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Abstract

We study a dynamic, stochastic economy with several agents, who may ..
differ in their endowments (of a single commodity) and in their utilities. An
equilibtium financial market is constructed, under the condition that all agents
have infinite marginal ulility at zero. If, in addition, the Arrow=-Pratt indices of
relative risk aversion for all agents are less than or equal to one, then uniqueness
of equilibrium is also proved. When agents consume and invest in this
equilibrium market 5o as to maximize their expected utility of consumption, their
aggregate endowment is consumed as it enters the economy and all financial
instruments are held in zero net supply. Explicit examples are provided.

1. Introduction

A fairly complete theory has been developed recently for the optimal
consumption/investment problem of a smail investor with a general utility
function [3,4,13}. Using tools from stochastic calculus, explicit expressions for the
optimal consumption policy and terminal wealth can be provided when stock
prices are modelled by It5 processes. The present paper draws on the

methodology of [3,4,13] to construct equilibrium in a multi—agent economy, and
to establish uniqueness,
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. We suppose there is a finite number, N, of agents (small investors), each
cw iroa.umnm?mm an endowment stream denominated in units of a single,
m=m=.=m:. divisible commodity. The agenis may have different endowment
streams and utility functions. Each agent attempts to maximize his expected
total utility from consumption of this commodity, over a finite horizon [0,T]. We
shall construct a financial market, consisting of a bond and a finite number of
stocks, which provides a vehicle for trading among the agents and thereby allows
them to hedge the risk and smooth the nonuniformity associated with their
.nm.mumﬁ?m endowments. The equilibrium problem is to construct this market in
such a way that, when the stock and bond prices are accepted by the individual
agents in the determination of their optimal policies, all the commodity is
entirely consumed as it enters the economy and all the financial assets are held in
zero net supply.

The present paper is quite similar to Duffie & Zame {9]. Both Duffie &
Zame [9] and this work generalize the results of Cox, Ingersoll & Ross [5] in two
important directions. First, heterogeneous agents are allowed, whereas in (5] all
agents have the same endowments and the same utility functions. Secondly,
endowment processes are adapted in a general way to an underlying
d—dimensional Brownian motion, whereas in {5] this dependence on the
underlying Brownian motion must be via a state process so that Markov methods
could be employed. Duffie 8 Zame [9] and this paper both derive a formula for
the endogenously determined equilibrium interest rate which agrees with that of
{5} when specialized to their model. Both [9] and this paper derive formulas for
the coefficients of the stock processes and the optimal consumption processes of
the individual agents.

The Cox, Ingersoll & Ross interest rate formula is given in terms of an

,”»E::.wn. utility function, J, derived from the single direct utility function, U, in

their model. In our model, each agent has a utility function, U_, and we

n

construct a "representative agent" whose utility function will play the role of the

Cox, Ingersoll & Ross function U. Roughly speaking, this representative agent
acts as ‘w,ﬁ@va« for the individual agents by receiving their aggregate endowment,
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solving his own optimization problem with utility function

(1.1) U(t,e; A) 4 max MZIZ U (te ),
20,...,c20 0TER DR
R EREREREIY E

nu...—.. . .+02Hﬂ

and then apportioning his optimal commodity consumption process to the agents,
instead of actually consuming it. The search for equilibrium is reduced to a
search for an appropriate vector A € S.avz in (1.1); cf. Sections 9 and 12. At
this point, our work differs from Duffie & Zame [9], who introduce the
representative agent but construct equilibrium in an infinite~dimensional
functional space. One advantage of posing the equilibrium problem in a
finite—dimensional space is that in this context, one can develop arguments
resolving the question of uniqueness, an issue not addressed by Duffie & Zame [9]
and largely ignored in the finance literature.

We use the Knaster—Kuratowski—-Mazurkiewicz lemma (2, p. 26] to give a
very simple proof of the existence of equilibrium. A different proof under slightly
different assumptions on the endowment processes can be obtained directly from
Araujo and Monteiro [1]. Under the assumption that the agents’ measure of
relative risk aversion is less than or equal to one, we show by a separate simple
argument that the agents’ equilibrium optimal consumption processes, as well as
the equilibrium interest rate, are unique. Furthermore, the coefficients of the
equilibrium stock price processes are unique up to the formation of mutual funds.

Some generalizations of this model are possible. First, one could easily
include capital assets which are owned by the N agents, pay dividends, and can
be traded among the agents. The additional condition of equilibriym, i.e., that
all such assets are exactly owned by the agents, can be easily met, A formula for
the arbitrage—free price of such assets is given in Section 13. Secondly,
throughout this paper we consider only individual agent utility functions
satislying the condition qw?s = w. Generalization to the case in which

d_\n?s < w for at least one of the agents is possible, but care is required.
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To accommodate this case within our framework, one needs a more general model
of the financial markets than we define in Section 2. For equilibrium to hold in
general, both the stock and bond price processes must have singularly continuous
components. One can describe the bond price process, but due to the singularly
continuous component, there will be no interest rate process; see [14] and the
earlier work contained in the appendix of [9]. There is an alternative model
presented in [15], following the formulation of Duffie {7] and Duffie and Huang
8], -which avoids requiring the financial assets to have singularly continuous
noicoﬁmp:. We refer to this as the moneyed model; in it, prices are
denominated in some currency, rather than in units of the commodity. There is
also a commodity spot price process which gives the value of the commodity in
that currency. In [15), the agents’ commodity endowments and the prices of the
financial assets are given exogenously, and the commodity spot price is
wm"mun_.m:& endogenously by the equilibrium conditions. The existence and
essential uniqueness of equilibrium are proved in [15] without any condition on
.,.q,m:.o.v_. 1 £k ¢ N. None of the financial agsets will have singularly continuous

parts in their price processes, but when those prices are divided by the
commodity spot price to value them in commodity units, singularly continuous
components can arise.

The present work is a self-contained companion to the more detailed and
comprehensive article [15]. It is designed to be more accessible than [15] in that
it deals exclusively with the moneyless model when all agents have infinite
marginal utility at zero. These conditions obviate a number of complex
technicalities; in particular, they permit a different proof of uniqueness for
equilibrium, which is simpler than that appearing in [15). Since this paper was
first drafted, Dana & Pontier [6] have provided an equilibrium existence which
does not require our assumption (3.2) and which accomodates a weakening of our
assumption of a bounded aggregate endowment process. The existence proof of
Dana & Pontier [6} is considerably simpler than our original proof, but similar to
the proof we give here.
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2. The Agents and their Endowments

We consider an economy consisting of N agents. Each agent, n, receives a
nonnegative exogenous endowiment process of a single commodity €= Tzsn

0 <t < T}, where T is the fixed, positive planning horizon. These endowment
processes are uncertain, and we model them 28 Itd processes taking values in
{0,0). More precisely, let W = AE_..:_S% be a d—dimensional Brownian

motion on a complete probability space (Q,, P), and let {F L denote the
augmentation by null sets of the filtration generated by W. Assume that for
n = 1,..,,N, there are bounded, {¥ lenom_.mmm?ﬂw measurable processes #, and

Py taking values in R and sa_ respectively, such that

i t
01 0= O+ [ s + [ a@awe), ocier,

where ¢ (0) is a delerministic, nonnegative constant.

N
We define the aggregate endowment «(t) &y m=3_ 0<t<T, and
n=1

a N s X
%mnmm_mot?vu ths,ﬁs. nEHM .ans_cm.m.u.armn
bu _u"_

t t
(2.2) €(t) = «(0) + r%zu + % %*Egia. 0CECT.

We assume that for each n, ¢ A is not identically zero, and that there exist

positive constants k and K for which k ¢ e(t) (K, 0¢t < T, as.
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3. The Agents’ Utility Functions

We suppose that each agent, n, has a utility function U :[0,T] x (0,0) » &

which is continuous and enjoys the following properties:
(i) for every 4 ¢€[0,T], U nlt+) 8 strictly increasing and strictly

concave; ,

3y 0 & Fs

ﬁ:v the derivatives Tt c—_.. Te c.u.. ; .C.b. ...wln:M d and muw. U

exist and are continuous on [0,T] ~ (0,m);

(iii) for every t € [0,T}, U} = 4 %i satisfies

(3.1) cm?.av n_h.ﬂ_ Ul (t,e) =0, d.\_?s ._umﬂ U/ (te) =

We define cu?ov _ME U, (t,c), which may be —a.
cl0

In order to prove the uniqueness of equilibrium, we shall impose in Section
12 the additional condition
(iv) for every t € [0,T), the function cw ¢ U/ (t,c) is nondecreasing.

Condition (iv) is equivalent to assuming that the Arrow—Pratt measure of
relative risk aversion, Uy c_..&\c.m_?nv. is less than or equal to one [17, p. 69}

Examples of functions which satisfy conditions (i) — (iv) are mlR_om c

and mmla c7, where a€R and 0 < T< 1l When 7 <0, the function
.W¢|Rn,< violates condition (iv), but if all agents have this utility function, the

uniqueness of equilibrium can be established by explicit computations; see
Example 11.1.
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4. The Financial Market

The agents in our model receive utility from consumption of the single
commodity with which they are endowed, Because an individual agent’s
endowment process is typically random and non—uniform, he would find it
advantageous to participate in a market which allows him both to hedge risk and
to smooth his consumption. We shall create such a market endogenously by
equilibrium considerations.

We introduce the financial market in this section; its coefficients will be
specified in section 10, in terms of the endowment processes and utility functions
of the individual agents. The market has d + 1 assets. One of them is a pure
discount bond, with price

]
(4.1) Py(t) = Py(0)exp r%z&

at time t. The remaining d assets are risky gtocks, and the price per share
_JE of the it stock is modelled by the linear stochastic differential equation

(42) dP;(t) = P,(t)[by(t)dt + 7 o (AW (D) i =
=1

All these prices are denominated in units of the commodity with which the
agents are endowed. The EHRE. zate r(-) of the bond, the mean rate of return
vector b(-) = (by(-)-ib al- : of the stocks, and the volatility matrix of-) =

?m .HA . :_. i, j<d? will all be bounded, {¥ Llwncmﬂmmu?m_w measurable processes.

In addition, we shall impose the uniform nondegeneracy condition

(4.3) €o)a (e 2 61812 0¢L<T, as,
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*
for some &> 0. Under (4.3), the inverses of both o(-) and ¢ (-) exist and are
bounded. In particular, the relative risk process

(4.4) o) & (o)) o(t) — x(t)t], 0<t<T,

is bounded and progressively measurable, where 1 denotes the d—dimensional

vector with every component equal to 1.

It follows then from the Girsanov theorem (e.g. {16, section 3.5]) that the
exponential supermartingale

t t
48 20 2ew(-| F@ewe - [ 1), 5 0crcT,

is actually a martingale, and that W(t) & W(t) + .— #(s)ds; is Brownian
o

motion under the probability measure F(A) £ E(Z(T)1 A)i A € Fq. Under this

measure, the discounted stock price processes .m?uwm?r with

t

-1 1
(4.6) A(t) & (P! = b e _o_ai

are martingales, a fact of great importance in the modern theory of continuous
trading (cf. [10,11,18] for its connections with the notions of "absence of arbitrage
opportunities” and "completeness" in the market model). We shall see in
Remark 7.1 that the process

(4.7) OEY 0ZORK I RS
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acts as a "deflator", in the sense that multiplication by ¢(t) converts wealth held
at time ¢ 1o the equivalent amount of wealth at time zero.
We impose on { the condition

(4.8) 0<kS(()<K, 0<t<T, as,

for some constantis k and K.
5. The Individua! Agents' Optimization Problems

Once a financial market is specified, as it will be in Section 10, each agent, n,
acts as a price~taker. He has at Em disposal the choice of an Eal_.p_:m,._ porifolio
procesy () = (7 ,(t),...,7 Q?u and a nonnegative consumption rate process
¢, (t}, 0 ¢t < T. He must choose both these processes to be {F ._.T_unomaa?m:
T
measurable and to satisfy _. (e (®) + 1 aH_S__wu& < m, almost surely. The
0

interpretation here is that « 3 represents the amount of 85:8&5 invested

at time ¢t by the n th investor in the it th stock.

If we denote by X ,(t) the wealth of the oth investor at time t, then

d
X, - m 7,;(t) is the amount invested in the bond. Neither this quantity nor
=1

the E&ias& 7,,;(t)'8 are constrained to be nonnegative, i.e., borrowing at the
interest rate r{t) and short—gelling of stocks are permitted.

The wealth Nn corresponding 1o a given portfolio/consumption pair

(m,:c, ) satisfies the equation
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d d

(8.1)  dX_(t) = {e (t) —c (t)}dt ﬁm%&:xf@ +h.m q:.Eaé.mE_

1

d
+ X (1) Immpaa?:%u%

= ()X (1)t + [e (1) —c_ (]dt + 7 (1)o(t)aW(Y)

whose solution is

{ t
(-2P0X,(1) = | Hegls) = cyfallds + [ pEIn,(s)o(e)aWes), o< en.

5.1 Definition
A portfoliofconsumption pair ?:.n:v is calied admissible for agent n if the

corresponding wealth process, N=_ is bounded from below and satisfies N:Gq
0, almost surely.
The =_=. agent’s bﬁsﬁp_wmbbu problem is to maximize the expected total
utility from consumption m.— U (t,c (t))dt over all admissible pairs (mqicy)
o
.....w_p_. satisfy

T
(5.3) E _o max(0, U, (t,c ()}dt < o,
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7
Oon&:om?.3mmmSwom&“oo—aEmgﬁm _. c._?o._ev&wmnmmnma.im
c

shall let ?,q:.m:u denote an optimal pair for this problem, and let w__ denote the

associated wealth process. The existence of Q_.m, mnv is established in Section 7.

6. The Definition of Equilibrium

We are now in a position to define the notion of equilibrium.

6.1 Definition

We say that the financial market (more specifically, the processes r(-), b(+) and

o(+)) introduced in Section 4 results in equilibrinm if, in the notation of Section
5, we have almost surely

N .
(8.1) b} nbas =¢t), 0¢tg T,
n=l1
N .
(8.2) Exyt)=0,  0gt¢Tandigigd,
n=1 o
N .
(6.3) b =A3Hc. "0<t¢ T,
=1

‘The above conditions enforce the clearing of the spot market in the
commmodity, and the clearing of the stock and bond markets, respectively.

7. Solution of the o'l Agent’s Problem

In order to charactetize an equilibrium financial market, we let a financial
market be given and study individual agent behavior in its presence. Let us
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therefore consider an admissible pair Tm__n:v and evaluate the corresponding

wealth process X at the stopping time S Ainf{tef0,T};

m
t

_‘ mm?x_a“?vq?u_“umm 2 m} for an arbitrary positive integer m. Taking
0

. T
we obtain E _.

o

expectation under P in (5.2) evaluated at t = T "

ﬂ
m
=E _.o {(s)e,(s)ds — Ef¢(7 )X (). Now welet m-o. Admissibility and
Fatow's lemma give Lim E[¢{r )X (7 )} 2 E[{(T)X (T)] 2 0. This, coupled
In-+ o

with the Monotone Convergence Theorem, yields in (7.1):

T T
(1.1) B _cn%._:zm <E r (s)e, (s)ds.

7.1 Remark
Inequality (7.1) can be regarded as a budget constraing, and it justifies the :
terminology "deflator" for the process ¢ of (4.7). It mandates that the expected %
total value of consumption, deflated back to the original time, does not exceed
the expected total deflated value of endowment.

7.2 Proposition
Let a financial market be given. If (x,c_) is an admissible pair for agent n,

then (7.1) holds. Conversely, for any consumption process ¢, satisfying (7.1),

there exists a portfolio process L such that the pair ?ﬂ.n_L is admissible.

En??:@% : .
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Proof:

It remains to justify the second claim; for any consumption process c, salisfying
T

(7.1), introduce the random variable D, 4 % memn?uin:?x% and observe

0
that (7.2) amounts to ED_ 2 0. Now the F-martingale

n
A 7 % .
M (t) ED -~ E(D,| F,), can be written as a stochastic integral
t

* "
—omﬁmva—_?vi&asg for a suitable portfolio process 7, by virtue of

M, (¢)

the martingale representation theorem (cf. [16, Problem 3.4.16 and proof of
Proposition 5.8.6]). Finally, the process

t
(7.2) Xa(t) = 5 :o%f_ag_.@_ﬂ_m + M (1))

- I8 obviously, from (5.2), the wealth associated with the pair Ha.__n__u and satisfies

T
(X8 = HOBD, ~ B{] (a)ley(o)-c, sl 0<ugT, s

Both requirements of Definition 5.1 for admissibility follow easily from this
representation, the boundedness of ¢, and (4.8).

We conclude from Proposition 7.2 that the :...r agent’s optimization
?o%ma can be cast thus: {0 maximize the expected utility from consumption

mrc__?o:::& aver consumplion processes ¢ which satisfy (7.1) and (5.3).
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In order to solve this problem, we introduce I (1,-), the inverse of the
strictly decreasing mapping U/ (t,-) from (0,m) onto itself. Ttisa
straightforward verification that

(1.3) U (I (L)) -yl (by) = ﬂ_w%c:?gxﬁr ¥ (t.y) € [0,T] = (0,0).

Because I is jointly continnous (in fact, jointly ¢! because of condition (ii) of
T
wmnao: 3)and ( satisfies (4.8}, the function & (y) L) _.QAE_:CQAEK»

maps (0,m) onto itself and is continuous and strictly decreasing. Define y, tobe

the unique positive number for which

T
(7.4) LACARS ] WOTROL
and set
(75) e L1y, ¢(1), 0¢tgT,

Then m a satisfies (7.1) with equality, and is bounded away from zero because (
is bounded, so (5.3) holds. Let s be another consumption process satisfying

{5.3) and (7.1}. From {7.3) we have
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T T
E r U(L,E (1)dt ~ E rc?;@&
T
2B (U7, ) =y, Ny e
T

=B [ [0(te,() - yp¢ttley(at 2 0.

Therefore, <, is optimal. Proposition 7.2 guarantees the existence of wm.

8. Characterization of Equilibrium

The issue now is how to choose the market coefficients 1(:), b(-) and o(+) 6o
that when, for each n, ¢, is given by (7.5) and 7, is the corresponding
portfolio process whose exislence is guaranteed by Proposition 7.2, relations (6.1)

- 3.3. are satisfied. It turns out that the only relevant aspect of r{-), b(-) and
o(-) is the process ¢ they lead to, as shown by the following proposition.

B.1 Proposition
Let t(-), b(-) and o(-), as described in Section 4, be given, and suppose that the
equilibrium conditions (6.1) — (6.3) are satisfied. Then

(8.1) eft) = m_ r?wuﬁé, 0<tL<T,
n==

where y  is defined by (7.4) and ¢ is given by (4.7). Conversely, suppose there

exist 1(-), b(-) and o) whose corresponding process ¢ satisfies (8.1); then
the equilibrium conditions (6.1) — (6.3) are also satisfied,
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Proof: where H(t,-; A) is the inverse of the strictly decreasing function I(t,; A) from

(0,0) onto itself, defined by

For the first assertion, recall that for n = 1,...,N, the optimal consumption
processes are given by (7.5). The spot market clearing condition (6.1) leads to
N
(8.1). . o _ (93) i(th A) 2 B (e, R,
For the converse assertion, note that for the ¢ in question, the optimal n=] B yﬂ

, nc__m::_c:osc_.onmmmmm ¢, 1 ¢n <N, are again given by (7.5). Denote by D,

In order to examine the differentiability of U(-,-; A), we first note that

E:. T, and N: the corresponding processes constructed in Seclion 7, which ;
for each n, I, isjointly C" because of condition (ii} of Section 3.1 and the

N
i ED_ = X = .8, . h D = - .
wow salisfy ED| =0 and X (T)=0 as. From (8.1) we have anU__ 0, Implicit Function Theorem. Differentiating the equation Ut L(ty)) =y .
. N . N . 2
a.s. I{ follows then that mugzﬁv = mpx._e =0,0¢t<T,as Thus (6.1) twice with respect to y, one sees that M.u. I exists and is continuous
: n= n= % :
N .
d (6.3) are satisfied. Furth dratic variation of C N 8 ay 8o . 2
and (6.3) ar .M.w isfied. Furthermore, the quadratic variation o nm—_s: on [0,T], onsequently, for each A € (0,0)", gt -5 A), % I(+,+; A) and MI%M I(-,; A)
* N exist and are continuous. Because I(t,H(t.c:A):A) = imi
is equal to ._‘ £(s) fle (s) & a=3__m%. s0 this quantity is zero. Because o 8. 2 * Mw (H(teiA)iA) = ¢ we can similarly
| 0 n=1 conclude that at I, gc H and — H exist and are continuous. Finally
is nonsingular, (6.2) must hold. a dc
9. The Re tative Agent 5 1
. The Representative Agen Ulkei A) = B U, (6 (0 sk Bt aY),

For every A = (A;,...,Ay) € ﬁo_avz. let us introduce the function
and differentiation with respect to ¢ yields
N
{(9.1) U(t,c;A) = max E AU (e )i (tc) € [0,T] x (0,0),
nHwo_ ey nzwo n=1
eyt tey=c

Ur(t,c; A) & %m U(t,c; A) = Ht,c; A) %mz,_m?a A); A) = H{t,c,A).

Therefore, Uj(t,c; A) 4 %W Ult,e; A), U” (t,c; A) 2 mw U(t,c; A) and
which inherits the basic properties of the individual utility functions cs_ as set U (e 4 A mu de

"t M) 2 U(t,c; A) exist i x
out below. It is easily checked that the maximization in (9.1) is achieved by 5 4) Mu (b5 1) and ace continuous on .1} (0:2)

(9.2) e, =1t .mm H(t.c; A)),
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We have shown that I(t,-; A) defined by (9.3) is the inverse of
U’(t,+; A), and so U(+,; A) satisfies conditions (i) — (iii) of Section 3. We call
U(-,; A) the utility function of a representative agent who assigns weights

»_.....»2 to the individual agents in the economy.

Making the identification A = (A .....yzv ﬁ R zv. equations (7.4) -

(7.5), (8.1) may be rewritten as

{9.4) C(t)=U’(t,e(t); A}, 0<tET,

T T
s.si U (1, e(t); >z=:;1c (t,€(t);A))dt = % U/ (te(t); Ae (D)dt,

0
<N,
and the search for equilibrium is equivalent to the search for a vector A € (0.0}
which salisfies (9.5). Once such a vector is found, the corresponding equilibrium
¢ is given by (9.4), and the optimal consumption processes of the individual
ageats by

(9.6) ¢u(tiA) 2 T (4 - U/ (Le(t); A)), 0t ST, 1¢ngN.
n

Note that ¢ given by (9.4) satisfies (4.8) because of the assumption k < €(t) (K
and the continuity of U‘(-,:; A).

19. The Equilibtium Financial Market

In this section, we assume the existence of A ¢ Ao_auz satisfying (9.5}, and we

draw conclusions about the equilibrium financial market. The existence of such a

A is established by explicit computation for certain special cases in Section 11
and in full generality by a mxma point argument in Section 12. It is apparent from
(9.1) that for any A € (0, ..V and >0,
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(10.1) Ut mA) = n U(h,e; A), ¥ (4,¢) € [0,T]  (0,0),

so a multiplicative constant on A cancels out of (9.5) and (9.6). Therefore; the
existence of any solution A to (9.5) guarantees the existence of a one—parameter
family of solutions, In Section 11 and under the additional assumption (iv) in
Section 12, the solution to (9.5) is shown to be unique up to a positive
multiplicative constant. It follows then from (9.6) and (10.1) that the

equilibrium optimal consumption processes for the individual agents are uniquely
determined.

10.1 Proposition

‘Assume that there exists A € E.avz satisfying (9.5), and that this A is unique

up to a positive multiplicative constant. Then an interest rate process 1{-),a

mean rate of return vector process b(-), and a volatility matrix process a{-)
lead to equilibrium if and only if

(102)  x(t) =~y (U4 (te(e); A) + (1) U7 (1,(t); A)
+ 5 ho(ON? U (t,e(t); A,

(10.3) (1) & (o(£)) M b(t) ~ 2(t) 1] =

where A is determined by Py(0) - U’(0,¢(0); A) =

Proof:
From (4.5), (4.7), we have

(10.4)  ¢(t) = u.s 1(s)¢(s)ds — .s ¢(s) 0 (s)AW(s), 0<t<T.
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Equilibrium occurs if and only if (9.4) holds, and recalling (2.2), we see that (9.4)

is equivalent to
(10.5) () = U*(0,e(0); A)+ .m Yels)U~ (s,€(s); A)

t *
+ 5 Hle(E)IPU" 7 (s,e(s); Alds + [ U” (s,e(s); A) ¢ (s)AW(s), 0€tgT
L]

Identifying coefficlents in (10.4) and (10.5}, we obtain U’(0,6(0); A) = viaa_ ,

(10.2) and (10.3). -
11, Examples

We cite a few special cases in which the equilibrium can be computed explicitly.

1i.1 Example. dm?.& = mlw&ln_nq. Y (t,c) € [0,T] x (0,0}, n € {1,...,N}, where

a€R and y<1,7#0. N
In this case, the vecior A = Qw..:.»zu € (0,0) with

1 T T
A= g _%:am_:r,.rf&_ E rmuaé:&_L

is the unique solution to (9.5) subject to the normalizing condition .
1
2 —
E Aoy The optimal consumption processes are maE = »j e(t), and

the equilibrium financial market satisfies

(1) = o+ (P e -% (%, 0ct) = L ot
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The normalization of A we have adopted corresponds to Py(0) = e~ ().

11.2 Example. U_(t,c) = 1&5@ ¢ V(t,c) € [0,T] = (0,0), m € {1,...,N}, where
a€R. .

In this case, we obiain the formulas of Example 11.1 but with v=10. In
particular,

T e (1)
@ _E[ T Bd, a4,
1—g T 70
A=
n - T m__:vn —o

ze] o T *=5

: N
provides the unique solution to (9.5) subject to the normalizing condition T Ay

’ n=|]

= 1. The optimal consumption processes are mus = A e(t), and the

equilibrium financial market satisfies

1 1 2 1
t) = wt) — t t) = .
t(t) @+ gy ulb) mua_i W &) qo At o
If agents have different utility functions, it is not in general possible to
compute the solution of the equilibrium problem in closed form. A special case in
which such computations can be carried out arises when N = 2, Ui(e) =logc

and Uy(c) = fc. Another special case is the following.

11.3 Example. Constant aggregate endowment (1) = ¢ > 0 and time—
independent utility functions.

In this case, the optimal consumption rates are constant:

e deaer,



w

266 I. Karatzas, P. Lakner, J. Lehoczky, S. Shreve

T
cth=e, 4 %.m _.omnﬁv&. and every solution of (9.5) is a multiple of
A={ 1 . 1 ). Constant aggregate endowment implies that =30,
Uie)) Ugyley)

L]

p = 0, 80 the equilibrium market must satisfy r= 0 and b =0, The displayed A
is normalized to correspond to Py(t) = P,(0) = 1. Note, however, that in this

model the individual agent endowments can be random and time—varying, in
which case agents must trade with one another to finance their constant rates of
consumption.

12. Exigtence and Uniquenesa of Equilibrium

In this section we establish the major results of the paper: existence of an
equilibrium financial market and its uniqueness in the sense of Proposition 10.1.
The proof of existence is based on the Knaster—Kuratowski—-Mazurkiewicz
(KKM) Theorem [2, pg. 26] and requires onty assumptions {i)—(iii) of Section 3,
while our uniqueness proof requires the additional condition {iv). Example 11.1
shows, however, that condition (iv) is not necessary for uniqueness.

We begin with some notation adapted from [2]. Let < yerny x?u denote

the elementary vectors of wz. and let 4 = {1, ..., N}. Suppose A C .#, then-

&, denotes the convex hull of the elementary vectors ?c yie Al ie, o A

¢ aplhy20vi and 3 4=1), and wedefine &7, t = (3 200,

i€A ieA iea !
»m >0,Viand m>»m =1}. To set the stage for the next theorem, we define for
i€
A€ 7N
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il

- 1-E —o Ur(t,e(t); Ae (t)de, if A 0,

n
andlet F_ ={Aeo, ; R (A)20}.

12.1 Theorem
Under conditions (i) — (iii} of Section 3, there exists a vector A € a\.\_._\. satisfying
(9.5).

Proof:

With A= ;w,.:,yzu_ we have from the dominated convergence theorem that

H_
! :? mnﬁaunm ? cé_éém._:zzpe_a_s_e_&s:_,%
n

smoothness conditions on U, proves that watc is continuous on o "y and

N
F  isclosed. From (9.3} we have m_ R (A)=0 forevery A€o, . Suppose
n=
*
there werea A in ¢/, whichwasnotin U F_. This would imply
A nes M

N

*
=PM;_ w.__; VAo_mnoRHmEn:oP ocsmmazmnzw.e\ 'y C :m&\ m.:. Eommmmnmam:w_

R *
ifwelet AcC . andconsider A € o A & similar argument shows that

* . * * .
>m am> F,- Indeed, if A ¢ smb Fothen R (A) <0 forall ne A, again

N *
contradicting ¥ R_(A } = 0. By the KKM Theorem [2, page 26, n F_is
n=1 nes

ry

nonempty. Choose A € :\ F . Then R =Q.S =0,1¢n < N, for otherwise we
ne
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=1 A, 80 M isasolution of (9.5)and A<M, If A =M, then & isindeed a

positive multiple of A. Therefore, it suffices to rule out the case A < M.
Suppose that A < M. From (12.2) we obtain U'({t, «t); A)

< U’(t,e(t); M), ¥ (t,w) € [0,T] « 2. Choose an integer n € {1,...,N} satisfying

» a» {and hence also \, =g, }. We have

N . o R
would have E R _(A) > 0, a contradiction. Thus {9.5) is satisfied by A.
n=1

Finally, A n >0 orelse R TC would be strictly negative. _ ]

As observed following (10.1), once a vector in & &.w satisfying (9.5) is

obtained, any positive multiple of this vector also satisfies (8.5). We next turn
our attention to the question of unigueness. Condition (iv) of Section 3 is
equivalent to the assumption

T . T
E —o u._mc\:_m:vm Ae ()t < m‘— ma (1 e(t); M)e (t)dt

lp i i i i -
(12.1) #y(ty) Sy I(Ly) is nonincreasing in y E % et uﬂac {t,e(t); A))dt 2 i Pt 3 c (t,e(t); M))dt,
This leads to the following uniqueness result.

where ¢ is given by C.o..:. Taking the difference of these two relations, we

12.2 Theorem obtain ._Hlm QCV m o(M). But A and M both solve (9.5), s0 R alA) =

Assume conditions (i)—(iv) of Section 3. Then the solution A € (0, w)" of (9.5)
is unique up to multiplication by a positive constant. wnﬁé =0, anda Sur.w&n:ou is obtained,
Proof:

13. Variations of the Model
We introduce the usual partial order in ao.avzn A <M if and only if »u $hy

VYne{l,. N} Wewrte A<M if A<M and A# M. In particular, notice

In addition to the financial assets of Section 4, one can allow the agents to trade
in (9.3) the implications

in capital assets, and one can associate to each one of these assets a dividend

process QEA.V, 1 ¢ m ¢ M, denominated in units of the commodity. In contrast

(12.2) A < M=1(t,h; A) < I(t,h; M) V(t,h) € [0,T] x (0,). to financial assets, which are essentially contracts between the agents, capital
(<) (<) assets have to maintain a positive net supply. One can show that the prices

8.,(+) of these new assets have to be given as
For A m M we have from (12.2) that c.c._n?y M) mcu. (t,&(t); M). Let A m
n

and A be two solutions of (9.5) and define a max -—— and M = ?w. .:.ruv

T
-(13.1) (Vs () =E _—, ()6 (8)ds | o<t

I
i
3
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in order to prevent "arbitrage opportunities". Once the defllater ¢ has been

(1

determined by equilibrium considerations, relation (13.1) allows the endogenous
computation of the capital asset prices §_(-), 1 ¢ m ¢ M. The details appearin ;
[15). 2]

Consider now an economy with deferministic endowments and no financial X8
market except for a bond with deterministic interest rate. Agents can consurme but 3]

cannot borrow or invest, are bound simply by the budget constraints
T ST 4]
.—@E&n:@% < .—omﬁmumm?v%“ 1¢ ng N,

[5]

(the deterministic analogue of (7.1)), and try to maximize their total utilities
T

‘_. U, (t,c (t}}dt from consumption. Equilibrium amounts to the requirements
0

[6]

(6.1), (6.3) alone. In this simple model the results of sections 7—12 are valid,
|

(8]

the Knaster—Kuratowski—Mazurkiewicz Lemma. This permitted a simplification

and strengihening of our original existence proof.
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