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Abstract

It holds in great generality that a plan is optimal for a dynamic pro-
gramming problem, if and only if it is “thrifty” and “equalizing.” An
alternative characterization of an optimal plan that applies in many eco-
nomic models is that the plan must satisfy an appropriate Euler equation
and a transversality condition. Here we explore the connections between
these two characterizations.

1 Introduction

It was shown by Dubins and Savage (1965) that necessary and sufficient condi-
tions for a strategy to be optimal for a gambling problem are that the strategy
be “thrifty” and “equalizing.” These conditions were later adapted for dynamic
programming by Blackwell (1970), Hordijk (1974), Reider (1976) and Blume et
al. (1982), among others. For a special class of dynamic programming problems
important in economic models, it has been shown that optimality is equivalent
to the satisfaction of an “Euler equation” and a “transversality condition”; see
Stokey and Lucas (1989) for a discussion and references. Our main objective
here is to understand the relationship between these two characterizations of
optimality. One corollary of our approach is a simple proof for the necessity
of the transversality condition, which has been considered a difficult problem.
(See Stokey and Lucas, page 102, and Kamihigashi (2005).)

The notions of “thrifty” and “equalizing” seem not to be widely known to
dynamic programmers working in economics, although they have proved to be
quite useful in other contexts. We hope that this note will help spread the word
about them.

Section 2 is a brief exposition of the thrifty-and-equalizing theory for a fairly
general class of dynamic programming models. Section 3 introduces the Euler
equation and the transversality condition, and then explains their relationship
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to the thrifty and equalizing conditions. In Section 4 we take a brief look at
“envelope inequalities” and “Euler inequalities” for one-dimensional problems
without imposing smoothness or interiority conditions, and obtain the neces-
sity of an appropriate “transversality condition” in this context. There is an
Appendix on measure theory in dynamic programming.

2 Thrifty and equalizing

Consider a dynamic programming problem (S, A, q, r, β) where S is a nonempty
set of states, the mapping A assigns to each state s ∈ S a nonempty set A(s) of
actions available at s, the law of motion q associates to each pair s ∈ S, a ∈ A(s)
a probability distribution q(· |s, a) on S, the daily reward r(· , ·) is a nonnegative
function defined on pairs (s, a) with s ∈ S and a ∈ A(s), and β ∈ (0, 1) is
a discount factor. Play begins in some state s = s1, you choose an action
a1 ∈ A(s1), receive a reward of r(s1, a1), and the system moves to the next
state s2 which is an S−valued random variable with distribution q(· |s1, a1).
This process is iterated, yielding a random sequence

(s1, a1), (s2, a2), . . . (2.1)

of states and actions, along with a total discounted reward

∞∑
n=1

βn−1r(sn, an).

A plan is a sequence π = (π1, π2, . . .) , where πn tells you how to choose the nth

action an as a function πn(hn) of the previous history hn = (s1, a1, · · · , sn−1,
an−1, sn). A plan π, together with an initial state s1 = s, determine the dis-
tribution Pπ,s of the random sequence in (2.1) as well as the expected total
discounted reward, which we write as

Rπ(s) := Eπ,s

( ∞∑
n=1

βn−1r(sn, an)

)
.

The optimal reward or value at s is

V (s) := sup
π

Rπ(s).

Remark 1. Measure theory. If the state space S is uncountable, then nontrivial
measure-theoretic questions arise in the theory. For example, it can happen that
the value function V (·) is not Borel measurable, even when all the primitives
of the problem are Borel in an appropriate sense (Blackwell, 1965). To ease
the exposition, we defer further discussion of these difficulties to the Appendix,
where it will be explained how they can be resolved. For now we ask the reader
to suspend disbelief and assume that the functions which arise in this section
are measurable and the expectations are well-defined. ¤
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We shall assume, for simplicity, that

V (s) < ∞ , ∀ s ∈ S .

A key tool is the Bellman equation

V (s) = sup
a∈A(s)

(
r(s, a) + β

∫

S

V (σ) q(dσ|s, a)
)

,

which holds in great generality and is also known as the “optimality equation”
(see, for example, section 9.4 of Bertsekas and Shreve, 1978). For a ∈ A(s) and
a measurable function x : S 7→ R+, define

(Tax)(s) := r(s, a) + β

∫

S

x(σ) q(dσ|s, a).

The Bellman equation can now be written in the form

V (s) = sup
a∈A(s)

[
(TaV )(s)

]
, s ∈ S .

Definition 1. An action a ∈ A(s) conserves V (·) at s ∈ S, if (TaV )(s) = V (s).

Thus an action a ∈ A(s) conserves V (·) at s ∈ S, if and only if

a ∈ arg maxA(s)

{
r(s, ·) + β

∫

S

V (σ) q(dσ|s, · )
}

.

Notice also that (TaV )(s) ≤ V (s) for all s and a ∈ A(s).

Let us fix now an initial state s = s1 along with a plan π, and consider the
random sequences {Mn}n≥1 and {Qn}n≥1, where

Qn :=
n∑

k=1

βk−1r(sk, ak) , (2.2)

and
M1 := V (s1), Mn+1 := Qn + βnV (sn+1), n ≥ 1. (2.3)

Let Fn be the σ−field generated by the history hn = (s1, a1, . . . , sn−1, an−1, sn).

Lemma 1. For every plan π and initial state s, the adapted sequences {Mn,Fn}n≥1

and {βn−1V (sn),Fn}n≥1 are nonnegative supermartingales under Pπ,s.

Proof. Set Q0 = 0. Then for any n ≥ 1 and any given history hn = (s1, a1, . . . ,
sn−1, an−1, sn), and letting an = πn(hn), we have

Mn+1 = Qn−1 + βn−1 · [ r(sn, an) + βV (sn+1)
]
,

Eπ,s[Mn+1|Fn] = Qn−1+βn−1·(TanV )(sn) ≤ Qn−1+βn−1·V (sn) = Mn (2.4)

almost surely under Pπ,s . Thus {Mn,Fn}n≥1 is a Pπ,s−supermartingale.
The sequence {Qn}n≥1 is nondecreasing, since the daily reward function

r(·, ·) is nonnegative. From this fact and (2.3), it follows easily that {βn−1V (sn),Fn}n≥1

is also a Pπ,s−supermartingale. All of these sequences are clearly nonnegative,
because r(·, ·) is.
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It follows from the lemma that the sequences {Mn}n≥1 and {βn−1V (sn)}n≥1

converge almost surely and are non-increasing in expectation, under Pπ,s.
Define

Λπ(s) := lim
n
Eπ,s(Mn).

Then

V (s) = Eπ,s(M1) ≥ lim
n
Eπ,s(Mn+1) = Λπ(s)

= lim
n

{
Eπ,s(Qn) + βn Eπ,s[V (sn+1)]

}

= Rπ(s) + lim
n

{
βn Eπ,s[V (sn+1)]

}

≥ Rπ(s) .

(2.5)

Definition 2. The plan π is called thrifty at s ∈ S, if V (s) = Λπ(s) ; π is
called equalizing at s ∈ S, if Λπ(s) = Rπ(s).

Here is an obvious, but useful, consequence of the string of inequalities in
(2.5).

Theorem 2. The plan π is optimal at s ∈ S, if and only if π is both thrifty
and equalizing at s.

The next two results give simple characterizations of thrifty and equalizing
plans, respectively.

Theorem 3. For a given plan π and initial state s ∈ S, the following are
equivalent:

(a) the plan π is thrifty at s;

(b) the sequence
{
Mn,Fn

}
n≥1

is a martingale under Pπ,s ; and

(c) for all n ≥ 1, we have Pπ,s
(
an conserves V (·) at sn

)
= 1.

Proof. We write E[ · ] for the expectation operator Eπ,s[ · ] below.
Assume (a). Then, since E[Mn] is non-increasing in n, we have E[Mn+1] =

E[Mn] = E[M1] = V (s) for all n ≥ 1. Hence, equality must hold in (2.4) with
probability one, and (b) follows.

Now assume (b). Then equality holds Pπ,s−almost surely in (2.4), and thus
(TanV )(sn) = V (sn) almost surely, so (c) follows.

Finally, assume (c). Taking expectations in (2.4), we see that E[Mn+1] =
E[Mn] = · · · = E[M1] = V (s) and, consequently Λπ(s) = V (s), so (a) follows.

The next result is obvious from (2.5).

Theorem 4. A given plan π is equalizing at s ∈ S, if and only if we have
limn

(
βn Eπ,s[V (sn+1)]

)
= 0.
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Paraphrasing Blackwell (1970), Theorem 3 says that a plan is thrifty if,
with probability one, it makes no “immediate, irremediable mistakes” along
any history; whereas Theorem 4 says that a plan is equalizing, if “it is certain
to force the system into states where little further income can be anticipated.”

We conclude this section with a brief look at the problem on a finite horizon.
For n = 1, 2, . . . and s ∈ S, define the optimal n-day return as

Vn(s) := sup
π
Eπ,s

(
n∑

k=1

βk−1r(sk, ak)

)
. (2.6)

The following result records the well-known backward induction algorithm and
the fact that the optimal n-day return converges to that for the infinite-horizon
problem. For a proof, see section 9.5 of Bertsekas and Shreve (1978).

Theorem 5. Let V0(·) be identically zero. Then for all s ∈ S and n = 1, 2, . . .,

(a) Vn+1(s) = supa∈A(s)(TaVn)(s), and

(b) V (s) = limn Vn(s).

3 The Euler and transversality conditions

We now specialize to problems with concave daily reward functions and convex
action sets as in Stokey and Lucas (1989). We shall use the notation and many
of the assumptions of Stokey and Lucas and, for the sake of brevity, will refer
to their book as just S&L.

As in S&L, we assume that the state space S is a product S = X×Z , with
a state s = (x, z) consisting of an “endogenous state” x ∈ X and an “exogenous
shock” z ∈ Z. The sets X and Z are assumed to be nonempty convex Borel
subsets of the Euclidean spaces Rl and Rk, respectively.

For each s = (x, z) , the action set A(s) = Γ(x, z) is a nonempty Borel subset
of X and is convex in x : that is, if y ∈ Γ(x, z), y′ ∈ Γ(x′, z), and 0 ≤ θ ≤ 1,
then we have θy + (1 − θ)y′ ∈ Γ(θx + (1 − θ)x′, z) , as in Assumption 9.11 of
S&L. The daily reward function is now of the form

r(s, y) = F (x, y, z) .

Here F : X ×X × Z → [0,∞) is a given, Borel measurable “reward” function,
concave in the pair (x, y) for every given z ∈ Z (Assumption 9.10 of S&L).

The law of motion is of the form

s = (x, z) −→ (y, z) ,

where a = y ∈ Γ(x, z) and the distribution of the Z−valued random variable z
is given by a Markov kernel q(dξ|z) . Note that the action y is the next value
of the endogenous state: yn ≡ xn+1 for n ≥ 1. The Bellman equation becomes

V (x, z) = sup
y∈Γ(x,z)

(
F (x, y, z) + β

∫

Z

V (y, ξ) q(dξ|z)
)

. (3.1)
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(There is a technical oversight in S&L, pages 246 and 273, where it is stated
that, under these conditions, there may not be a Bellman equation because of
measurability issues; see Remark 1 above, as well as the Appendix.) Let

ψ(x, y, z) := F (x, y, z) + β

∫

Z

V (y, ξ) q(dξ|z) (3.2)

be the function occuring inside the supremum in (3.1).

Lemma 6. The value function V (y, z) is concave in y, and, hence, so is
ψ(x, y, z). The function ψ(x, y, z) is strictly concave in y, if F (x, y, z) is.

Proof. Let V0(·, ·) be identically zero and, for n ≥ 1, let Vn(·, ·) be the optimal
n-day return function as in (2.6) with s = (x, z). Then, by Theorem 5(a),

Vn+1(x, z) = sup
y∈Γ(x,z)

(
F (x, y, z) + β

∫

Z

Vn(y, ξ) q(dξ|z)
)

.

If Vn(· , z) is concave, then Vn+1(· , z) is the supremum of a concave function
over a convex set and, by a well-known result, is also concave. By induction,
we conclude that all of the functions Vn(· , z) are concave. By Theorem 5(b),
the function V (· , z) is the pointwise limit of concave functions and is therefore
concave as well. The assertions about the function ψ of (3.2) are now easy to
check.

The usual treatment of the Euler and transversality conditions assumes that
the plans in question are at interior states and choose interior actions. To be
precise, we say that the state s = (x, z) is interior, if x is in the interior of the
set X; and we say that the action y at s is interior, if y belongs to the interior
of the set Γ(x, z). A plan π is called interior at s = (x, z) if s is interior and,
with probability one under Pπ,s, only interior states are visited and only interior
actions are taken.

We assume for the remainder of this section that the daily reward function
F (x, y, z) is continuous on X ×X ×Z, and continuously differentiable in x and
y for (x, y) in the interior of X × X. We shall use the notation DiF (x, y, z)
for the partial derivative of F at (x, y, z) with respect to the ith coördinate, for
i = 1, 2, . . . , 2l. Let DxF be the vector (D1F,D2F, . . . , DlF ) consisting of the
partial derivatives of F with respect to its first l arguments, and let DyF be
the vector (Dl+1F, Dl+2F, . . . , D2lF ) of the next l partial derivatives of F . We
shall use similar notation for the partial derivatives of other functions, such as
V (x, z).

We shall assume (cf. Assumptions 9.8 and 9.9 in S&L) that the action sets
Γ(x, z) and the daily reward function F (x, y, z) are nondecreasing in x; that is,

Γ(x, z) ⊆ Γ(x′, z) and F (x, y, z) ≤ F (x′, y, z) whenever x ≤ x′. (3.3)

Lemma 7. (i) The value function V (x, z) is nondecreasing in x.
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(ii) If the partial derivatives DxV (x, ξ) exist for q(· |z)−almost all ξ ∈ Z , then

Dx

∫

Z

V (x, ξ) q(dξ|z) =
∫

Z

DxV (x, ξ) q(dξ|z) .

Proof. To verify (i), let x ≤ x′ and consider any plan π for a player who begins
at state (x, z). By (3.3) a second player at (x′, z) can choose the same initial
action y and receive an initial daily reward at least as large as that for the first
player. Both players proceed to the state (y, z), where z has distribution q(·|z).
Thus the second player can earn the same rewards as the first thereafter.

For part (ii), consider the quotients

1
ε
·
(
V (x1, . . . , xi + ε, . . . , xl, z)− V (x1, . . . , xi, . . . , xl, z)

)
, for ε > 0 .

By part (i), these quotients are nonnegative; and by the concavity of V (· , z),
they are nondecreasing as ε ↓ 0 (see Roberts and Varberg (1973), pages 4 and 5).
The desired equality now follows from the monotone convergence theorem.

Theorem 8. Suppose that π is an interior plan at s = (x, z). Then π is thrifty
at s, if and only if the following hold with probability one under Pπ,s, for all
n = 1, 2, . . . :

(a) the Envelope equation:

DxV (xn, zn) = DxF (xn, yn, zn),

(b) the Euler equation:

DyF (xn, yn, zn) + β

∫

Z

DxF (yn, yn+1, ξ) q(dξ|zn) = 0 .

Proof. By Theorem 3 the actions yn conserve V (·, ·) at sn with probability one.
Hence yn maximizes ψ(xn, · , zn) over Γ(xn, zn) on an event of probability one.
The envelope equation can now be proved for outcomes in this event exactly as
in the proof of Theorem 9.10, page 267, of S&L; namely, using the concavity of
ψ(xn, · , zn) from Lemma 6, and the fact that DxV (xn, zn) = Dxψ(xn, yn, zn)
from Theorem 4.10, page 84 of S&L. The Euler equation follows by setting
Dyψ(xn, y, zn) = 0 at y = yn , and recalling the envelope equation and part (ii)
of Lemma 7. (Note that (y, ξ) 7→ DxV (y, ξ) is continuous by (a).)

To prove the converse, assume that (a) and (b) hold. We need to show that,
with Pπ,s−probability one, yn maximizes the concave function

y 7−→ ψ(xn, y, zn) = F (xn, y, zn) + β

∫

Z

V (y, ξ) q(dξ|zn)

on the set Γ(xn, zn), for each n ∈ N. But by (a), (b) and Lemma 7(ii), we obtain

Dyψ(xn, yn, zn) = DyF (xn, yn, zn) + β

∫

Z

DxV (yn, ξ) q(dξ|zn)

= DyF (xn, yn, zn) + β

∫

Z

DxF (yn, yn+1, ξ) q(dξ|zn) = 0

with Pπ,s−probability one.
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To prove the necessity of the customary transversality condition for an op-
timal interior plan, we shall make use of both its thriftiness and equalization
properties.

Theorem 9. Suppose the plan π is optimal and interior at s = (x, z), and that
the reward function satisfies

x ·DxF (x, y, z) ≥ 0 (3.4)

for all interior states (x, z) and interior actions y ∈ Γ(x, z) . Then π satisfies
(c) the Transversality Condition:

lim
n

(
βn Eπ,s

[
xn ·DxF (xn, yn, zn)

] )
= 0 . (3.5)

(The dot · in (3.4) and (3.5) signifies the usual inner product in Rl.)

Proof. Since π is optimal, it is thrifty by Theorem 2 and thus, with Pπ,s−probability
one, it satisfies the envelope equation; therefore, for all n = 1, 2, · · · , we have

V (xn, zn) ≥ V (xn, zn)− V (0, zn)

≥ xn ·DxV (xn, zn) = xn ·DxF (xn, yn, zn) ≥ 0 . (3.6)

Here, the first inequality holds because V (· , ·) is nonnegative; the second in-
equality follows from a general property of concave functions (Theorem A, Chap-
ter IV, page 98 in Roberts and Varberg (1973)); the equality is by the envelope
equation (a) in Theorem 7; and the last inequality is from condition (3.4).

Since π is optimal, it is also equalizing by Theorem 2. Now take expectations
under Pπ,s in (3.6), and use Theorem 4.

Notice that DxF (x, y, z) ≥ 0 since, by (3.3), F (x, y, z) is nondecreasing in
x. Thus assumption (3.4) in the statement of Theorem 9 is automatically true
if all the states x ∈ X lie in the nonnegative orthant of Rl, as is often true in
economic applications.

The next result is familiar to dynamic programmers working in economics.

Theorem 10. Suppose the plan π is interior at s = (x, z), and that the as-
sumption (3.4) holds. Then π is optimal, if and only if it satisfies both the
Euler equation with Pπ,s−probability one, and the transversality condition.

Proof. If π is optimal, then it is thrifty by Theorem 2; if in addition it is interior
at s = (x, z), it satisfies also the Euler equations with Pπ,s−probability one, by
Theorem 8. The transversality condition holds by Theorem 9.

As stated in S&L, page 281, it is straightforward to adapt their proof for the
non-stochastic case (Theorem 4.15, page 98) that the two conditions of Euler
and transversality imply optimality.

By Theorems 2 and 9, the thrifty and equalizing conditions are equivalent
to the Euler equations and the transversality condition for the special problems
of this section when the plan π is interior.
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4 Envelope and Euler inequalities

In the one-dimensional case l = 1 it is possible to replace the Envelope Equation
and the Euler Equation of Theorem 8 with appropriate inequalities, thereby
dispensing with interiority assumptions on the part of the plan π.

Let us illustrate this possibility by taking

X = [0,∞) , Γ(x, z) =
[
0, γ(x, z)

]
,

where γ : [0,∞)×Z → [0,∞) is continuous, concave, and non-decreasing in the
first argument. In particular, we have Γ(x, z) ⊆ Γ(x+ε, z) for ε > 0 and every
(x, z) ∈ [0,∞) × Z . We also assume that F (·, y, z) is concave, nondecreasing,
and nonnegative for all (x, z), but we shall no longer assume that this function
is differentiable.

We shall denote by D±
x F (x0, y, z) and D±

x V (x0, z) the left- and right-
derivatives at x = x0 of the concave functions F (· , y, z) and V (· , z) , respec-
tively.

Theorem 11. Envelope Inequalities: If the plan π is thrifty at s = (x1, z1)
then, with probability one under Pπ,s, we have for all n = 1, 2, . . . the properties

D+
x V (xn, zn) ≥ D+

x F (xn, yn, zn) , (4.1)

D−
x V (xn, zn) ≤ D−

x F (xn, yn, zn) on {yn < γ(xn, zn)} . (4.2)

Proof. By Theorem 3 the actions yn conserve V (· , ·) at (xn, zn) on an event of
Pπ,s−probability one. Consider the function

x 7−→ W (x) := F (x, yn, zn) + β

∫

Z

V (yn, ξ) q(dξ|zn) .

Now W (xn) = V (xn, zn) when yn conserves V (·, ·) at (xn, zn). Furthermore,
yn ∈ Γ(xn, zn) ⊆ Γ(xn+ε, zn) holds for ε > 0 , hence W (xn+ε) ≤ V (xn+ε, zn) .
The inequality (4.1) follows.

As for the second inequality, it follows from the continuity of the function
γ(· , zn) that yn ∈ Γ(xn − ε, zn) for ε > 0 sufficiently small. Hence, for such ε,
W (xn − ε) ≤ V (xn − ε, zn) . The inequality (4.2) follows.

Theorem 12. Euler Inequalities: If the plan π is thrifty at s = (x1, z1) then,
with probability one under Pπ,s, we have for all n = 1, 2, . . . the inequalities

0 ≥ D+
y F (xn, yn, zn) + β

∫

Z

D+
x F (yn, yn+1, ξ) q(dξ|zn) on {yn < γ(xn, zn)}

(4.3)
and

0 ≤ D−
y F (xn, yn, zn) + β

∫

Z

D−
x F (yn, yn+1, ξ) q(dξ|zn) on {yn > 0} . (4.4)
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Proof. By Theorem 3, we have with probability one that the action yn conserves
V (·, ·) at each state sn = (xn, zn), n = 1, 2, . . . . To wit, the concave function
y 7→ ψ(xn, y, zn) of (3.2) is maximized over Γ(xn, zn) at yn. This implies

0 ≥ D+
y ψ(xn, yn, zn) provided yn < γ(xn, zn) (4.5)

as well as
0 ≤ D−

y ψ(xn, yn, zn) provided yn > 0. (4.6)

For each (y, z) ∈ [0,∞)× Z , the quotients

1
ε
·
(
V (y + ε, z)− V (y, z)

)
, ε > 0

are nonnegative, and increase as ε ↓ 0 . This is because the function F (·, y, z) is
increasing and concave, which implies that V (·, z) is also increasing and concave.
Thus, by monotone convergence, we obtain

D+
y

∫

Z

V (y, ξ) q(dξ|z) =
∫

Z

D+
y V (y, z) q(dξ|z).

Similar reasoning gives the same formula for left-derivatives at (y, z) ∈ (0,∞).
An application of the Envelope Inequality (4.1) to (4.5) now yields

0 ≥ D+
y ψ(xn, yn, zn) = D+

y F (xn, yn, zn) + β

∫

Z

D+
y V (yn, ξ) q(dξ|zn)

≥ D+
y F (xn, yn, zn) + β

∫

Z

D+
x F (yn, yn+1, ξ) q(dξ|zn)

on the event {yn < γ(xn, zn)}. This proves (4.3); the inequality (4.4) is proved
similarly.

It is now possible, in the special setting of this section, to show that a
transversality condition is necessary for a plan to be optimal, even without
interiority or smoothness of the daily reward.

Theorem 13. Transversality Condition: If π is optimal at s = (x1, z1),
then

lim
n

(
βn Eπ,s[ xn ·D+

x F (xn, yn, zn) ]
)

= 0 . (4.7)

Proof. We calculate as follows:

V (xn, zn) ≥ V (xn, zn)− V (0, zn) =
∫ xn

0

D+
x V (x, zn) dx

≥ xn ·D+
x V (xn, zn) ≥ xn ·D+

x F (xn, yn, zn) ≥ 0 .

The equality above follows from a general fact about concave functions (see
problem A, page 13 in Roberts and Varberg (1973)); the second inequality
holds because D+

x V (x, zn) is nonincreasing in x; the third inequality is by the
Envelope inequality (4.1), which applies because the optimality of π implies it is
thrifty by Theorem 2; the final inequality holds because xn ≥ 0 and F (·, yn, zn)
is nondecreasing. Since π is optimal, it is equalizing by Theorem 2. Now apply
Theorem 4.

10



We leave open the question of whether there is a converse in the context
of this section. That is, if a plan π satisfies the Transversality Condition (4.7)
and the Euler Inequalities (4.3) and (4.4) hold with probability one, is π then
necessarily optimal?

5 Appendix on Measurability

Our object here is to describe a fairly general class of dynamic programming
problems for which the optimal reward function is measurable in an appropriate
sense. We shall only sketch the proof and provide references for further details.

A dynamic programming problem (S, A, q, r, β) as in section 2 will be called
measurable if the following hold:

(a) The state space S is a nonempty Borel subset of a Polish space. (A topolog-
ical space is Polish if it is homeomorphic to a complete, separable metric space.
In particular, any Euclidean space is Polish.)

(b) There is a Polish space X that contains the union of the action sets A(s), s ∈
S. Furthermore, the set

Ã := {(s, a) : s ∈ S , a ∈ A(s)}

is a Borel subset of the product space S ×X.

(c) The law of motion q is a Borel measurable transition function from Ã to
S. That is, for each fixed (s, a) ∈ Ã, q(· |s, a) is a probability measure on
the Borel subsets of S; and for each fixed Borel subset B of S, q(B| · , ·) is a
Borel-measurable function on Ã.

(d) The daily reward function r is a Borel-measurable function from S ×X to
[0,∞).

We also need to impose measurability conditions on the plans that a player is
allowed to choose. To do so, we introduce the notion of universal measurability.

Let Y be a Polish space and let B be its σ-field of Borel subsets.

Definition 3. A subset U of Y is called universally measurable, if it belongs
to the completion of B under every probability measure µ on B.

The collection of all universally measurable subsets of Y forms a σ-field U
which is larger than B, if Y is uncountable. A function f : Y → Z, where Z is
another Polish space, is called universally measurable, if f−1(C) ∈ U holds for
every Borel subset C of Z.

Notice that
∫

f dµ is well-defined for every universally measurable function
f : Y → [0,∞) and every probability measure µ defined on B.

A plan π = (π1, π2, . . .) is universally measurable if, for every n = 1, 2, . . .,
πn is a universally measurable function from (S ×X)n−1 × S to X.

Let Π be the set of all universally measurable plans π. Let H = S×X×S×
X × · · · be the Polish space of all infinite histories h = (s1, a1, s2, a2, . . .). Each
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state s ∈ S together with a plan π ∈ Π determines a probability measure Pπ,s

on the Borel subsets of H. The optimal reward V (s) at s ∈ S is now defined by

V (s) := sup
π∈Π

Rπ(s) = sup
π∈Π

∫
g(h) dPπ,s(h) ;

here g(·) is the Borel measurable function defined for h ∈ H by

g(h) := g(s1, a1, s2, a2, . . .) =
∞∑

n=1

βn−1r(sn, an) . (5.1)

Theorem 14. (Strauch, 1966) The optimal reward function V (·) of a measur-
able dynamic programming problem is universally measurable.

Proof. We will only sketch the main ideas. For more details, see Theorem 4.2 of
Feinberg (1996). (Feinberg uses Borel rather than universally measurable plans
and, for this reason, must assume that the set Ã contains the graph of a Borel-
measurable function from S into X.)

Let M(H) be the set of all probability measures on the Borel subsets of H.
Then M(H), when equipped with its usual topology of vague convergence, is
again a Polish space (cf. Parthasarathy, 1967). It can be shown that the set

L :=
{
(s,Pπ,s) : s ∈ S, π ∈ Π

}

is a Borel subset of S ×M(H) (see section 3 of Feinberg (1996)). For s ∈ S,
let L(s) be the s−section of L ; that is,

L(s) =
{

µ ∈M(H) : µ = Pπ,s for some π ∈ Π
}
.

Then, with g(·) as in (5.1), we have

V (s) = sup
{ ∫

g dµ : µ ∈ L(s)
}

, s ∈ S .

It is not difficult to check that the function M(H) 3 µ 7→ ∫
g dµ ∈ R is

Borel-measurable.
Also, for each real number c , the set Sc = {s ∈ S : V (s) > c } is the

projection onto S of the Borel set Bc = {(s, µ) ∈ L :
∫

g dµ > c } . Thus Sc

is an analytic set, and therefore universally measurable (Corollary 7.42.1, page
169 in Bertsekas and Shreve (1978); Theorem 10.40, page 393 in Aliprantis and
Border (1999)). It follows that V (·) is universally measurable.

We imposed throughout this paper the assumption that the daily reward
function r(· , ·) is nonnegative. This assumption is not necessary for the proof
of Theorem 14, or for the proof of the Bellman equation; see Strauch (1966),
Bertsekas and Shreve (1978), and Feinberg (1996) for more general results.
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