o the random variables Y%, Y3¥, ... are assumed
to be nonnegative, integrable and independent, with common law A\*. However, the
total endowment of the commodity

0= / Y (w)p(da) > 0 (2.1)



is taken to be nonrandom and constant from period to period. A technique of Feldman
and Gilles (1985) gives a simple construction of jointly measurable variables Y, (w) =
Yo(a,w), (a,w) € I xQ, n €N, which are IID for fixed a but aggregate to a constant
as in (2.1).

At the beginning of every period n > 0 each agent « holds an amount S%(w) in
fiat money. Agents must decide in every period how much money to borrow or lend,
and then how much to bid in the commodity market. Since the rules are slightly
different in our two models, we will consider each in turn.

The random variables Y, S& (and others, which are introduced below) are all
defined on a given probability space (2, F, P).

2.1 The Game with an Outside Bank

The bank sets two interest rates which remain fixed throughout the game: r = 1+4p;
is the rate paid by borrowers and r3 = 14-p, is the rate paid to depositors. We assume
that 0 <7y <r; <1/8 where 5 € (0,1) is a discount factor.

At the beginning of the nth period of play (n > 1), the price of the commodity
is pp—1(w) and the money held by the bank is m,, 1(w). Each agent a enters with
S¢_;(w) in fiat money and with information represented by a o—field % ;. (The
o—field FY | measures past prices {pg,k =0, ..., n — 1} as well as past wealths, en-
dowments, and actions {S§, Sg, V¢, b¢, k =1, ..., n—1}; it may or may not measure
corresponding quantities for other agents.) Based on this information, each agent
bids a certain amount b%(w) € [0, ST_; (w) + k%] of fiat money for the commodity in
the nth period.

The constant k% > 0 is the upper bound on loans to agent a. If b%(w) > S%_; (w),
agent a borrows b (w)—S%_;(w) from the bank. (We assume the bank has sufficient
funds to make all requested loans.) If b%(w) < SS_;(w), agent o deposits S§_; (w) —
b%(w) in the bank.

The total bid in period n is

B(w) == / b2 (w)$(dar) . (2.2)

We assume b%(w) = by, (e, w) is jointly measurable in (a,w) so that By (w) is a well-
defined random variable.
The new price for period n is formed as

Pa(w) = Bu(w)/Q . (2.3)

Each agent a then receives his or her bid’s worth z%(w) := ba(w) of commodity,

N pn(w
and consumes it immediately, thereby receiving a payoff in utility o

u® (2 (w))

in period n. Agent o’s total payoff for the game is thus

o u® (m%Jrl (w)).



The crucial assumption for the secured lending model is that
pr(w)YH(w) > mk®, YweQ, acl, neN. (2.4)

Here p,(w)Y,%(w) is agent o’s endowment’s worth in fiat money, and r1k® is a’s
maximum possible debt. Thus this assumption guarantees that every agent will be
able to pay his or her debts and bankruptcy will not occur. (In fact, (2.4) depends
on the endogenous price p,, which could, in principle, be formed so as to violate (2.4).
However, we will study equilibria for which (2.4) holds when p,, always equals the
equilibrium price p.)

The equation for the dynamics of the wealth process S& of agent « is

o _ Tl( 3—1 - b%) +pnYna , if Sﬁ;—l < b% _ o o
R W DA S ) SRR A

where

(2.5)

rix, if x <0,
9(x) =

rox , if x > 0.

Notice that g is concave because of our assumption that ro < ry.

It is a feature of our models that wealth in the form of fiat money is neither
created nor destroyed. Thus, the total amount of wealth W = W, in period n should
be the same for all n. Let us verify that W,, = W,,_1 as a check on the dynamics.

Write

Wy, =my + /Sf{d)(da)
where m,, is the money in the bank at the end of period n. Now

repayments > B < payments )

Mn = M1+ (deposits) — (loans) + (by borrowers to depositors

I / (5% 1 — %) p(da) — / (02 — 52 )(da)
JSN_12by J S <bg

wn [ @Sy eda) e [ (S - #eda)

<ba Sf{_l >by

n—1

— s (ST = #0da) s [ (S = Boda)

n71<b%
[ (S - i)
JER_ 23
Now use equation (2.5) for the dynamics to get, in conjunction with (2.1), (2.3):
Wy, = my, + /Sgﬂb(da)
| (SE e e[ (ST = #0da) +pa [Y0(da)
Sy <by Sp_1>b3

= M1+ / (S8 — B)6(da) + paQ = M1 + /s;}_m(da) — Byt Bu=Wa 1.
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A strategy m for agent a € I specifies the bids b for all n. As was mentioned
above, the bids b% are F ;—measurable, where F<_; is a o—field that represents the
information accumulated by agent o up to the beginning of period n. Of course,
every bf is measurable with respect to

'7:7171 = \/'7:1?—17

the smallest o—field containing all the & ;.

A collection IT = {7%, a € I} of strategies is considered admissible for our game
if, for every n, the bids b, (a,w) = b%(w) are jointly measurable with respect to the
product o—field

On1= B(I) X Fn-1.

(As Dubey and Shapley (1992) have pointed out, such a measurability assumption
is somewhat artificial in a noncooperative game, but necessary in order to avoid a
host of technicalities. Furthermore, mild assumptions do lead to admissible families
in equilibrium.) We will consider only admissible II in the sequel.

An admissible collection IT = {7®}, together with an initial distribution of wealth
and the dynamics explained above, determines the distributions of all the random
variables we have introduced. In particular, the expected payoff

o0
e“*=F Z B ulxy 1)
n=0

is determined for each agent o € I, and we have a well-defined stochastic game.

Let .
VoA, w) = / 14(S8 (w))é(da), (2.6)

JI

for A € B(]0,00)), be the initial distribution of wealth in the form of fiat money. An
admissible collection IT = {7}, together with v, determines the sequence of random
measures

VAAwy:/ﬁﬂﬁm@mu@,neN (2.7)

1

corresponding to the distribution of wealth in future time periods n =1, 2, ....
At any time n, the total wealth held by all the agents is the quantity

Waw) = [ Sat)tda) = [ sv(ds,)

vaviously, Wn(w) cannot exceed the money supply W and the difference W —
W, (w) =: my,(w) is the money held by the bank.
A strategy m¢ for agent « is called stationary if it specifies bids of the form

b%(w) = Ca( gfl(w)a pn—l(w))7 ne N7 w €



where ¢ : [0,00) X [0,00) — [0,00) is measurable and 0 < ¢*(s,p) < s+ k* for all
(s,p). Such a strategy requires an initial price pg to be specified prior to period 1, so

that bf will be defined.

Definition 2.1. We say that an admissible collection II = {7*, a € I} of stationary
strategies results in a stationary Markov equilibrium (p, ), where p € (0,00) and p
is a probability measure on B([0,00)), if with pp = p and vo = p,

(i) we have p, = p, v, = u, Yn € N, when every agent « plays the strategy 7,
and

(i) for every B € I, 7 s optimal among all strategies for agent 3 when every other
agent o, a # 3, plays 7.

2.2 The Game with a Money Market and an Endogenous Rate of
Interest

The notation for agents a € I, and prices p,,, wealth processes Sy, and utility func-
tions u® remains the same. There is no longer an outside bank, but instead there is
a money market where each agent a can borrow or lend in each period.

Here is how the money market works. Each agent o € I has a wealth of S ;(w)
at the beginning of period n. If agent « chooses to borrow, then he or she bids
i%(w) € [0, k%] in IOU notes, where k% > 0 is an upper bound on IOU notes allowed

to agent a. If agent « chooses to lend, then he or she offers an amount (% (w) €
[0, S¢_;(w)] in fiat money. Let

Iw) i= [ iz(w)o(da)
be the total of the IOU notes bid in period n and let
Lu(w) = [ £2(w)o(da)
be the total money offered for lending. (The functions i, (o, w) = i%(w), €p(o, w) =

0%(w) are assumed to be jointly measurable in o and w, with i%(w)¢%(w) = 0.)
If I,(w) and L,(w) are both positive, then an interest rate is formed as

o) = 1+ py(w) = 2.3)
A borrower a, who has bid ¢§(w) in IOU notes, obtains a loan of i%(w)/r,(w) in fiat
money, and bids

by (w) = Sy_q(w) + i (w) /rn(w)
in the commodity market. A lender «, who has offered ¢5(w) in the loan market,
bids
bp(w) = S5_q (w) — £ (w)



units of fiat money in the commodity market. Notice that b%(w) > S% ;(w) if and
only if a is a borrower and b5 (w) < S&_;(w) if and only if « is a lender.

If either In(w) or Lp(w) equals zero, the money market is closed and we assume
that each agent « bids his or her entire fortune

b (w) = Sp_(w)

in the commodity market. (This assumption of no hoarding is quite arbitrary. It is
not a crucial assumption because we want to construct an equilibrium with an active
loan market where neither I,,(w) nor L, (w) is zero.) In order that the interest rate
always be defined, we set
rp(w) =14+ p,(w) =1 (2.9
in this case.
The price of the commodity is formed as before (recall (2.3)):

_ Ba(w) _ [ bi(w)¢(da)
pn(w) = Q = Q .

However, there is no bank and all of the money is bid. That is, when the money
market is active

[rwistda) = [ sz i@otda) + - [iwoa) - [ ewisda) 210
= [ staelda) =W,

(2.3)

where W is the supply of fiat money, which again is held constant from period to
period; see (2.14) and (2.15) below. The same holds true when the money market is
inactive. Thus the price is constant

pn(w) =p = W/Q.

Each agent « receives as before % (w) = b%(w)/p(w) units of the commodity, and
an endowment of pY,*(w) in fiat money. Agent « thus enters the next period with
wealth

Sp = ra(Si_1 = by) +pY, (2.11)
and this equation for the dynamics can be rewritten as
—i% 4+ pY,® , if «is a borrower,
Sy = rpls +pY,> , if ais alender, (2.12)
pY,> | if « is neither.

The assumption of secured lending now takes the form
pY,t(w) > k<. (2.13)

This insures that no bankruptcy occurs since we have already assumed that 75 < E*.
(Unlike the situation with an outside bank in (2.4), our assumption of secured lending
in the money market is not affected by an endogenous price.)



Let us check that our dynamics preserve the money supply as they did with an out-
side bank. The total wealth W, in period n is now given by Wy, (w) = [S%(w)¢(da)
since all the wealth is held by the agents. If the money market is active, then, by
(2.10),

W(w) = — / i (w)é(dar) + () / 02 (w)(da) + p / Y2 (w)d(da) (2.14)

[n(w) W o=
T (w) - Lp(w) + 0 Q=W.

= —IL,(w)+

If the money market is closed, then

Wa(w) =p [ Ve w)o(da) = - Q =W, (215)
Thus, the price- and interest-formation rules (2.3") (2.9), and (2.9") guarantee that
the money supply is conserved in both cases.
A strategy ™ for an agent o specifies the IOU bids 7$ and loan offers ¢ for all
n. (For each a and n, at most one of the quantities %, ¢S is strictly positive.) As in
the case of an outside bank, ¢ and /5 are F; —measurable, where F); ; represents
the information accumulated by agent « up to the beginning of period n. For all «,
15 and /5 are measurable with respect to

Foo1 =\ Fii-

A collection IT = {7, o € I} is now called admissible if, for every n, the IOU
bids in (o, w) = i%(w) and loan offers 4, (a,w) = £ (w) are jointly measurable with
respect to

Qn_l = B(I) X fn—l-

As with an outside bank, an admissible collection IT = {7®} and an initial distribution
of wealth vy as in (2.7) determine the distributions of all the random variables we
have defined, along with future wealth distributions {v,, n > 1} as in (2.8) and
expected payoffs {e®} as in (2.6), for all agents. Notice that for every n the interest
rate m,(w) is Fj,—1—measurable and that the commodity bids by, (a, w) = b%(w) are
Gn—1-measurable, as are the wealth processes S, 1(a,w) = S&_;(w).

For the money market game, a stationary strategy m® specifies IOU bids and loan
offers in the form

in(w) = %(Sy_1(w), 1 (w))

lr(w) = £5(S5_1(w), Tn1(w))

where i and (* are measurable mappings from [0,00) x [0,00) to [0,00] such that
0 < i%(s,r) <k 0 < 0%(s,r) <s, and i“(s,7)l%(s,7) = 0 for all (s,r). Such a
strategy requires the specification of an initial interest rate ro for the definition of ¢
and (.



Definition 2.2. An admissible collection II = {Ta, @ € I} of stationary strategies
is said to result in a stationary Markov equilibrium (r, ), where r € (0,00) and p is
a measure on B([0,00)), if, with rog = r and vy = p,

(i) we have r, = r, v,, = p, Vn € N, when every agent « plays the strategy 7,

(i) VB €I, 7 is optimal for agent 8 among all strategies for agent 3 when every
agent o, a # 3, plays 7.

3 Formulation of the One-Person (Game
as a Dynamic Programming Problem

Consider a single agent playing in either the game with an outside bank or with a
money market. If the many-person game is in a stationary equilibrium in the sense
of Definition 2.1 or 2.2, then this agent faces a discounted dynamic programming
problem in which the interest rates r; and ro and the price p are fixed parameters.
Of course, 1 = 5 in the case of the money market.

The key to our construction of stationary equilibria for the many-person games is
in the analysis of this one-person dynamic programming problem. The same analysis
works for both the model with an outside bank and the money market model.

Here are the basic ingredients for the dynamic programming problem:

(3.1) The state space S = [0,00). A state s € S represents the wealth of the agent
in fiat money.

(3.2) The utility function v : S — S is concave, nondecreasing, «(0) = 0, and u has
a finite derivative from the right at 0. We write «'(0) = u/_(0).

(3.3) The action sets B(s) = [0, s+k] for s € S where k& > 0. We interpret the
agent’s choice of an action b € B(s) as a decision to purchase b/p units of the
commodity, where p € (0,00) is the price of the commodity.

(3.4) The reward function r(s,b) = u(b/p) reflects our interpretation that the agent
receives utility w(b/p) from the consumption of his or her commodity purchase.
We introduce the function r only to make the connection to dynamic program-
ming and will not use it further.

(3.5) The law of motion determines the distribution ¢(-|s,b) of the next state S; for
an agent at state s who selects action b by the rule

S1=g(s =) +pY

where Y is a nonnegative, integrable random variable with a given distribution
A, and ¢g(+) is given by (2.6). The positive constants r; = 1+ py, r2 = 14 py are
interpreted as the interest rates for borrowing and lending, respectively. The
assumption pY > r1k guarantees that loans can always be paid back.



(3.6) The discount factor 3 € (0,1).

We assume as in Section 2.1 that 0 <ry <1 <1/0.

A player begins at some state sg and selects a plan m = (71, 72, ...) where 7,
makes a measurable choice of the action b, on day n as a function of the sequence
(s0, b1, S1 -y bu—1, Sp—1) of previous states and actions. The plan 7 is stationary if
it is of the form b,, = ¢(sp—1), for all n, and some measurable function ¢ : S — [0, c0)
such that c(s) € B(s). We will call such a ¢ a consumption function.

A plan 7, together with the law of motion, determines the distribution of the
stochastic process sg, b1, s1, bo, ... of states and actions. The return function of a
plan 7 is defined as

I(m)(s

sos

Zﬁu n+1],s€5. (2.7)

The optimal return or value function is defined by

V(s) = sup I(m)(s), s€S. (2.8)

A plan 7 is optimal if V = I(m).

If u is bounded, then our problem is a discounted dynamic programming problem
as defined by Blackwell (1965). It follows from our assumptions (3.2) about u that u
is dominated from above by the linear function f(z) = «/(0)x. This is sufficient, as
it was in KSS (1994), for many of Blackwell’s results.

In particular, V satisfies the Bellman equation

V(s)= sup [u(b/p)+BEV(g(s—0b)+pY)]. (2.9)
0<b<s+k

We introduce the operator T' defined for Borel functions % : [0,00) — [0, 00) by

(TY)(s) = sup [u(b/p) + BEY(g(s —b) +pY)]. (2.10)
0<b<s+k

Then (3.9) can be written in the form
TV =V.

Here is the well-known characterization of optimal stationary plans given by
Blackwell (1965). The extension to our situation is straightforward and we omit
the proof.

Theorem 3.1. For a stationary plan m corresponding to the consumption function
¢, the following conditions are equivalent:

(a) I(m) = V.

(b) Vi(s) = u(c(s)/p) + BEV (g(s — c(s)) +pY), s €S.

(c) T(I(m)) = I(7).

10



Under our assumptions the value function V' is continuous (and also concave and
nondecreasing). This can be shown directly, or by using the methods of Chapter I in
Bellman (1957). Hence, for every s, the maximum on the right-hand side of (3.9) is
attained at some b = ¢(s). By the theorem above, ¢ determines an optimal stationary
plan 7.

Corollary 3.2. There exists an optimal stationary plan.

In general, the optimal stationary plan need not be unique, as is illustrated by
examples in Jayawardene (1993). It is unique when w is strictly concave. Much more
detailed information about the optimal plan will be given in Section 6.

Let m be an optimal stationary plan corresponding to the function c¢. We will
sometimes write ¢(s) = ¢(s,6) where 6 is some subset of the parameters (r1, 72, p).
For example, when we are contemplating the many-person game with an outside bank,
we sometimes write ¢(s) = ¢(s,p) to emphasize the dependence on the endogenous
price p. If we plan an application to the game with a money market, we may write
c(s) = c(s,r) since it is the interest rate which can change in that game.

If an agent plays according to ¢ in the money market game at equilibrium with
interest rate r, we can write

i(s)_{r(c(s,r)—s) i c(s,’r’)>s}

10 , otherwise

for the agent’s IOU bid, and
o(s) = {s —c(s,r) , if s> C(S,’f‘)}

0 , otherwise

for the agent’s loan offer. Thus the choice of ¢ is equivalent to specifying ¢ and /.

Suppose now that a player begins at Sy = s and plays according to the stationary
plan 7 associated with the function c. Then the process Sy, S1, ... of successive states
is a Markov chain with transitions given by

Snt1 = 9g(Sn —c(Sn)) + pYnt1, n € Ny (2.11)

where Y7, Ys, ... are IID with distribution A. A basic assumption in the next section
will be that this chain has a stationary distribution with finite mean. Sufficient
conditions for this assumption to be satisfied will be given in Section 6.

4 The Construction of Stationary Markov Equilibrium

In this section we show how to construct a stationary Markov equilibrium for the game
with an outside bank and also for the game with a money market. The construction
depends on two basic assumptions: 1. Each agent uses a stationary plan, which is
optimal for the one-person game and for which the associated Markov chain has a
stationary distribution with finite mean. 2. The “books balance,” in the sense that
interest paid by borrowers equals that received by lenders.

11



The construction is much simpler when all the agents are homogeneous, in the
sense that they all have the same utility function u® = u and income distribution
AY = X for all @ € I. We will consider first an outside bank with homogeneous
agents, and then a money market with homogeneous agents. We will then go on to
treat each model with countably many types of agents.

4.1 The Game with an Outside Bank and Homogeneous Agents

Fix a price p € (0,00) and interest rates 11 = 1+ p;, ro = 1 4 py with 0 <7y <7y <

1/3.

Here is the form of our two basic assumptions for this case.

Assumption 4.1. Assume that the one-person problem of Section 3 has an optimal
stationary strategy m corresponding to ¢(s) = ¢(s,p) and that the Markov chain of
(3.11) has an invariant distribution p = (-, p) such that [ su(ds) < co.

Assumption 4.2. Under the stationary wealth distribution u, the bank “balances
its books” in the sense that

v | oo eletas) = [ (els) = ntas). (4.1)

s<c(s)

This equality simply says that under the wealth distribution , if all the agents play
according to m, then the interest paid by the bank to depositors is the same as that
paid by borrowers to the bank.

Lemma 4.3. p= C(Sg/“(ds).

Proof. Let Sy, S1, ... be the Markov chain of (3.11), and write (3.11) for n = 1 as

g — {(1 +p1)(So — ¢(So)) +pY1 , if So < c(So)
| =

(14 p2)(So — c(So) +pY1 , if So > c(So). (4.2)

Suppose Sy has the (stationary) distribution p, and so S; has distribution p also.
Take expectations in (4.2) and use the fact that ESy = ES) to get

0=~ [l o | el b [ (s eleptas) +pEY

= — / c(s)u(ds) + pEY.
The final equality is by Assumption 4.2. |

Theorem 4.4. Under Assumptions 4.1 and 4.2, the family 11 = {7, a € I} with
7 =7 for all o € I, results in a stationary Markov equilibrium (p, i) for which the
fixed interest rates are r1, ro.

Proof. Asin KSS (1994), use the technique of Feldman and Gilles (1985) to construct
the income variables Y,,(a,w) = Y,%(w) so that
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(i) for every given a € I: Yi(a,-), Ya(ay,-), - -+ are IID with distribution A,
(ii) for every given w € Q: Yi(-,w), Ya(-,w), - -- are IID with distribution A.
Then the Markov chain

Sn(a,w) = g(Sp—1(a,w) — ¢(Sp-1(a,w),p)) + pYn(a,w)

has the same dynamics for each fixed a and each fixed w.
By Assumption 4.1, p is a stationary distribution for the chain Sy, (e, -) for each
a, and consequently is also a stationary distribution for the chain S,,(-,w) for each
w, under the assumption that the endogenous prices p,(w) remain equal to p.
Assume that pg = p and that the initial wealth distribution vy = p. Take expec-
tations in (2.1), to obtain EY = @; then by Lemma 4.3

_ Bi(w) _ [ e(56(w), p)o(da)
Q

p1(w)

(s, p)ulds) _
EY B
Since p is an invariant distribution for the chain, we also have v1 = p,.
By induction, p, = p and v,, = i for all n.
We have verified clause (i) of Definition 2.1. Clause (ii) follows from the optimality
of 7 in the one-person game, together with the fact that a change of strategy by a
single player cannot affect the value of the price. |

4.2 The Game with a Money Market and Homogeneous Agents

As in the previous section, we assume that u® = u and \* = X for all . Fix the
price p = W/Q and a single interest rate r =1+ p > 0.
Our two basic assumptions are now as follows:

Assumption 4.5. There is an optimal strategy m« for the one-person problem cor-
responding to ¢(s) = ¢(s,r) such that the Markov chain of (3.11) has an invariant
distribution p = p(-,7) with [ su(ds) < oo.

Assumption 4.6. Under the wealth distribution p, the amount borrowed equals the
amount offered for lending, and both quantities are positive, i.e.,

[ (el = omtds) = [ (s eloutds) £0. (4.3)
s<e(s)

s>¢(s)

The equality can be rewritten in this simpler way:

/ spu(ds) = / o(s)(ds). (4.4)
Theorem 4.7. Under Assumptions 4.5 and 4.6, the family 11 = {7*, a € I}, with

T =7 as in Assumption 4.5 for all o € I, results in a stationary Markov equilibrium
(r, ) for which the fized price is p.
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Proof. Construct the variable Yy, (o, w) = Y,¢(w) exactly as in the proof of Theorem
4.4. Then the Markov chain

Sn(a,w) = 1(Sp—1(a,w) — c(Sp—1(a,w),r)) + pYn(a,w)

has the same dynamics for each fixed o and each fixed w.

By Assumption 4.5, p is a stationary distribution for the chain S, («,-) for each
a and therefore is also a stationary distribution for the chain S, (-,w) for each w, if
the endogenous interest rates r,,(w) remain equal to the fixed value r.

To check this, assume that rg = r and that vg = p. Then

o) = L))
féa<w>¢<da>

)
_ (5) = tds)

Ic<s)<s(8 c(s))p(ds)

where the last line is by (4.3) of Assumption 4.6. Since p is invariant for the chain,
we also have v = p.

By induction, r,, = r and v,, = p for all n, which verifies (i) of Definition 2.2.
Clause (ii) follows from the optimality of 7 in the one-person game and the fact that
a single player cannot affect the interest rate. |

4.3 An Outside Bank and Countably Many Types of Agents

In this section the notation and much of the argument resembles Section 7.6 of KSS
(1994).

Suppose that the space of agents I is measurably partitioned into a finite or
countably infinite collection of types {Ij}. Agents of the same type k are assumed to
have the same utility function uz and income distribution Ax. Assume also that, for
each k, wy := ¢(Iy) > 0. Thus, in particular, there are uncountably many agents of
each type.

Fix a price p € (0,00) and interest rates r; = 14 py, r2 = 1+ py with 0 <7y <
T2 S 1 / 5

Here are our familiar assumptions slightly reformulated.

Assumption 4.8. Assume that, for each type k of agent, the one-person game
with the given parameters has an optimal stationary strategy my corresponding to
cx(s) = cg(s;p) and that the associated Markov chain has a stationary distribution
t = (-, p) with finite mean.

The invariance property of iy can be expressed symbolically as

(A, p) = /0 Ak<‘4 9ls — als, p”) (s, ) (4.5)

p
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for all A € B([0,00)). (Cf. (7.4)" of KSS (1994).)
As in KSS (1994), we aggregate these stationary distributions to form

(A, p) = Spwpiin(A,p) = /I 1 (A, p)b(da) (4.6)

for A € B([0,00)) where we are using the notation u® = y,, for all @ € I and all
k. It is this aggregate measure fr which now plays the role of a stationary wealth
distribution.

Assumption 4.9. Assume that the bank balances its books in the sense that

prSiy / (5 — ci(s, ) (ds, p) = pr Sy / (cx(5,0) — 5) (d3, ).
s>ci(s,p) s<cp(s,p)

The left-hand side of this equality represents the total interest paid to depositors
of all types and the right-hand side is the total interest paid by borrowers of all
types. Observe that the books need not balance for a given type of agent considered
in isolation from other types. It could happen that one type of agent is cash-poor,
but has sufficient income to finance loans from a second type of cash-rich agents.

Lemma 4.10. We have

g X
p = —Ekwk/ ck(s,p) g (ds, p)
Q J Iy

- % /I Ca(s’p)ﬁ(ds,p),

where ¢* = ¢y, for o € 1.

Proof. The second equality is by definition of 7 in (4.6). To prove the first equality,
take expectations in equation (2.5) for the dynamics of an agent . Assume n = 1 and
that S§ has the invariant distribution p® = p*(-,p) and bf = c*(S§) = c¢*(S§, p)-
This gives

B} = B85~ [ +m [ (e
+py / (s — c™(s))u*(ds) + pEY“.
Js>cx(s)
Since EST = ES{, this can be written as
[emtas = [ )+ / () +pEY
s<c*(s s>c*(s

Now integrate with respect to «, using Assumption 4.9 and remembering that ¢* = ¢y,
u® = py, for a € I, to get

S [ als)m(ds) = p / /Q Y (1) P(dw)@(da)
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= [ [ Yool
- p./s‘2 QP(dw) = pQ.

The next to last equality is by our standing assumption that the total endowment is
the nonrandom quantity Q). |

Theorem 4.11. Under Assumptions 4.8 and 4.9, the family of strategies 11 = {m®}
with ¢ = my, for oll o € Iy and all k, results in o stationary Markov equilibrium
(p, ) for which the fized interest rates are 11, ra.

Proof. Use the Feldman—Gilles construction to obtain for each k and all n =1, 2, ...
functions ka‘, kYQO‘, ... to represent the daily endowments for an agent a € I.
For each k, introduce the random measures

Fy(A,w) = wiqs{a €T : S2(w) € A}
k

for A € B([0,00)) and n =0, 1, .... The measure *v,, corresponds to the distribution
of wealth during period n among agents of type k. The measure v,, representing the
distribution of wealth among all agents can be written

vp(A,w) =X kyn(A,w)wk.

To verify clause (i) of Definition (2.1), assume that po(w) = p and *vo(-,w) =
pr(,p).  (So, in particular, vo(-,w) = F(-,p).) The proof that p;(w) = p and
Fu1(,w) = pg(-,p) (and so v1(-,w) = T(-,p)) is almost exactly the same as the
proof of Theorem 7.7 in KSS (1994). Just use Lemma 4.10 for the calculation (7.8)
in KSS (1994), and use (4.5) to replace (7.4") in the final calculation.

The proof of clause (ii) of Definition (2.1) appeals as usual to the optimality of
each 7 in the corresponding one-person game and to the fact that no single agent
can affect the price. |

4.4 A Money Market and Countably Many Types of Agents

As in the previous section the space of agents I is partitioned into a finite or countable

collection of types {I;}. The same notation wuy, A\g, and wy = ¢(Iy) is used for the

utility function, income distribution, and proportion of agents of type k, respectively.
As in Section 4.2 we fix a price p = W/(Q and a single interest rate r = 14 p > 0.
Here is the last variation on our two basic assumptions.

Assumption 4.12. Assume that, for each type k of agent, the one-person game
with the given parameter has an optimal stationary strategy mj corresponding to
ck(s) = cg(s,r) and that the associated Markov chain has a stationary distribution
ty = (-, 7) with finite mean.
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Recall from Section 3 that we can express the IOU bid i*)(s) and loan offer £(F)(s)
for an agent a € I}, who plays 7y by

if not,

i*(s) = i®)(s) = {g(ck(s)_s) :if cp(s) > s
0%(s) = (¥ (s) = {8— ¢k (s) : i Iclzf)(ts) <s

Just as in (4.5) the invariance property of y,, can be written as

man) = [ Ak(“‘ [ Ck(””) (s, 7) (4.7

p

for all A € B([0,00)). As in the previous section we aggregate the stationary distrib-
utions of the various types to form

r) =) wp(A,r) (4.8)
k

= [ (arotda)
for all A € B([0,00)) where we set u® =, for a € I,

Assumption 4.13. Under this aggregate wealth distribution we assume that the
total amount lent equals the total offered for lending and that both quantities are
positive; i.e.

S

<ecr(s)

(x(5) =l = D [ -alma £0. @)

>Ck( )

Theorem 4.14. Under assumptions (4.12) and (4.13), the family of strategies 11 =
{m*} with 7 = 7y, for « € I, results in a stationary competitive equilibrium (r, )
for which the fized price is p.

Proof. Construct the variables *Y,%(w) and define the measure *v,, exactly as in the

proof of Theorem 4.11. Define ro(w) = r and *vg(-,w) = (-, 7) for all k so that in
particular vo(-,w) = f(-,7). To see that r; (w) = r, calculate thus:

Jif(w)e(

J 43 (w)e( )

_ i <S€< w))@(da)
J e (S, )) (da)

_ kakl (s) s (ds)
Zkﬂ%lf(’“ (8) 111, (ds)

Y Wk .Isgck(s)(ck(s) — 5) 11 (ds)

>k Wk fs>ck(s)(5 — ci(s))py,(ds)

7

ri(w) =

=T
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where the final equality is by Assumption 4.13. The proof that *v1(-,w) = p(-,7)
for all k£ (and so v1(-,w) =Ti(-,r)) uses (4.7) and then follows the proof of Theorem
7.7 in KSS (1994).

Clause (i) of Definition 4.1 now follows from induction. The proof of clause (ii)
is by now familiar. |

Remark 4.14. The results of this and the previous section can be extended to the
case of uncountably many agents, as in Remark 7.8 of KSS (1994).

4.5 The Substitution of a Bank for a Money Market and Vice-Versa

Suppose the game with a money market (as in Section 4.2 or 4.4) satisfies the basic
assumptions and therefore has a stationary Markov equilibrium (r, ) for a given
price p. Then the money market can be replaced by a bank in the sense that the
corresponding game with an outside bank has the equilibrium (p,u) for the fixed
rates r1 = o = r. This is because the basic assumptions for an outside bank are also
satisfied.

Conversely, if the game with an outside bank satisfies the basic assumptions lead-
ing to a stationary Markov equilibrium (p, p) for which the fixed rates are r; = ry =
r # 1, then the bank can be replaced by a money market. However, if r; =ry =r =1,
it may not be possible to replace the bank by a money market. In the first example of
the next section, a situation arises in which every agent is a borrower. This causes no
trouble for a bank if all the agents pay back the amounts they borrow, but a money
market is impossible since there are no lenders. The second example also shows a
bank may work when a money market fails.

5 Some Examples

A method for constructing a stationary Markov equilibrium was presented in the
previous section. Now we will apply the method in some simple examples. To do so,
we have, in each example, to find the optimal plan 7 for a class of one-person dynamic
programming problems and then check that 7 is optimal by showing that its return
function I(7) satisfies the Bellman equation: T'(I(7)) = I(n) as in Theorem 3.1. In
the examples of this section, we will omit the straightforward, tedious verifications of
the Bellman equation. The details are given for one of the examples in an appendix.

The examples have been selected to illustrate various possibilities. In Example
5.1 there is a trivial equilibrium with an outside bank, but no stationary money
market equilibrium except for the somewhat unstable situation where r = 1/ and
agents are indifferent between borrowing and lending. Example 5.2 provides another
situation in which it is easy to find a stationary equilibrium with an outside bank
but delicate to do so with a money market. The difficulty with the money market
is largely due to the fact that in Example 5.2 the utility function saturates at a
finite level. In Example 5.3 we consider a nonsaturating utility and find a money
market solution. Example 5.4 has an outside bank solution where the bank charges
a higher interest rate to borrowers than it pays to depositors. In Example 5.5, we
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construct a stationary equilibrium for a game with two types of agents. In all of the
other examples, agents are assumed to be homogeneous. The last example treats a
nonstochastic situation where an analytic solution turns out to be quite easy.

Example 5.1. A Linear Utility Function. Suppose that for all « € I and =z >
0, u¥(x) = u(x) = x. Assume also that the income variables Y, have the same
distribution A and write Y for a generic variable with this distribution.

Consider first the one-person game with fixed parameters p and r1 =re =r = 14p
where p > 0, 0 < r < 1/ and pY > rk. The unique optimal plan 7 is to borrow
up to the limit £ and spend everything. Thus 7 corresponds to the consumption
function ¢(s) = s+k for all s. The Markov chain of (3.11) satisfies

Spt1 = T(Sn - (Sn + k)) +pYni1
= —rk+pYyr1, n>0.

Obviously, the stationary distribution g of this chain is the distribution of —rk + pY'.
Let @ = I(m) be the return function for 7. Then

Q(s) = Ef—s

S Bule(S,))
n=0

= s+k+ Y B"(—rk+pEYy1 +k)
n=1

= s—i—k—i—%(pEY—pk).

It is easy to see that @) satisfies the Bellman equation

Qs) = max [b+ BEQ(r(s=b) +pY),
which establishes that 7 is optimal (recall Theorem 3.1).

Turn now to the many-person game with an outside bank. If r # 1, then there is
no stationary Markov equilibrium. The bank cannot balance its books because every
agent will borrow k in each period and pay back rk resulting in a decrease, if r > 1,
or an increase, if r < 1, of the total wealth held by the agents. However, there is an
equilibrium with » = 1. In this case, every agent borrows k and pays back k£ so that
the books balance. (Assumption 4.2 holds trivially since p; = py = 0.)

In the money market game, there is no stationary Markov equilibrium with r <
1/3 because no funds are offered for lending. When r = 1/, it is possible to construct
an equilibrium based on the fact that agents are indifferent between lending and
borrowing for consumption.

Example 5.2. A Piecewise-Linear Utility Function with Saturation. Assume that
each agent a € I has the utility function

o T OS.%S].,
“(x):“(x):{l x> 1.

19



Assume also that the income variables, represented by Y, have the distribution
Py =1/2]=1-~, P[Y =3/2] =~

with 0 <y < 1, so that BY = 2.5

Consider the one-person game with parameters p = 1, r1 = ro = r = 1, and
k =1/2. Observe that pY =Y > 1/2 = rk. The optimal plan 7 corresponds to the
consumption function

Cfs+1/2 , 0<s<1/2
C(S)_{1 , s>1/2.

Thus an agent, with cash s < 1, borrows up to 1/2 or just enough to reach 1; an agent,
with cash s > 1, lends (or deposits) the excess s—1. (The proof of the corresponding
result for the model without a loan market is given in great generality in the appendix
of KSS (1994).) The Markov chain of (3.11) takes the form

g [ Yer—1/2 , 0< 8, <1/2,
el Sy —14Y1 , Sp>1/2.

For S,, > 1/2, the chain behaves like a random walk with mean drift
—1+EY =v—-1/2.

Thus the chain will not have a stationary distribution for v > 1/2. Assume now that
0 <y < 1/2. Then the chain has a unique stationary distribution p concentrated on
the set {n/2 :n=0,1,...} as follows:

p(0) =6(1 =), u(1/2) =6,
(n/2)—(5( 7 > for n > 2,

-
where ¢ := (1 —27)/(1 —). Clearly, u has a finite mean; in fact, [su(ds) 7%
and [c(s)u(ds) =+ 3 = EY, in accordance with Lemma 4.3.

It follows from Theorem 4.4 that the price p = 1 and wealth distribution p form
a stationary Markov equilibrium for the many-person game with an outside bank.
We have already established Assumption 4.1, and Assumption 4.2 is trivial since
p1=p2 =0.

We would like to apply Theorem 4.7 to see that the rate r = 1 and distribution p
form a stationary Markov equilibrium for the money market game. Assumption 4.5
is satisfied, but Assumption 4.6, which says that the amount offered for lending must
equal that lent, here becomes the equation

oo

> (/2= D)u(n/2) = 5(u(0) + u(1/2)).

n=3

Straightforward algebra shows that the only value of « for which the equation holds
. 1
isy =3
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Example 5.3. A Money Market Equilibrium for o Piecewise-Linear Utility Function
without Saturation. Assume that each agent « has utility function

T 0<axr<2i
ut(x) = u(z) = TS T
(z) = u(z) {2%—!—77@—2%) , x>2%,

where 0 < 1 < 1. Suppose that the income variables, represented by Y, satisfy
PlY =1]=1/2 = P[Y =4],

and that we are in the one-person game with parameters p =1, 7y =ry =r = 2, and
k=1/2. Then pY =Y > 1=rk. Let m be the stationary plan that corresponds to
the consumption function

s—i—% , 0<s<2
o(s) =1 23 , 2<s5<3 (5.1)
—% , §>3

Notice that under this plan an agent with less than 2% units of fiat money borrows
the maximum or just enough to reach 2%, while an agent with more than 2% units
will lend (or deposit) the excess up to a maximum of % It is shown in an appendix

that 7 is optimal when

1> B(1+n) >n>B*(1+n)+ B

For example, 7 is optimal if 5 =1/4 and n = 1/3.
An agent who plays 7 will reach a wealth s € {0, 2, 3, 5} after at most 2 steps
and then follow the finite chain below.

All transitions are with probability 1/2 and the unique stationary distribution is the
uniform distribution on {0,2,3,5}. Thus one-half of the agents (those at 0 and 2)
are borrowing 1/2 and paying back 1; the other half are lending (or depositing) 1/2
and getting back 1. The books obviously balance, so there is an equilibrium with a
money market or with an outside bank by Theorems 4.7 and 4.4, respectively. Note
that EY = [c(s)u(ds) = [su(ds) = 23, which is consistent with p = 1 in Lemma
4.3.

Example 5.4. An Outside Bank Which Sets Two Different Interest Rates. Assume
that each agent has the same utility function » as in Example 5.3. Suppose the
income variables have distribution given by

PY=1=1-w, PY=4]=w,
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for some 0 < w < 1. Consider the one-person game with parameters fixed at p = 1,
ry =3, r2 =2, and k = 1/3. Then pY > 1 = rik. Let m be the stationary plan
corresponding to
s+ % , 0<s<
c(s) =1 23 , 2§<s<
s—2L 5> 3.

As in Example 5.3, it is easy to see that an agent, who follows this plan, will after no
more than two days have a fortune s € {0,2,3,5} and then follow the chain below.

M

[SCE=

)

The stationary distribution of this chain is the measure

p0) =1 -w) pw(2)=p@B)=wl-w), ub)=uw

Agents with wealth 0 or 2 will borrow 1/3 and pay back 1 X % =1 to the bank for
an aggregated net gain to the bank of

F(u(0) + u(2)) = 31 — w).

Agents with wealth 3 or 5 will deposit 1/2 and get back ry X % = 1. The aggregated
net loss to the bank is

3(u(3) + p(5)) = jw.
The bank will balance its books if and only if

F(1—w) = quw;

D=

that is,

— 4
w=z.

Fix w = 4/7. It can then be shown that the plan 7 is optimal for the one-
person game when the parameters 3 and 7 satisfy the conditions: 0 < g < 1/3,
7n = 65+804n. (The proof consists of checking the Bellman equation and is similar to
that given in the appendix for Example 5.3.) Thus, for these values of the parameters,
we have a stationary Markov equilibrium for the game with an outside bank by
Theorem 4.4. There can be no money market equilibrium with r; # 7.

Example 5.5. A Money Market with Two Types of Agents. Suppose that the space
of agents [ is partitioned into two sets I; and I>. For agents o € I1, assume that
T 0<z<2i
u(x) = uy(x) = ’ - T
() (@) {2%4—?7@—2%) , T >23

22



and that the income variables Y, are distributed like the generic variable Y7 where

These agents of type 1 are much like the agents in the two preceding examples.
Assume that ¢(I7) = 2/3; i.e., two-thirds of all agents are of type 1.

For agents a € Iy, assume that u®(z) = ug(x) = x for all  as in Example 5.1
and that income variables Y, are like Y5 where

PlY,=1]=1=PY, =3].

Note that ¢(I2) =1 — ¢(I1) = 3.

Consider now the one-person game with » = 2 and p = 1 first for a player of
type 2 with loan limit k2 = 1/2. Assume that 5 < 1/2 so that 8r < 1. Then the
optimal plan ma, as explained in Example 5.1, is to borrow up to the limit and spend
everything. This results in a Markov chain with stationary distribution p, equal to
the distribution of —rks +pY = —-1+Y. So

12(0) = pp(2) = %

Notice that all players of type 2 are borrowers so that no money market would be
possible with them alone.

Consider next the one-period game for a player of type 1 with r =2, p =1 as
before with loan limit k; = 1/2. It can be shown that the stationary plan 7; with
consumption function ¢ as in (5.1) is optimal for § and 7 satisfying

4>2B(1+3n) > 4n > B*(1+ 3n) + 6.

(The proof is similar to that presented for Example 5.3 in the appendix.) We assume
in what follows that these inequalities are satisfied. The Markov chain corresponding
to this strategy eventually reaches the set {0,2,3,5} where it has transitions like
those of the chain in Example 5.4 with w = 3/4. The stationary distribution p is
given by

1(0) = 1/16, p11(2) = p1(3) = 3/16, 111 (5) = 9/16.

Let @ = %ul + %,ug be the aggregated measure as in (4.3).

To check that the books balance in the many-person game, observe first that
agents with wealth 0 or 2, whether of type 1 or type 2, borrow 1/2. The total
amount borrowed is thus

3(7(0) +7(2)) = 7-
Agents with wealth 3 or 5 are necessarily of type 1 and lend 1/2. The total
amount lent is

5(7(3) +7(5)) = 1.
This verifies Assumption 4.13. It now follows from Theorem 4.14 that the family of

strategies IT = {n®},cs, where 7% = 71 for @ € I; and 7* = 7y for a € I, results in
a stationary Markov equilibrium for the money market game.

23



Example 5.6. A Nonstochastic Money Market. Assume that every agent o has the
same utility function v which is smooth, increasing and strictly concave. Assume
that all of the income variables Y}’ are equal to a positive constant y.

Consider the one-person game with » = 1/38, p = 1, and k£ = y. The unique
optimal plan for this game is the stationary plan 7 corresponding to the consumption
function

c(s) = (1= B)s + By.
To see that this is so, observe first that

s = (s —c(s)) +y
= (s —c(s)) +y

and consequently the Markov chain resulting from 7 is the constant sequence S,, = s
for all s. Thus the reward function is

Q(s) = ule(s)) + Bulc(s)) + Frule(s) + -
_ ulels)) _ u((L—B)s +By)
1-p 1-73
It is easy to see that @) satisfies the Bellman equation

Q(s) = max [u(a)+ BQ(r(s —a) +y)]

0<a<sty

and so 7 is optimal by Theorem 3.1. The strict convexity of u implies that 7 is the
unique optimal plan.

Now consider the many-person game with a money market. Suppose every agent
plays m and that the initial distribution of wealth is a nondegenerate measure g on
B([0,00)) which has mean y. Any such p is invariant for the Markov chain {S,}
determined by ¢ because

Sni1=0"1(Sn —c(Sn)) +y = Sn .

To see that the books balance, notice that c(s) > s (respectively, c¢(s) < s) if and
only if s <y (s > y). Thus, the balance equation (4.3) of Assumption 4.6 can be
written as

Y o0
et = sptas) = [ (s = clputas) (5.2
y
This holds because, by assumption,

| sntas =y

and, by definition of ¢,

/ " e(s)ulds) = / L= B)s + Bydulds) = (1— By + By = .
0 0

The assumption that p does not degenerate to a point mass guarantees that the
quantities in (5.2) are not zero. Theorem 4.7 now applies to show that » = 1/ and
u form a stationary Markov equilibrium for every nondegenerate p with mean y.
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6 The One-Person Game in More Detail

We now return to the one-person game for a more detailed study of the value function,
the structure of optimal stationary strategies, and properties of the corresponding
Markov chains. Some of these results are of interest for their own sake. However,
our main concerns are to give sufficient conditions for the first basic assumption used
in Section 4 for the construction of a stationary Markov equilibrium and to lay the
foundations for the existence proof to be presented in Section 7.

In order to obtain sharper results and to simplify our analysis, we will assume in
this section:

(A1) The utility function w is strictly concave, strictly increasing, and twice contin-
uously differentiable. Also, 0 <1y <1 <1/8, P[Y > kri] = 1.

All of the assumptions of Section 3 also remain in force. Here is our main result for

the one-person game (cf. Theorem 4.1 of KSS (1994)).
Theorem 6.1.

(a) The value function V is concave, strictly increasing, and continuously differen-
tiable.

(b) There is a unique optimal stationary plan 7 corresponding to a continuous con-
sumption function ¢ : [0,00) — [0,00) such that 0 < ¢(s) < s+k. Furthermore,
the functions c(s) and s — c(s) are nondecreasing.

(c) V'(s) =/(c(s)) for s > 0.
(d) There exist s*, t* with 0 < s* < t* < oo such that c(s) > s for 0 < s < s*,

c(s) =s for s* < s <t* and c(s) < s for s > t*. Furthermore, s* < t* if and
only if m > ry. Indeed

s* = I(ﬁrlEV’(Y))
t* = I(BroEV'(Y))

where I is the inverse function for u'. |

As we have before, we continue to simplify notation by writing, for example, u'(0)
for the right derivative u/, (0) of u at 0.

It seems likely that part (a) of the theorem could be strengthened to say that V'
is strictly concave, but our proof does not show this.

Our proof of Theorem 6.1, like that of Theorem 4.1 in KSS (1994), will rely on a
careful study of a basic recursion which uses the operator T of (3.10).
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6.1 The Basic Recursion
Define

v(s) = vy(s) =Tw(s) = sup [u(b/p) + BEw(g(s—b) + pY)] (6.1)
0<b<s+k

where w : [0,00) — [0, 00) satisfies the following assumptions:

(A2) w is nondecreasing, concave, and has a continuous derivative on [0, 00).
(A3) w'(0) < u/(0).

In this section, we will show that the properties assumed for w also hold for Tw.
Moreover, it is a standard result of dynamic programming that the value function V'
is the limit of T™u. So we will be able to deduce properties of V' in the next section.

Proposition 6.2.

(a) The function v =Tw has all the properties assumed for w in (A2) and (A3).

(b) For each s > 0, there is a unique action c,(s) € [0,s + k| that achieves the
supremum in (6.1). In particular,

(Tw)(s) = u(cw(s)/p) + BEw(g(s — cu(s)) +pY).

(c) The functions cy(s) and s—cy(s) are nondecreasing. Hence, ¢y, is continuous.

(d) (Tw)'(s) = u'(cw(s)).
(e) There exist Sy, tw with 0 < sy <ty < +00 such that
cw(s) > s for 0<s < sy,

= s for sy <5<y,

< s for t, <s.

Indeed, s, = I(fr1Ew'(Y)) and t,, = I(BroEw'(Y)) where I is the inverse of

u'.

Proof. For a slight simplification of notation, we assume without loss of generality
that p = 1.
To prove (b), we introduce the function

Vs (b) = ¥5(b) = u(b) + BEw(g(s —b) +Y)

for 0 < b < s+k. It follows from the concavity of g and w and the strict concavity of
u that 1), is also strictly concave. This is enough to establish (b).
To verify (e), notice that

pi(p) = {0 = Bra Bw/(ra(s =) +Y) 5 0<b<s
$ _{u'(b)—ﬁrl-Ew'(rl(s—b)—l—Y) ; s<b§s—|—k}'
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Therefore,

cw(s) > s iff Yi(s+) > 0iff u/(s) > BriEw' (V) iff s < sy,
and similarly

cw(s) < s iff Pl(s—) <0 iff «/(s) < BroEw' (V) iff s > t,,.

Also ¢,,(0) > 0 and so s, > 0 because ¢{,(0+) = v/ (0) — r1 BEw'(Y) > «/(0) —w'(0) >
0.

We will first prove (c) and (d) for functions w that are C?; i.e. functions with two
continuous derivatives. To simplify notation, we temporarily write ¢ for ¢,,. Let us
consider four cases.

Case 1. 0 < s < (¢ — k)" where ¢ = I(Bri Ew' (Y — r1k)).
For s in this interval, ¥,((s+k)~) > 0 and so ¢(s) = s + k. Obviously (c) holds.

Case 2. (¢ — k)t < s < s,. Here c(s) satisfies ¢/(c(s)) = 0 or u/(c(s)) =
BriEw'(r1(s — ¢(s)) +Y). By the Implicit Function Theorem, ¢ is C* and we can
differentiate to get

d(s)u"(c(s) = Bri(l — ¢ (s)) Bw" (ri(s — c(s)) +Y).

Hence,

ey BB (s~ e(s) +Y)
0=c(s) u(c(s)) + BriFEw"(r1(s — c(s)) +Y) st

In particular, both ¢(s) and s — ¢(s) are nondecreasing; and we have

(Tw)(s) = u(e(s)) + fEw(ri(s —e(s)) +Y).

Case 3. s, < s < t,. Here ¢(s) = s and (c) is obvious; we have (Tw)(s) =
u(s) + BEw(Y).

Case 4. t,, < s. An argument similar to that for Case 2 again proves (c).

Assertion (d) is obvious in Cases 1 and 3. For Cases 2 and 4, differentiate the
equation in (b) to get, for example in Case 2;

(Tw)'(s) = d(s)u/(c(s)) + Bri(1 —d(s))Ew'(ri(s —c(s)) +Y)
= BriEw'(ri(s —c(s)) +Y) = u'(c(s)).

There is no trouble at the endpoints of the various intervals because, as is easily
checked, the right and left derivatives always agree. The proof of (c¢) and (d) is now
complete for C? functions w.

Consider now a w(-) satisfying (A2) and (A3) that is, perhaps, only C'. Then
there exist C? functions wy(-), n € N, satisfying the same assumptions and such
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that w,(-) converges up to w(-) and w},(-) converges down to w'(:) on [0,00). (For
example, extend w(-) to be C! and satisfy (A2) on the whole real line and take
wn(s) = Bw(s — Zy), where the Z,, are positive random variables that have smooth
densities and converge down to zero almost surely.)

Write ¢y (-), for ¢y, (+), and c(-) for c,(-). Then wy,(-) > w;, () > w'(-) so that
Von () S Wy, () S Y0 () and () < cupa(). Define

c(s) = liqgn Ten(s), s€S.

Now ¢, (s) and s — ¢,(s) are nondecreasing in s for every n by (c) applied to the
C? function wy,. Hence, ¢(s) and s — ¢(s) are nondecreasing also, and so ¢(s) is
continuous.

Lemma 6.3. For every s,
(i) (Twn)(s) T (Tw)(s),
(ii) cn(s) T c(s) (i-e. ¢(s) = cu(s)).

Proof. (i) (Tw)(s) = (Twa)(s) = ulcn(s)) + BEwn(g(s — cnls)) +Y) T ulcls)) +
BEw,(g(s —c(s)) +Y) = (Tw)(s). The second inequality holds because ¢, achieves
the supremum in the definition of Tw,; the two equalities are instances of (b).

(ii) By (i), we have (Tw)(s) = limy,[u(cy(s)) +BEw,(g(s —cn(s))+Y] = u(c(s)) +
BEw(g(s — ¢(s)) +Y). Thus ¢(-) = ¢p(+), by (b). [ ]

Now we can complete the proofs of (c) and (d) in Proposition 6.2. Property (c)
is immediate from part (ii) of the lemma. For (d), use part (i) and (d) applied to the
wy, to get

(Tw)(s) = (Tw)(0) = lim[(Twy)(s) = (Twn)(0)]
= lim /0 o (en(8))dt = /0 o (e(t))dt.

Differentiate to get (d).

It only remains for us to check property (a). That Tw is nondecreasing and C!
follows from (c) and (d). To see that Tw is concave, observe from (c), (d) that
(Tw)'(s) = u(cw(s)) is decreasing. To see that (Tw)'(0) < «/(0), use (d) and the
fact from (e) that ¢, (0) > 0.

The proof of Proposition 6.2 is now complete. |

Remark 6.4. Suppose w is nondecreasing and concave, but not necessarily C!. The
function
Ps(b) = u(b) + BEw(g(s =) +Y), 0<b<s+k

is the sum of a strictly concave and a concave function. So () is strictly concave
and must therefore have its maximum at a unique point ¢,(s) in [0, s + k] which
satisfies the equation of Proposition 6.2(b).
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6.2 Proof of Theorem 6.1

Let
Voi=u, Vo1 =TV,

for n =0, 1, .... Then V,, is, for each n, the optimal reward function for the n—day
dynamic programming problem. It is a standard (and straightforward) result that
V,, converges up to V as n — oo.

By Proposition 6.2 on the basic recursion, every V,, satisfies assumptions (A2)
and (A3). Thus V is clearly nondecreasing and concave. A simple direct argument
shows that V;, and V are, in fact, strictly increasing.

By (3.9) and Remark 6.3 there is, for each s, a unique ¢(s) € [0, s+k| such that

V(s) = (TV)(s) = u(c(s)) + BEV(g(s — c(s)) +Y).

We are continuing to assume that p = 1.

By Theorem 3.1, the stationary plan 7 corresponding to c is the unique optimal
plan.

Set ¢, = cy,, in the notation of Proposition 6.2. Then, for n > 1,

Va(s) = (TVi-1)(s) = ulen(s)) + BEVn-1(g(s = ca(s)) +Y).
It follows from Schél (1975) that
c(s) = liTan cn(S).

By Proposition 6.2, ¢, (s) and s — ¢, (s) are nondecreasing for each n.

Hence, the same holds for ¢(s) and s — ¢(s). In particular, ¢ is continuous.

Now apply Proposition 6 2(d) to get V(s) — V(0) = lim,[V,(0) — V,(0)] =
lim,, [y o (cn(z))de = [; u'(c(x))dr. Hence,

V'(s) =(c(s)) .

We have verified conditions (a), (b), and (c) of Theorem 6.1 and also that V'
satisfies assumption (A2). To verify condition (d), consider the function ¥ (b) =
u(b) + BEV (g(s—b) +Y). Notice that

PL(0) = /(0) — BrEV'(Y)
> o/ (0) — BriV'(0) = 4/(0) — Briu(¢(0))
> (1 —pBr)d'(0) > 0.

Hence, ¢(0) > 0 and V'(0) = «/(¢(0)) < v/(0). So V' satisfies (A3) as well as (A2).
Now apply Proposition 6.2(e) with w =V to get condition (d) of Theorem 6.1. This
completes the proof.

Here is an additional property of the optimal consumption function ¢. The proof
is essentially the same as that of Theorem 4.3 in KSS (1994).

Theorem 6.5. Under the hypotheses of Theorem 6.1, we have limg_,o c(s) = 0.
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6.3 The Solution as a Function of the Parameters

Let 0 = (r1, r2, p) be the vector composed of the two interest rates and the price
of the commodity. Also, write Vy(s) and cy(s) for the value function and optimal
consumption function for the one-person game with parameters corresponding to 6.
In this section we will use results of Langen (1981) to see that both Vp(s) and c¢g(s) are
continuous functions of . (We already know from Theorem 6.1 that these functions
are continuous in s for fixed 6.)

We will assume that 8 varies over the set

D:{(Thr?vp):0<T2§T1<1/6,O<p<00}.

The discount factor 8 € (0,1) will be held constant. The bound on borrowing k =
k(0) is assumed to be a continuous function of 6.

Proposition 6.6. Suppose 6,, — 0 as n — oo where 8,01, 0s,... lie in S. Then
Vo,, — Vo and ¢y, — cg uniformly on compact subsets of S.

Proof. The convergence of Vj, to Vj follows from a slight extension of a nice result
of Langen (Theorem 5.1, 1981). The result applies directly when the utility function
u is bounded. For the general case, where u satisfies (A1), it is straightforward to
show that, for s > 0,0 € D, and m=1,2, ...,

Vo(s) = Vom(s)] < (Br1)™€(s)

where Vg, (s) is the m—day optimal reward function and £(-) is a linear function of
s. This inequality can be substituted for Langen’s inequality (5.1), to see that Vjp,
converges to Vy pointwise. The uniform convergence on compact sets follows from
the continuity and monotonicity of these functions.

Consider now the convergence of the ¢g_. By Theorem 6.1(b) and Theorem 3.1(b),
for each s, ¢y, (s) is the unique point in [0, s 4 k(6,,)] such that

Vo, (co, (5)) = u(co, (s)/Pn) + BEVy, (gn(s = co,(5)) +PaY).

Here 6,, = (rgn), rén), pr) and

(n) .

ry 'z if 2 <0,
nx: n .
9u(@) {ré)x if z>0.

Let {bx} be a subsequence of the {cy, (s)} that converges to some b € [0,s + k(6)].
We can use the convergence property of the Vp, to conclude that

Va(b) = u(b/p) + BEVy(g(s — b) + pY).

(For the convergence of the expectations, observe that Vy, (gn(s — cg, (s)) + pnY) <

u'(0)(Ts + pY’) where 7 is an upper bound on the rgn) and P is an upper bound on
the py,. Thus Lebesgue’s Dominated Convergence Theorem applies.)
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Moreover, the unique b that satisfies this equation is b = ¢y(s). So we conclude
that cg, (s) — cg(s). The uniform convergence on compact sets again follows from
the continuity and monotonicity of these functions. |

We will now use the continuity properties just established to derive two technical
results needed in the sequel.

Corollary 6.7. The infimum of cy(s), taken over all s > 0 and 6 belonging to a
fixed compact subset of D, is strictly positive.

Proof. By Theorem 6.1, cy(s) is nondecreasing in s and ¢»(0) > 0. Hence

infcg(s) = irelf cp(0).

0,s

The second infimum is positive because § — ¢y(0) is continuous by Proposition 6.6,
and 0 ranges over a compact set |

Corollary 6.8. Suppose infsu/(s) > 0. Then the supremum of ra(s — cp(s)), taken
over all s > 0 and 6 = (r1, rq, p) belonging to a fivred compact subset K of D, is
finite.

Proof. Set o :=inf, u/(s). Then, if § € K and ¢y(s) < s,

a<u(cg(s)) = BraEVy(ra(s —co(s)) +pY) < BraVy(ra(s — co(s))
< Breud (eo(ra(s — ca(s))) < Brou’(0),

where r* = sup{ry : (r1, 72, p) € K}. By assumption (Al) and the compactness of

K, pr* <1. Hence, o < 5= </(0) and with I = (u')~1, we have

eolrals = o(s)) < 1 (55 )

6) = s =05 e <1 ()}

Then 7n(6) is finite for each 0 since cy(s) — oo by Theorem 6.4. It is straightforward
using Proposition 6.6 to check that 7 is upper semi-continuous. Hence, 1 achieves its
finite supremum, say n*, on the compact set K. It follows that ra(s—cp(s)) < n* < 0o
for 0 € K. |

6.4 Existence of a Stationary Distribution with Finite Mean

Recall that the construction of a stationary Markov equilibrium in Section 4 was
based on two assumptions. We will now give some simple, but fairly general, sufficient
conditions for the first assumption: namely that the agent has an optimal stationary
plan for which the corresponding Markov chain has a stationary distribution with a
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finite mean. The second assumption, that the “books balance,” is much more delicate
and we have not been able to find satisfactory conditions for it.

Fix the parameters 71, r2, p as in Assumption (A1), and let ¢(-) be the optimal
consumption function given by Theorem 6.1. Consider the associated Markov chain
{Sy,} with dynamics given by (3.11).

Proposition 6.9. If inf;u/(s) > 0, then the Markov chain {S,} has a stationary
distribution with finite mean.

Proof. Apply Corollary 6.7 to the special case where the compact set K is the
singleton {(r1, r2, p)}, to obtain a constant n* such that

g(s) <7ras —cls)) <" < oo (6.2)

for all s > 0. (The first inequality is trivial.) Let L be the operator associated with
the chain {S,}; i.e., if 7 is the distribution of Sp, then L is the distribution of
S1 = 9g(So — ¢(Sp)) + pY in the notation of (2.6). Next, define

A := {7 : 7 is a probability measure on B([0, 00)) and / sm(ds) < n*+pEY}. (6.3)

It is easy to check that (i) A is a compact, convex subset of the space of probability
measures on B([0,00)) with the usual weak topology and, using (6.2), that (ii) L
maps A continuously into itself. The Schauder—Tychonoff Theorem (cf. Dunford and
Schwartz (1964)) applies to yield a fixed point of L. [ |

Suppose the hypothesis of Proposition 6.9 does not hold, so that infsu/(s) =
lims oo %/ (s) = 0. Then it is no longer true in general that the chain {S,,} has a
stationary distribution. The argument for Proposition 6.9 fails because s — ¢(s) is no
longer bounded and, if 79 > 1, then 79(s — ¢(s)) tends to 400 as s approaches +oo.
However, there is an existence result when r; = ry = 1.

Proposition 6.10. Assume infsu/(s) =0, r1 =79 = 1, and EY? < co. Then the
Markov chain {Sy} has a stationary distribution with finite mean.

Proof. This follows from Theorems 1 and 2 of Tweedie (1988). First, observe
that {S,} is a weak Feller process because the functions g and ¢ appearing in the
transition formula (3.11) are continuous. Then check Tweedie’s Condition F with, in
his notation, g(s) = s, e =1, and A = [0, 5] where ¢(s) > pEY + 1. Such an s exists
by Theorem 6.5 and, for s > 5, E[Sy41|S, = s] = s —c(s) + pEY < s—1.

On the other hand, for 0 < s <'s:

E[Sp+1|Sn =8| =s—c(s) +pEY <s—c¢(s)+pEY <s—1.

By Tweedie’s Theorem 2, {S,,} has a stationary distribution y such that 0 < p(A) <
1.
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To see that p has finite mean, apply Tweedie’s Theorem 1(iii) with f(s) = s.
Take g(s) = s? in Conditions M1 and F2 and let A = [0,¢] where ¢ is the maximum
of § and p?VarY + 1. For s > t,

E[S2.1|S, = s] = p*VarY + E[S,,11|S, = s> < p*VarY + (s — 1)? < s* —s.

This implies condition M1. Condition F2 is easy to check. |

7 The Existence of Stationary Markov Equilibrium

The existence of stationary equilibrium has already been established in Section 4
under two basic assumptions. The first assumption, that each agent’s optimally
controlled Markov chain has a stationary distribution with finite mean, follows from
natural assumptions about the model as was shown in Section 6.4. The second basic
assumption, that the books balance, is trivially satisfied by an outside bank that sets
p1 = py = 0. However, the second assumption is, in general (i.e., for non-zero py, ps),
much more delicate.

We will give a brief discussion of the model with an outside bank. Then we will
introduce a modified version of the money market game, for which a fairly general
existence theorem can be proved.

7.1 The Model with an Outside Bank

Consider again the model with an outside bank and countably many types of agents
as in Section 4.3. Assume that each type of agent has a utility function which satisfies
assumption (A1) of Section 6. Further, assume that for each type k of agent with
infs(ug)’(s) = 0, the income variable Y* has a finite second moment.

Fix 7y = ro = 1 or, equivalently p; = p, = 0. Also, fix a price p € (0,00) and
assume that pY'®* > k* for each agent a.

By Theorem 6.1, each agent a of each type k has a unique optimal stationary
plan m* = 7. Furthermore, by Propositions 6.9 and 6.10, the associated Markov
chain has a stationary distribution u® = p; with finite mean. Form the aggregated
wealth distribution [z as in (4.3).

Theorem 7.1. The family of strategies {m®} results in a stationary Markov equilib-
rium (p, i) with interest rates 1y =ry = 1.

Proof. This will follow from Theorem 4.11 once Assumptions 4.8 and 4.9 are verified.
Assumption 4.8 is immediate from Propositions 6.9 and 6.10. Assumption 4.9 is a
triviality since, by hypothesis p; = p, = 0. |

It is natural to ask whether there always exists a stationary equilibrium with pos-
itive interest rates p; and py. This seems unlikely when the agents are homogeneous
and infg u/(s) = 0 as in Example 5.2.
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Question 7.2. Consider the model with an outside bank and homogeneous agents
with utility function u such that infsu/(s) > 0. Does there always exist a stationary
Markov equilibrium with p; and p, positive?

We suspect that the answer is yes, but that the equilibrium may involve active
bankruptcy. We hope to return to this question in a subsequent paper which allows
for bankruptcy.

7.2 The Model with a Money Market

The object of the remaining sections is to establish the existence of a stationary
Markov equilibrium for a modified version of the money market game with homoge-
neous agents.

Consider first the game as originally formulated. In Example 5.2 we saw that
there need not exist a stationary Markov equilibrium. We suspect that this is a
common occurrence when the utility remains bounded.

Question 7.3. Does there always exist a stationary Markov equilibrium for the
money market game with homogeneous agents and a utility function u such that
infs u/(s) > 07

We do not know the answer to this question, but will give an affirmative answer for
a modified game, wherein the endogenous interest rates are controlled by “government
intervention” so that they are bounded away from 1/f.

7.3 A Game with a Regulated Money Market

For simplicity, we assume that the agents are homogeneous with utility function u
and generic income variable Y such that Y > kQ/W; here Q) = EY is the quantity of
the commodity produced each period, W = W} is the amount of fiat money initially
held by the agents, and k£ > 0. Let € and ¢ be small positive numbers such that

0 <e<min{k/2, 1 -1}, 0<§ < min{W,e}. (7.1)

Our new game will be quite similar to the money market game formulated in
Section 2.2. One difference is that every agent is required in every period to offer at
least ¢ for lending and to bid at least ¢ in IOU notes.

Indeed, suppose that, at the beginning of each period n, each agent « has a
wealth S ;(w) > e and is required to offer (%(w) € [e, S ;(w)] for lending and
i%(w) € [6, k—e] in IOU notes. To simplify the bookkeeping, we assume that at most
one of the quantities 5 (w) and i$(w) can exceed its minimum value. As usual, we
assume that ¢%(w) and % (w) are jointly measurable in (a,w). The total amounts

offered for lending and in IOU notes, respectively, are

Lu(w) = / E(w)olda), Tw) = / i2(w)@(da). (7.2)
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Observe that

Thus the ratio

- I,
o (w) := Ln((zfu)) (7.3)
is well-defined. Set g
re 1= 5 €. (7.4)

If 7 (w) < e, the interest rate r,(w) =1+ p,,(w) for period n is taken to be 7, (w).
However, if 7,(w) > 7e, the government (or gamemaster) offers additional funds
Gr(w) for lending so that the interest rate for period n is

_ )
rp(w) = L) + Ga(w) Te.
Thus L (w)
- n(w
rp(w) == rp(w) Are = T () ATe. (7.5)
In order that Gy, be always defined, we set Gy, (w) = 0 if 7, (w) < 7. Then
0 < G(w) = <M—Ln(w)>vogk_5—ggﬁ (7.6)
Te Te Te
With the definition (7.6), the equality
a(w) = &

Ly (w) + Gp(w)

is always valid.

Once the interest rate r,(w) is formed, each agent o obtains a loan of i% (w) /1y (w)
and bids

by (w) = S5y (w) — €5 (w) + i (w) /rn (w) (7.8)
in the commodity market. (As in the unregulated model, no hoarding is allowed.)
When loans are repaid, the government receives a profit of p,,(w)Gy,(w), where

rp(w) = 1+ p,(w). However, the government is required to spend its profit in the
next period. Thus the price of the commodity in period n is formed as

o) = L) + oy 0)Gos (0 o)

Wo1(w) + Gn(w) + 1 (0) G (w)
0 .

by virtue of (7.6)—(7.8); here
Wos(w) = [ 853 (w)o(da)
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is the total amount of money held by agents at the beginning of period n, and we set
Wo =W and pyGo = 0. Thus, at the end of the nth period, agent a has wealth

Sp = ra(Sho1 = 0y) + oYy = raly — iy 4+ paYy (7.10)

in fiat money.
In this model, the total wealth levels W,, can fluctuate, but the quantities W,, +
P, Grn remain constant. To see this, let n > 1 and calculate:

Wi+ p. Gy = / SE(da) + (r — 1)Gon (7.11)
= [ = i+ pa¥)8(d) + ( — )G
_ ‘ I, Wi1+ Gn + Pn71Gn71 I,
_<Ln+GnL”‘I”+ Q 9+ ra, Yo
= Wp—1+ Pn71Gn71-
Thus

for all n > 1, and the formula for the price p,(w) of (7.9) can now be written in the
simpler form

palu) = (7.13)

It follows that p, is bounded because G, is bounded:

Dy = g < pp(w) < W—’—Tk/% =p*. (7.14)

Since i%(w) < k—e, pp(w) > W/Q, and Y,¥(w) > kQ /W, we have SF(w) > —i%(w) +
Pn(w)Y,¥(w) > € as assumed.

By construction, the interest rate r,, is bounded above by 7¢; cf. (7.5). To get a
positive lower bound, observe from (7.2), (7.12) that

Lu(w) < [ S33(0)0(da) = Woa(w) = W = py 3 (@)Go-a(w) < W
(The quantity p,,_;G, 1 is nonnegative, since G,,—; > 0 implies 7, 1 = r. and
Pn_1 =1 —1>0.) Consequently,

~ _ Iy(w) )
alw) =70 2 W

and, by the definition (7.5) of r,, and (7.1), (7.2):

Ty 1= % <rp(w) < re. (7.15)



As in our other games, each agent « receives x& = b%/py, units of the commodity
and u(z$) in utility in the nth period. The agent’s objective is to maximize the
expectation of total discounted reward, namely

E Z Bru(xy).
n=0

Strategies and admissible collections of strategies are defined as in Section 2. A
stationary strategy m® will now specify IOU bids and loan offers in the form

i (w) = %S5 (w), ra—1(w), pp—1(w))
lr(w) = L5(Sp_1(w), rp—1(w), pp—1(w)),

where i and ¢* are measurable functions such that 6 < i%(s,r,p) < k—¢, ¢ <
%(s,r,p) < s, and either i®(s,r,p) = 6 or £¥(s,r,p) = €.

Definition 7.4. An admissible collection II = {7%, a € I} of stationary strategies
results in a stationary Markov equilibrium (r,p, ;) where 0 < r < 00, 0 < p < 00,
and g is a probability measure on B([0,00)) if, with o = r, pg = p, and vy = p, we
have

(i) rn, =7, pn = p, and v, = p for all n > 1,

(ii) each strategy m” is optimal for agent 3 when every other agent a (a0 # f3)
plays 7.

Theorem 7.5. For 6 sufficiently small, there is a stationary Markov equilibrium for
the requlated money market with homogeneous agents and o utility function w that
satisfies assumption (9.1) and infsu'(s) > 0.

The rest of this section is devoted to the proof of Theorem 7.5. The method is to
use the Schauder—Tychnoff fixed point theorem in a way analogous to that of Whitt
(1975). The proof will also use results for the one-person game from Section 6. We
begin with a look at how the one-person game is related to the regulated money
market game.

Consider an agent with wealth s > ¢ who is playing in the regulated money market
game. The agent could elect to bid ¢ = ¢ in IOU notes and to lend ¢ € [e, s], or elect
to lend ¢ = ¢ and bid i € [§, k—¢]. The resulting commodity bid

b=s—0+1i/r,
for a given r, would take values in the interval [§/7, s + k,| where

k—
k. = 8—5.
r

Suppose the agent believes the game to be in equilibrium at price p and interest rate
r. Then the agent would prefer to make the optimal bid cy(s) in the one-person game
with parameters 6 = (r,p) and k(0) = k,. (In the notation of Section 6.3, 8 = (r,r,p)

37



which we abbreviate here to (r,p).) If co(s) < 6/r, then the bid cy(s) would not be
available. However, 0 takes values in the compact set

K = [rs, re] X [ps, P] (7.16)
(recall (7.14), (7.15)). Thus, by Corollary 6.7,

¢, :=inf ¢y(s) > 0.

0,s

We now assume that § < c,ry so that cy(s) > §/ri > 6/r, and the bid cy(s) is
available to the agent. (This small technicality could be avoided by treating a more
general one-person game in Section 6.)

Consider the function 1 which maps the current interest rate, price, and wealth
distribution (7, p, i) to the corresponding quantities (r1, p1, pq) for the next period,
under the assumption that each agent plays according to the unique optimal station-
ary strategy for the one-person game with parameters 6 = (r,p) and k(0) = k.. We
want to show that i has a fixed point. First we need a more explicit definition of .
We take the domain of ¢ to be the set

A=K x M. (7.17)

Here K is the compact set of (7.16), and M is the collection of all probability measures
on B([0,00)), which satisfy

/hsu(ds) <W (7.18)
and are stochastically smaller than'
ren* + (k—e) (E = 1) +7, (7.19)
where
n* :=sup{s—cy(s) : s>0,0 € K}. (7.20)

It follows from Corollary 6.8 that n* is finite. Hence, M is tight and therefore compact
in the weak-star topology. Thus A is also compact in the product topology. Note
also, from (7.14), that the expectation of the random variable in (7.19) is r.n* + (k—

€) (:—i - 1) + W+ % > W, in accordance with (7.18).
For 0 € K, write
co(s) = s —Llo(s) +ig(s)/r (7.21)

where ly(s) and iy(s) are the loan offer and IOU bid of an agent with wealth s. Only
one of these can exceed its minimum; so either ig(s) = ¢ and ly(s) = s — cy(s) + 6/,
or else ly(s) =€ and ig(s) = r(cg(s) — s +¢). Thus

ly(s) = (s—cy(s)+06/r)Ve€ [e9], (7.22)
ig(s) = r(co(s) —s+e)Vbe [6,k—el]
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An agent who lends and borrows in accord with £y(-) and () will be playing opti-
mally if the interest rate and price remain fixed at 8 = (r, p).

Both ¢y(+) and #y(+) are continuous in #, uniformly on compact sets because cgy(-)
is (by Proposition 6.6). It follows that the totals of the IOU bids and loan offers
given by the integrals

I=1(r,p,p) = /ig(s)u(ds), L=L(r,p,p) = /ég(s)u(ds) (7.23)

are continuous functions of (r,p,u) on A. This can be shown directly, or by an
application of Theorem 3.5 in Langen (1981). Likewise, the quantity

G =Glrp,p) = <Ti - L> Vo, (7.24)

which represents the “funds offered by the government,” is a continuous function of
(r,p, ). Tt develops that the new interest rate

r1=7r1(r,p,p) = ﬁlG’ (7.25)
and the new price
p1=pi(r,p, p) = W; G7 (7.26)
are also continuous in (r,p, ¢t). Consider now
py = pq (7, p, p) := (distribution of S7 = —ig(S) +116p(S) +p1Y) (7.27)

where the independent random variables S, Y have distributions p, A respectively.

Lemma 7.6. The mapping ¥ : (r,p, ) — (r1, p1, 1) of (7.25)—(7.27) is continu-
ous, and maps A into itself.

Proof. The continuity properties of r1, p1, £y and ig imply the continuity of p (r, p, i),
hence also that of the mapping .
Now from (7.22), (7.23) and (7.18), we have

6<I<k-—eg, 6§L§/su(ds)§W;

and by analogy with (7.14), (7.15) we deduce that (r1, p1) € K. It remains to show
fq € M. From
Sy = —ig(S) +11lp(S) +p1Y (7.28)

and (7.23)—(7.26), we have
/'sm(ds) - - /Z’e(S)u(dS) +ry /'ee<s>u<ds> pQ

I
= — [ — = — — <
Tl WG =W =G —1) <W
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since, either G = 0, or G > 0 and 71 = 7. = + — ¢ > 1. This verifies (7.18) for y;; to
verify (7.19), let
ig(5)
™
denote the “bid for commodity,” recall (7.21), and rewrite (7.28) as

bo(S) = S — £o(S) +

S1 = 11(S = be(S)) +p1Y =71(S — co(5)) + ri(ca(S) — bo(S)) + ;1Y
= 71(S — co(S)) +io(S) (% - 1) + Y

ren” + (k—¢) (E - 1) +pY

r

IN

from (7.20), (7.22) and (r,p) € K, (r1,p1) € K. [ |

This completes the proof that the mapping ¥ : (r,p,u) — (r1,p1, ) is con-
tinuous from A into A. By the Schauder—Tychonoff Theorem, ¢ has a fixed point
(', 0, 1)

Suppose every agent plays according to the stationary strategy corresponding to
o () = ¢ )(+) and that the initial conditions are ro = 1, po = p/, and vg = V/".
Since (r',p', 1) is a fixed point of 1 it follows that r, =1/, p,, = p’ and v,, = /' for
all n > 1, and also that every agent is playing optimally against the given strategies
of the others.

The proof of the theorem is now complete.

Question 7.6. Is the stationary Markov equilibrium unique?
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9 Appendix: A Proof of Optimality

Let 7 be the stationary plan introduced in Example 5.3 with corresponding consump-
tion function ¢ as in (5.1). Assume that the parameters in the example satisfy the
condition:

1>B(1+n) >n>G*1+n) + . (9.1)

Let Q(s) = I(m)(s) be the expected return for an agent who starts at s and plays
7. To show 7 is optimal, it suffices, by Theorem 3.1, to verify that () satisfies the
Bellman equation:

Q(s) = o< max [u(b) + BEQ(2(s — b) + Y)]. (9.2)
<b<s+1/2
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The first step is the calculation of () using the identity

Q(s) = ulc(s) + BEQ((2(s — c(s)) +Y)
B

= u(e(s)) + 51QEs — e(s)) + 1) + Q25 — e(s)) + 4]

This identity together with the formula (5.1) defining ¢ gives the following:

s+3+51Q(0) + Q) L 0<s<2,
Q(s) = { 25 + 5[Q(2s — H+QEs-1)] -, 2<5<3,
25 +n(s —3)+5[QQ2) +Q(B)] , s>3.

In the middle equality above where 2 < s < 3, we have 2s —4 <2 and 2s —1 > 3, so
we can substitute from the first and last equalities to get

Q(s) =23+ 5 { [25 =33 + 5(Q(0) + Q)| + |2 +m(2s - 9) + 5(Q(2) + QO))| }

Differentiation gives

1 , 0<s <2,
Q(s)=3B+0n , 2<s5<3,
n , s> 3.

Left and right derivatives can be obtained at the endpoints of the three intervals by
continuity.

Observe that condition (9.1) implies that ¢ is decreasing and @ is concave.

In order to check the Bellman equation (9.2), define, for each fixed s, the function

V(b) =1, (b) = u(b) + BEQ(2(s—b) +Y) = u(b) + §[Q(2(s—b) +1) + Q(2(s—D) +4)]

for0<b<s+ % The function 1) is concave because v and () are concave. What we
must show is that 1 attains its maximum at b = ¢(s). We will consider three cases.

Case 1. 0 <s<2.
Here c(s) = s + 3 and it suffices to show that ¢/ (s+ 3) > 0 where ¢/_ denotes
the left derivative of ¥. For 0 < b < s+ %, we have b < 2% and

Y(b) = b+ 5[Q(2(s = b) +1) + Q(2(s — b) + 4]).

Hence,
YL (0) =1-BlQ} (2(s =) + 1) + @, (2(s — b) +4)]
where @', denotes the right derivative of ). Set b = s + % to get

Vo (s+3) =1-0lQ 0+ QL B)] =1- 51 +7] 20
by condition (9.1).

Case 2. 2 < s < 3.

41



In this case, ¢(s) = 23 and we need to show that ¢/ (23) > 0 > ¢/, (23). To
prove the first inequality, observe as in Case 1 that

W (28) =1 BIQ (25— 4) + @ (25— 1)] = 1 - BIQ, (0) + @, (3)] = 0,
where the first inequality holds because @, is nonincreasing and the second by the
argument in Case 1.

To prove that ¢/+ (2%) <0, let 2% <b<s —l—% and write
$(b) =23+ (b—21) + 2[Q(2(s — b) + 1) + Q(2(s — b) +4)]. (9.3)
Hence,
YL(b) =n—BlRQL(2(s —b) + 1) + Q_(2(s — b) + 4)]
and, in particular,

Uy (23) =0 - BlQL(25—4) + Q1 (25s-1)] < n—BlQ_(2) + Q_(5)] = n — B(1+n) <0

where the first inequality holds because ) is nonincreasing and the second by (9.1).

Case 3. s > 3.

Here c(s) = s—3. So we need to show ¢/ (s —3) > 0>/, (s — &). To prove the
first inequality, let 23 < b < s+ 3, write ¢(b) as in (9.3) and take the left derivative
at b:s—% to get

UL (s —5) =n—BlQL(2) + QL) = n— BB+ Bn+l.

The final quantity is nonnegative by condition (9.1).
Take the right derivative of ¢ at b = s — % to get

Vi (2-3) =n-BQRLE)+QL(5)] =n— Bl +1].

This quantity is less than or equal to zero by (9.1).
The proof that 7 is optimal is now complete.
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