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Abstract. This paper studies the habit-forming preference problem of maximizing total ex-
pected utility from consumption net of the standard of living, a weighted-average of past consump-
tion. We describe the effective state space of the corresponding optimal wealth and standard of
living processes, identify the associated value function as a generalized utility function, and exploit
the interplay between dynamic programming and Feynman-Kac results via the theory of random
fields and stochastic partial differential equations (SPDE’s). The resulting value random field of the
optimization problem satisfies a non-linear, backward SPDE of parabolic type, widely referred to
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stochastic feedback formulae for the optimal portfolio and consumption choices are obtained as well.
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1. Introduction. An important question in financial mathematics is to explain
the effect of past consumption patterns on current and future economic decisions.
A useful tool in this effort has been the concept of habit formation: an individual
who consumes portions of his wealth over time is expected to develop habits which
will have a decisive impact on his subsequent consumption behavior. Employed in
a wide variety of economic applications, habit formation was in turn considered by
several authors in the classical utility optimization problem (e.g. Sundaresan (1989),
Constantinides (1991), Detemple & Zapatero (1991, 1992), Heaton (1993), Chapman
(1998), Schroder & Skiadas (2002)).

The present paper returns to the stochastic control problem described in Detemple
& Zapatero (1992) and explores in detail particular aspects of portfolio/consumption
optimization under habit formation in complete markets. We adopt non-separable von
Neumann-Morgestern preferences over a given time-horizon [0, T ], and maximize total
expected utility E

∫ T

0
u(t, c(t)− z(t; c))dt from consumption c(·) in excess of standard

of living z(·; c); i.e., a habit-index defined as an average of past consumption, given by
z(t; c) , z e−

R t
0 α(v)dv +

∫ t

0
δ(s)e−

R t
s

α(v)dvc(s)ds, with z ≥ 0 and nonnegative stochas-
tic coefficients α(·), δ(·). Moreover, by assuming infinite marginal utility at zero, i.e.,
u′(t, 0+) = ∞, we force consumption never to fall below the contemporaneous level
of standard of living, thus triggering the development of “addictive” consumption
patterns. Hence, an economic agent is constantly “forced” to consume more than he
used to in the past. At t = 0 the assumption u′(t, 0+) = ∞ postulates the condition
x > wz, specifying the wedge D of Assumption 4.1 as the domain of acceptability for
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the initial wealth x and initial standard of living z. The quantity w stands for the
cost, per unit of standard of living, of the subsistence consumption: the consumption
policy that matches the standard of living exactly, at all times.

Existence of an optimal portfolio/consumption pair is proved in Detemple & Za-
patero (1992) by establishing a recursive linear stochastic equation for the properly
normalized marginal utility. In order to set up the mathematical background needed
for further analysis, we present a brief formulation of their solution. Our contribution
starts by characterizing the effective state space of the corresponding optimal wealth
X0(·) and standard of living z0(·) processes as the random wedge Dt (cf. (5.19))
determined by the evolution W(t) of w as a random process. This result reveals
the stochastic evolution of the imposed condition x > wz over time, in the sense
X0(t) > W(t)z0(t) for all t ∈ [0, T ), and motivates the study of the dynamic aspects
of our stochastic control problem. Thus, we define the value function V of the opti-
mization problem as a mapping that depends on both x and z. Considering the latter
as a pair of variables running on D, we classify V in a broad family of utility func-
tions; in fact, V (·, z) and the utility function u(t, ·) exhibit similar analytic properties.
This is carried out through the convex dual of the value function, defined in (5.25),
in conjunction with differential techniques developed in Rockafellar (1970).

In order to describe quantitatively the dependence of the agent’s optimal invest-
ment π0(·) on his wealth X0(·) and standard of living z0(·), Detemple & Zapatero
(1992) restrict the utility function to have either the logarithmic u(t, x) = log x or the
power u(t, x) = xp/p form for a model with nonrandom coefficients. Driven by ideas
of dynamic programming, we pursue such formulae for the optimal policies, where
now u can be an arbitrary utility function and the model coefficients may be random
in general. Classical dynamic programming techniques are, however, inadequate for
the analysis of non-Markovian models. On the other hand, the dynamic evolution of
domain D, represented by the stochastically evolving wedges Dt, hints that the basic
principles of dynamic programming might be applicable in more general settings as
well. Indeed, Peng (1992) considered a stochastic control problem with stochastic co-
efficients, and made use of Bellman’s optimality principle to formulate an associated
stochastic Hamilton-Jacobi-Bellman equation. The discussion in that paper was for-
mal, due to insufficient regularity of the value function. The present paper culminates
with an explicit application and validation of Peng’s ideas for the utility maximization
problem.

Since stock prices and the money-market price are not necessarily Markov pro-
cesses, we are now required to work with conditional expectations; these take into
account the market history up to the present, and thereby lead to the consideration
of random fields. In this context, an important role is played by certain linear, back-
ward parabolic stochastic partial differential equations which characterize the result-
ing random fields as their unique adapted solutions; in other words, adapted versions
of stochastic Feynman-Kac formulas are established.

Under reasonable assumptions on the utility preferences, the adapted value ran-
dom field of the stochastic control problem solves, in the classical sense, a non-linear,
backward stochastic partial differential equation of parabolic type. To wit, the value
random field possesses sufficient smoothness, such that all the spatial derivatives in-
volved in the equation exist almost surely. This equation is the stochastic Hamilton-
Jacobi-Bellman equation one would expect, according to the program of Peng (1992),
and is derived from two linear Cauchy problems, which admit unique solutions sub-
ject to certain regularity conditions. Apart from the classical linear/quadratic case
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discussed in Peng (1992), and to the best of our knowledge, this work is the first to
illustrate explicitly, directly and completely the role of backward stochastic partial
differential equations (SPDE’s) in the study of stochastic control problems in any
generality; see Remarks 7.5 and 7.6 in this respect.

We also characterize the dual value random field as the unique adapted solution
of a linear, parabolic backward SPDE. We conclude by deriving stochastic “feedback
formulae” for the optimal portfolio-consumption decisions, in terms of the pair con-
sisting of the current level of wealth and standard of living. In the special case of
deterministic coefficients, these formulae establish this pair as a sufficient statistic for
the optimal investment and consumption actions of an economic agent in this market.

Preview: In Sections 2−5 we introduce the market model, and go over the optimal
portfolio-consumption solution of the stochastic control problem. Section 6 investi-
gates the interrelation of dynamic programming with the theory of stochastic partial
differential equations, which establishes the optimal policies in “feedback form”. In
Section 7 we develop the stochastic Hamilton-Jacobi-Bellman equation satisfied by
the value random field, and conclusions follow in Section 8.

Literature Overview: Duality methods in stochastic control were introduced in Bismut
(1973) and elaborated further in Xu (1990), Karatzas & Shreve (1998). Detemple &
Zapatero (1991, 1992) employ martingale methods (Cox & Huang (1989), Karatzas
(1989), Karatzas, Lehockzy & Shreve (1987), and Pliska (1986)) to derive a closed-
form solution for the optimal consumption policy, denoted by c0(·). They also provide
insights about the structure of the optimal portfolio investment π0(·), that finances the
policy c0(·), via an application of the Clark (1970) formula due to Ocone & Karatzas
(1991). A case of non-addictive habits was explored in Detemple & Karatzas (2003).

The use of dynamic programming techniques on stochastic control problems was
originated by Merton (1969, 1971), aiming closed-form solutions in the special case
of constant coefficients for models without habit formation. The infinite-horizon case
was generalized by Karatzas, Lehoczky, Sethi & Shreve (1986). Karatzas, Lehoczky &
Shreve (1987) coupled martingale with convexity methods to allow random, adapted
model coefficients for general preferences; nonetheless, they reinstated the Markovian
framework with constant coefficients to obtain the optimal portfolio in closed-form.
A study on the case of deterministic coefficients in markets without habits can be
found in Karatzas & Shreve (1998).

“Pathwise” stochastic control problems were studied recently by Lions & Sougani-
dis (1998a, 1998b), who proposed a new notion of stochastic viscosity solutions for
the associated fully non-linear stochastic Hamilton-Jacobi-Bellman equations. In two
subsequent papers, Buckdahn and Ma (2001 Parts I, II) employ a Doss-Sussmann-type
transformation to extend this notion in a “point-wise” manner, and obtain accordingly
existence and uniqueness results for similar stochastic partial differential equations.
A problem of “pathwise” stochastic optimization, that emerges from mathematical fi-
nance and concerns the dependence on the paths of an exogenous noise, is considered
by Buckdahn & Ma (2006).

Results concerning the existence, uniqueness and regularity of adapted solutions
to stochastic partial differential equations of the type considered in the present paper,
were obtained in Ma & Yong (1997, 1999). Kunita (1990) contains a systematic study
of semimartingales with spatial parameters, including the derivation of the generalized
Itô-Kunita-Wentzell formula that is put to significant use throughout our analysis.
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2. The Model. We adopt a model for the financial market M0 which consists
of one riskless asset (money market) with price S0(t) given by:

(2.1) dS0(t) = r(t)S0(t)dt, S0(0) = 1,

and m risky securities (stocks) with prices per share {Si(t)}1≤i≤m, satisfying the
stochastic differential equations

(2.2) dSi(t) = Si(t)


bi(t)dt +

d∑

j=1

σij(t)dWj(t)


 , i = 1, ..., m.

Here W (·) = (W1(·), ...,Wd(·))∗ is a d-dimensional Brownian motion on a probability
space (Ω,F , P ) and F = {F(t); 0 ≤ t ≤ T} will denote the P -augmentation of the
Brownian filtration FW (t) , σ(W (s); s ∈ [0, t]). We assume that d ≥ m , i.e., the
number of sources of uncertainty in the model is at least as large as the number of
stocks available for investment. All processes encountered in this paper are defined
on a finite time-horizon [0, T ] where T is the terminal time for our market.

The interest rate r(·), as well as the instantaneous rate of return vector b(·) =
(b1(·), ..., bm(·))∗ and the volatility matrix σ(·) = {σij(·)}1≤i≤m, 1≤j≤d, are taken to
be F-progressively measurable random processes and to satisfy

(2.3)
∫ T

0

‖b(t)‖dt < ∞,

∫ T

0

|r(t)|dt ≤ %

almost surely, for some given real constant % > 0. It will be assumed that σ(·)
is bounded and that the matrix σ(t) has full rank for every t . Under the latter
assumption the matrix σ(·)σ∗(·) is invertible, so its inverse and the progressively
measurable relative risk process

(2.4) ϑ(t) , σ∗(t)(σ(t)σ∗(t))−1[b(t)− r(t)1m]

are well defined; here we denote by 1k the k-dimensional vector whose every compo-
nent is one. We make the additional assumption that ϑ(·) satisfies

(2.5) E

∫ T

0

‖ϑ(t)‖2dt < ∞.

We shall use quite often the exponential local martingale process

(2.6) Z(t) , exp
{
−

∫ t

0

ϑ∗(s)dW (s)− 1
2

∫ t

0

‖ϑ(s)‖2ds

}
;

the discount process

(2.7) β(t) , exp
{
−

∫ t

0

r(s)ds

}
;

their product, that is, the so-called state-price density process

(2.8) H(t) , β(t)Z(t) ;

as well as the process

(2.9) W0(t) , W (t) +
∫ t

0

ϑ(s)ds 0 ≤ t ≤ T .
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We envision an economic agent who starts with a given initial endowment x > 0,
and whose actions cannot affect the market prices. At any time t ∈ [0, T ] the agent
can decide both the proportion πi(t) of his wealth X(t) to be invested in the ith stock
(1 ≤ i ≤ m), and his consumption rate c(t) ≥ 0. These decisions cannot anticipate
the future, but must depend only on the current and past information F(t). The
remaining amount [1 − ∑m

i=1 πi(t)]X(t) is invested in the money market. Here the
investor is allowed both to sell stocks short, and to borrow money at the bond interest
rate r(·); that is, the πi(·) above are not restricted to take values only in [0, 1], and
their sum may exceed 1.

The resulting portfolio strategy π = (π1, ..., πm)∗ : [0, T ]×Ω → Rm and consump-
tion strategy c : [0, T ] × Ω → [0,∞), are assumed to be F-progressively measurable
processes and to satisfy the integrability condition

∫ T

0

(
c(t) + ‖π(t)‖2)dt < ∞, a.s.

According to the model dynamics of (2.1) and (2.2), the wealth process X(·) ≡
Xx,π,c(·), corresponding to the portofolio/consumption pair (π, c) and initial capital
x ∈ (0,∞), is the solution of the linear stochastic differential equation

dX(t) =
m∑

i=1

πi(t)X(t)



bi(t)dt +

m∑

j=1

σij(t)dWj(t)



(2.10)

+

{
1−

m∑

i=1

πi(t)

}
X(t)r(t)dt− c(t)dt(2.11)

= [r(t)X(t)− c(t)]dt + X(t)π∗(t)σ(t)dW0(t) ,

subject to the initial condition X(0) = x > 0. Equivalently, we have

(2.12) β(t)X(t) +
∫ t

0

β(s)c(s)ds = x +
∫ t

0

β(s)X(s)π∗(s)σ(s)dW0(s),

and from Itô’s lemma, applied to the product of Z(·) and β(·)X(·), we obtain

(2.13) H(t)X(t) +
∫ t

0

H(s)c(s)ds = x +
∫ t

0

H(s)X(s)[σ∗(s)π(s)− ϑ(s)]∗dW (s) .

A portofolio/consumption process pair (π, c) is called admissible for the initial capital
x ∈ (0,∞), if the agent’s wealth remains nonnegative at all times, i.e., if

(2.14) X(t) ≥ 0, for all t ∈ [0, T ],

almost surely. We shall denote the family of admissible pairs (π, c) by A(x).
For any (π, c) ∈ A(x), the left-hand side of (2.13) is a continuous and nonnegative

local martingale, thus a supermartingale. Consequently,

(2.15) E

(∫ T

0

H(s)c(s)ds

)
≤ x ,∀ (π, c) ∈ A(x) .

Let B(x) denote the set of consumption policies c : [0, T ] × Ω → [0,∞) which
are progressively measurable and satisfy (2.15). We have just verified that c(·) ∈
B(x), for all pairs (π, c) ∈ A(x). In a complete market, where the number of stocks
available for trading matches exactly the dimension of the “driving” Brownian motion,
the converse holds as well, in the sense that any consumption strategy c(·) satisfying
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(2.15) can be financed by some portfolio policy π(·). For this reason, (2.15) can be
interpreted as a “budget constraint”.

Lemma 2.1. Let the market model of (2.1), (2.2) be complete, namely m = d.
Then, for every consumption process c(·) ∈ B(x) there exists a portfolio process π(·)
such that (π, c) ∈ A(x), and the associated wealth process X(·) ≡ Xx,π,c(·) is given by

H(t)X(t) = x+Et(D(t))−E(D(0)), t ∈ [0, T ] , where D(t) ,
∫ T

t

H(s)c(s)ds .

Here and in the sequel, Et[ · ] denotes conditional expectation E[ · |F(t)] with
respect to the probability measure P , given the σ-algebra F(t). For the proof of
Lemma 2.1, see Karatzas & Shreve (1998), pp. 166-169.

3. Utility Functions. A utility function is a jointly continuous mapping u :
[0, T ] × (0,∞) → R such that, for every t ∈ [0, T ], the function u(t, ·) is strictly
increasing, strictly concave, of class C1((0,∞)), and its derivative u′(t, x) , ∂

∂xu(t, x)
satisfies

(3.1) u′(t, 0+) = ∞, u′(t,∞) = 0 .

Due to these assumptions, the inverse I(t, ·) : (0,∞) → (0,∞) of the function
u′(t, ·) exists for every t ∈ [0, T ], and is continuous and strictly decreasing with

(3.2) I(t, 0+) = ∞, I(t,∞) = 0.

Furthermore, one can easily see the stronger assertion

(3.3) lim
x→∞

max
t∈[0,T ]

u′(t, x) = 0.

Let us now introduce, for each t ∈ [0, T ], the Legendre-Fenchel transform ũ(t, ·) :
(0,∞) → R of the convex function − u(t,−x), namely

(3.4) ũ(t, y) , max
x>0

[u(t, x)− xy] = u(t, I(t, y))− yI(t, y), 0 < y < ∞.

The function ũ(t, ·) is strictly decreasing, strictly convex, and satisfies

(3.5)
∂

∂y
ũ(t, y) = −I(t, y), 0 < y < ∞.

We note here that ũ : [0, T ]× (0,∞) → R is jointly continuous as well.

4. The Maximization Problem. For given utility function u and initial capital
x > 0, we shall consider von Neumann-Morgenstern preferences with expected utility

(4.1) J(z; π, c) ≡ J(z; c) , E

[∫ T

0

u(t, c(t)− z(t; c))dt

]
,

corresponding to any given pair (π, c) ∈ A(x) and its associated index-process z(·) ≡
z(·; c) defined in (4.3), (4.5) below. This process represents the “standard of living”
of the decision-maker, an index that captures past consumption behavior and condi-
tions the current consumption felicity by developing “habits”. Of course, in order to
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ensure that the above expectation exists and is finite, we shall take into account only
consumption strategies c(·) that satisfy

(4.2) c(t)− z(t; c) > 0, ∀ 0 ≤ t ≤ T,

almost surely. This additional budget specification insists that consumption must
always exceed the standard of living, establishing incentives for a systematic built-up
of habits over time and leading to “addiction patterns”.

We shall stipulate that the standard of living follows the dynamics

dz(t) =
(
δ(t)c(t)− α(t)z(t)

)
dt, t ∈ [0, T ],

z(0) = z,
(4.3)

where α(·) and δ(·) are nonnegative, bounded and F-adapted processes and z ≥ 0 is
a given real number. Thus, there exist constants A > 0 and ∆ > 0 such that

(4.4) 0 ≤ α(t) ≤ A, 0 ≤ δ(t) ≤ ∆, ∀ t ∈ [0, T ],

hold almost surely. Equivalently, (4.3) stipulates

(4.5) z(t) ≡ z(t; c) = z e−
R t
0 α(v)dv +

∫ t

0

δ(s)e−
R t

s
α(v)dvc(s)ds

and expresses z(·) as an exponentially-weighted average of past consumption.
In light of the constraint (4.2), we see that consumption c(·) must always exceed

the “subsistence consumption” ĉ(·) for which ĉ(·) = z(·; ĉ), namely, that consump-
tion pattern which barely meets the standard of living. From (4.3), this subsistence
consumption satisfies

dĉ(t) =
(
δ(t)− α(t)

)
ĉ(t)dt , t ∈ [0, T ] , and ĉ(0) = z ,

and therefore with ẑ(·) ≡ z(·; ĉ) we have

c(t) > ĉ(t) = ẑ(t) = z e
R t
0 (δ(v)−α(v))dv, ∀ t ∈ [0, T ].

Back into the budget constraint (2.15), this inequality gives x > wz , where

(4.6) w , E

[∫ T

0

e
R t
0 (δ(v)−α(v))dvH(t)dt

]

represents the “marginal” cost of subsistence consumption, per unit of standard of
living. Therefore, we need to impose the following restriction on the initial capital x
and the initial standard of living level z.

Assumption 4.1. In the notation of (4.6), the pair (x, z) belongs to the set

D ,
{

(x′, z′) ∈ (0,∞)× [0,∞); x′ > wz′
}

.

Definition 4.2. The Dynamic Optimization problem is to maximize the ex-
pression of (4.1) over the class A′(x, z) of admissible portfolio/consumption pairs
(π, c) ∈ A(x) that satisfy (4.2) and

(4.7) E

[∫ T

0

u−(t, c(t)− z(t; c))dt

]
< ∞
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(here and in the sequel, b− denotes the negative part of the real number b). The value
function of this problem will be denoted by

(4.8) V (x, z) , sup
(π,c)∈A′(x,z)

J(z; π, c), (x, z) ∈ D.

Definition 4.3. The Static Optimization problem is to maximize the expression
(4.1) over the set B′(x, z) of consumption processes c(·) ∈ B(x) that satisfy (4.2) and
(4.7). The value function of this problem will be denoted by

(4.9) U(x, z) , sup
c(·)∈B′(x,z)

J(z; c), (x, z) ∈ D.

We obtain from (2.15) that V (x, z) ≤ U(x, z), ∀ (x, z) ∈ D . In fact, equality
prevails here: it suffices to solve only the static maximization problem, since for a
static consumption optimizer process c0(·) ∈ B′(x, z) in (4.9) we can always construct,
according to Lemma 2.1, a portfolio process π0(·) such that (π0, c0) ∈ A′(x, z) satisfies

U(x, z) = J(z; c0) = J(z; c0, π0) = V (x, z), ∀ (x, z) ∈ D ,

and constitutes a dynamic portfolio/consumption maximizing process pair for (4.8).
We also note that the set B′(x, z) of Definition 4.3 is convex, thanks to the linearity

of c 7→ z(t; c) and the concavity of x 7→ u(t, x).

5. Solution of the Optimization Problem in Complete Markets. The
static optimization problem of Definition 4.3 is treated as a typical maximization
problem with constraints (2.15) and (4.2) in the case m = d of a complete market,
and admits a solution derived in Detemple & Zapatero (1992). In this section, we
shall follow briefly their analysis, obtaining further results associated with the value
function V and related features. More precisely, we shall identify the effective state
space of the optimal wealth/standard of living vector process, generated by the opti-
mal portfolio/consumption pair, as a random wedge, spanned by the temporal variable
t ∈ [0, T ] and a family of suitable random half-planes (cf. Theorem 5.5). Theorem
5.8 below describes the relation of the value function V with a utility function as
defined in Section 3, and begins the study of its dual value function Ṽ . An alternative
representation for the quantity w of (4.6) is provided as well.

In providing constructive arguments for the existence of an optimal consumption
policy to the static problem, a prominent role will be played by the “adjusted” state-
price density process

(5.1) Γ(t) , H(t) + δ(t) · Et

(∫ T

t

e
R s

t
(δ(v)−α(v))dvH(s)ds

)
, t ∈ [0, T ],

which solves the recursive linear stochastic equation

(5.2) Γ(t) = H(t) + δ(t) · Et

(∫ T

t

e−
R s

t
α(v)dvΓ(s)ds

)
, t ∈ [0, T ];

cf. Detemple & Zapatero (1992). The process Γ(·) is the state-price density process
H(·) compensated by an additional term that reflects the effect of habits. Further-
more, we shall need to impose the following conditions:
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Assumption 5.1. It will be assumed throughout that, for every y ∈ (0,∞),

E

(∫ T

0

H(t)I(t, yΓ(t))dt

)
< ∞ and E

(∫ T

0

∣∣u(
t, I(t, yΓ(t))

)∣∣dt

)
< ∞.

In the sequel we shall provide conditions, on both the utility preferences and the
model coefficients, which ensure the validity of the above assumption; cf. Remarks
5.7 and 6.3. Under Assumption 5.1, the function

(5.3) X (y) , E

[∫ T

0

Γ(t)I(t, yΓ(t))dt

]
, 0 < y < ∞

inherits from I(t, ·) its continuity and strict decrease, as well as X (0+) = ∞ and
X (∞) = 0. We shall denote the (continuous, strictly decreasing, onto) inverse of this
function by Y(·). Obviously then, Assumption 4.1 ensures the existence of a number
y0 , Y(x− wz) ∈ (0,∞) that satisfies

(5.4) X (y0) = x− wz.

With this y0 > 0, we consider now the process of net consumption given by

(5.5) c0(t)− z(t; c0) , I(t, y0Γ(t)) for t ∈ [0, T ].

Inverting (5.5), we derive the relationship

(5.6) Γ(t) =
1
y0

u′(t, c0(t)− z(t; c0)), t ∈ [0, T ],

which identifies the “adjusted” state-price density process Γ(·) as a “normalized
marginal utility” process. Through substitution back to (4.3) the standard of liv-
ing process z0(·) ≡ z(· ; c0) obtains the dynamics

(5.7) dz0(t) =
[
δ(t)I(t, y0Γ(t)) + (δ(t)− α(t))z0(t)

]
dt, z0(0) = z,

and by solving the first-order linear ordinary differential equation (5.7) we arrive at
the expression

(5.8) z0(t) = e
R t
0 (δ(v)−α(v))dv

[
z +

∫ t

0

δ(s)F0(s)ds

]
, t ∈ [0, T ]

with

(5.9) F0(t) , e
R t
0 (α(v)−δ(v))dvI(t, y0Γ(t)), t ∈ [0, T ].

From (5.5) and (5.8), the consumption process follows immediately:

(5.10) c0(t) = e
R t
0 (δ(v)−α(v))dv

[
F0(t) + z +

∫ t

0

δ(s)F0(s)ds

]
, t ∈ [0, T ].

Theorem 5.2. The consumption process c0(·) of (5.10) solves the static op-
timization problem, satisfying the budget constraint (2.15) without slackness; that
is, c0(·) ∈ B′(x, z) with

(5.11) E

[∫ T

0

H(t)c0(t)dt

]
= x ;
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and that J(z; c) ≤ J(z; c0) < ∞ holds for any c(·) ∈ B′(x, z).
Proof. From Assumption 5.1, we have J(z; c0) < ∞. On the other hand,

u(t, c0(t)− z0(t)) ≥ u(t, 1) + y0Γ(t)
[
I(t, y0Γ(t))− 1

] ≥ −|u(t, 1)| − y0Γ(t) ;

from (3.4); through the observation

(5.12) E[Γ(t)] ≤ E[H(t)] + ∆e∆T ·
(∫ T

t

E[H(s)]ds

)
≤ e%

(
1 + ∆Te∆T

)
< ∞,

where we have used (2.3), (4.4) and the supermartingale property of Z(·), it is appar-
ent that c0(·) satisfies condition (4.7). Making use of (5.10) we have that

E

[∫ T

0

H(t)c0(t)dt

]
= E

[ ∫ T

0

e
R t
0 (δ(v)−α(v))dvH(t)

(
F0(t) + z

)
dt

+
∫ T

0

e
R t
0 (δ(v)−α(v))dvH(t)

(∫ t

0

δ(s)F0(s)ds

)
dt

]

= E

[ ∫ T

0

e
R t
0 (δ(v)−α(v))dvH(t)

(
F0(t) + z

)
dt

+
∫ T

0

δ(t)F0(t) · Et

(∫ T

t

e
R s
0 (δ(v)−α(v))dvH(s)ds

)
dt

]

= E

[∫ T

0

Γ(t)I(t, y0Γ(t))dt

]
+ wz = x

[the next-to-last equation comes from the definitions (5.1), (5.9), and the last equation
from (5.3), (5.4)], and (4.2) is also verified by definition (5.5) and the property of
infinite marginal utility imposed in (3.1). It follows readily that c0(·) ∈ B′(x, z). A
proof for the last assertion of the theorem was given by Detemple & Karatzas (2003),
in the case of non-addictive habits.

Remark 5.3. From (5.4), (5.11), (5.3), (5.5), (5.2) and (4.5), we have for z > 0
the computations

zw = E

∫ T

0

H(t)c0(t)dt−X (y0) = E

∫ T

0

[
H(t)c0(t)− Γ(t)

(
c0(t)− z0(t)

)]
dt

= E

∫ T

0

[
−δ(t)Et

(∫ T

t

e−
R s

t
α(v)dvΓ(s)ds

)
c0(t) + z0(t)Γ(t)

]
dt

= E

[
−

∫ T

0

Γ(s)
(∫ s

0

δ(t)e−
R s

t
α(v)dvc0(t)dt

)
ds +

∫ T

0

z0(t)Γ(t)dt

]

= E

∫ T

0

(
z0(t)−

∫ t

0

δ(s)e−
R t

s
α(v)dvc0(s)ds

)
Γ(t)dt = z · E

∫ T

0

e−
R t
0 α(v)dvΓ(t)dt.

We obtain the expression

(5.13) w = E

[∫ T

0

e−
R t
0 α(v)dvΓ(t)dt

]
,
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which re-casts the subsistence consumption cost per unit of standard of living w
of (4.6), as a weighted average of the “adjusted” state-price density process Γ(·) of
(5.1), discounted at the rate α(·). This representation of w makes the terminology
“adjusted” state-price density for Γ(·) quite intuitive: namely, a comparison of (5.13)
with (4.6), which involves only the density process H(·), suggest the significance of Γ(·)
as a modified state-price density process that takes habit-formation into account.

Corollary 5.4. There exists a portfolio process π0(·) such that the pair of
policies (π0, c0) ∈ A′(x, z) attains the supremum of J(z;π, c) over A′(x, z) in (4.8)
and the corresponding wealth process X0(·) ≡ Xx,π0,c0(·) is given by

(5.14) X0(t) =
1

H(t)
Et

[∫ T

t

H(s)c0(s)ds

]
, t ∈ [0, T ].

This optimal investment π0(·) has the representation

(5.15) π0(t) = (σ(t)σ∗(t))−1
σ(t)

[
ψ0(t)

X0(t)H(t)
+ ϑ(t)

]
,

in terms of the Rd-valued, F-progressively measurable, almost surely square-integrable
process ψ0(·) that represents as a stochastic integral M0(t) = x +

∫ t

0
ψ∗0(s)dW (s) the

martingale

(5.16) M0(t) , Et

[∫ T

0

H(s)c0(s)ds

]
, t ∈ [0, T ] .

Furthermore, the value function V of the dynamic maximization problem (4.8) is

(5.17) V (x, z) = G(Y(x− wz)), (x, z) ∈ D;

here Y(·) is the inverse of the function X (·), defined in (5.3), and

(5.18) G(y) , E

[∫ T

0

u
(
t, I(t, yΓ(t))

)
dt

]
, y ∈ (0,∞).

Proof. The existence of the optimal portfolio π0(·), along with the validation
of (5.14), (5.15) and (5.16), is a consequence of Lemma 2.1 and (5.11). From the
optimality of (π0, c0) we get

V (x, z) = E

[∫ T

0

u(t, c0(t)− z0(t))dt

]
, (x, z) ∈ D,

and (5.17) follows readily from (5.5), (5.4).
Note that, under the optimal policies (π0, c0), the investor goes bankrupt at time

t = T : X0(T ) = 0, almost surely. This is natural, since utility is desired here only
from consumption, not from terminal wealth.

Assumption 4.1 determines the “domain of acceptability” D for the initial values
of wealth and standard of living. The next reasonable issue to be explored is the
temporal evolution of these quantities as random processes, under the optimal pair
policy (π0, c0) and for all times t ∈ [0, T ].
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Theorem 5.5. The effective state space of optimal wealth/standard of living
process

(
X0(·), z0(·)

)
is given by the family of random wedges

Dt ,
{

(x′, z′) ∈ (0,∞)× [0,∞); x′ > W(t)z′
}

, 0 ≤ t < T,

DT ,
{

(0, z′); z′ ∈ [0,∞)
}

,
(5.19)

where

(5.20) W(t) , 1
H(t)

Et

[∫ T

t

e
R s

t
(δ(v)−α(v))dvH(s)ds

]
, 0 ≤ t ≤ T

stands for the cost of subsistence consumption, per unit of standard of living, at time
t. In other words, we have, almost surely:

(5.21)
(
X0(t), z0(t)

) ∈ Dt, for all t ∈ [0, T ].

Note W(0) = w and D0 = D, the quantities of Assumption 4.1; thus, the
random wedges Dt determine dynamically the range where the vector process of
wealth/standard of living

(
X0(·), z0(·)

)
takes values under the optimal regime.

Proof of Theorem 5.5. Consider the optimal pair (π0, c0) and the resulting stan-
dard of living z0(·) processes, specified by (5.15), (5.10) and (5.8), successively. Re-
calling the definitions of (5.1) and (5.20), the corresponding wealth process X0(·) of
(5.14) may be reformulated as

X0(t) =
1

H(t)
Et

[ ∫ T

t

H(s)
{

I(s, y0Γ(s)) + ze
R s
0 (δ(v)−α(v))dv

+
∫ s

0

δ(θ)e
R s

θ
(δ(v)−α(v))dvI(θ, y0Γ(θ))dθ

}
ds

]

=
1

H(t)
Et

[ ∫ T

t

H(s)
{

ze
R s
0 (δ(v)−α(v))dv

+
∫ t

0

δ(θ)e
R s

θ
(δ(v)−α(v))dvI(θ, y0Γ(θ))dθ

}
ds

+
∫ T

t

H(s)I(s, y0Γ(s))ds

+
∫ T

t

δ(θ)I(θ, y0Γ(θ))

(∫ T

θ

e
R s

θ
(δ(v)−α(v))dvH(s)ds

)
dθ

]

=
1

H(t)
Et

[
z0(t)

∫ T

t

e
R s

t
(δ(v)−α(v))dvH(s)ds

+
∫ T

t

{
H(s) + δ(s)Es

(∫ T

s

H(θ)e
R θ

s
(δ(v)−α(v))dvdθ

)}
I(s, y0Γ(s))ds

]

= W(t)z0(t) +
1

H(t)
Et

[∫ T

t

Γ(s)I(s, y0Γ(s))ds

]
, 0 ≤ t ≤ T.
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Therefore,

X0(t)−W(t)z0(t) =
1

H(t)
Et

[∫ T

t

Γ(s)I(s, y0Γ(s))ds

]
> 0, ∀ t ∈ [0, T ),

almost surely, and (5.21) holds on [0, T ). The remaining assertions of the theorem
follow directly from (5.14).

Example 5.6. (Logarithmic utility). Consider u(t, x) = log x, ∀ (t, x) ∈ [0, T ]×
(0,∞). Then I(t, y) = 1/y for (t, y) ∈ [0, T ]× (0,∞), X (y) = T/y for y ∈ (0,∞), and
Y(x) = T/x for x ∈ (0,∞). The optimal consumption, standard of living, and wealth
processes are as follows:

c0(t) = ze
R t
0 (δ(v)−α(v))dv +

x− wz

T

[
1

Γ(t)
+

∫ t

0

δ(s)
Γ(s)

e−
R t

s
(δ(v)−α(v))dvds

]
,

z0(t) = ze
R t
0 (δ(v)−α(v))dv +

x− wz

T

∫ t

0

δ(s)
Γ(s)

e−
R t

s
(δ(v)−α(v))dvds ,

X0(t) =
1

H(t)

[
z0(t)Et

(∫ T

t

e
R s

t
(δ(v)−α(v))dvH(s)ds

)
+

T − t

T
(x− wz)

]

for 0 ≤ t ≤ T. Moreover,

G(y) = −T log y − E

[∫ T

0

log Γ(t)dt

]
, y ∈ (0,∞),

and the value function is

V (x, z) = T log
(

x− wz

T

)
−E

[∫ T

0

log Γ(t)dt

]
, (x, z) ∈ D.

Note here that the conditions of Assumption 5.1 are satisfied; the first holds trivially,
and the second is implied by the observation

E
(
log Γ(t)

) ≤ log
(
E(Γ(t))

) ≤ % + log
(
1 + ∆Te∆T

)
< ∞, 0 ≤ t ≤ T,

where we used Jensen’s inequality, (2.3) and the supermartingale property of Z(·).
Finally, one may ascertain an explicit stochastic integral representation for M0(·),
defined in (5.16), under the additional assumption of deterministic model coefficients;
cf. Example 7.9. The optimal portfolio process π0(·) follows then by (5.15).

Remark 5.7. Consider utility functions such that

(5.22) sup
0≤t≤T

I(t, y) ≤ κy−ρ, ∀ y ∈ (0,∞),

holds for some κ > 0, ρ > 0. Then, the first condition of Assumption 5.1 holds under
at least one of the subsequent conditions:

(5.23) 0 < ρ ≤ 1,
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or

(5.24) ϑ(·) is bounded uniformly on [0, T ]× Ω.

In particular, (5.22) and (5.23) yield

X (y) ≤ κy−ρE

[∫ T

0

(1 ∨ Γ(t))

]
< ∞, y ∈ (0,∞).

Otherwise, use (5.24), (2.3) and Novikov condition to set (H(t))1−ρ = m(t)L(t), in
terms of the uniformly bounded process

m(t) , exp
{

(ρ− 1)
∫ t

0

r(v)dv +
1
2
ρ(ρ− 1)

∫ t

0

‖ϑ(v)‖2dv

}
,

and the martingale

L(t) , exp
{

(ρ− 1)
∫ t

0

ϑ∗(v)dW (v)− 1
2
(ρ− 1)2

∫ t

0

‖ϑ(v)‖2dv

}
.

Then (5.22) implies that

X (y) ≤ κy−ρ
(
1 + ∆Te%+∆T

)(1−ρ)
E

[∫ T

0

m(t)L(t)dt

]
< ∞, y ∈ (0,∞).

The function V (·, z) satisfies all the conditions of a utility function as defined in
Section 3, for any given z ≥ 0; we formalize this aspect of the value function in the
result that follows, leading to the notion of a generalized utility function and to the
explicit computation of its convex dual

(5.25) Ṽ (y) , sup
(x,z)∈D

{
V (x, z)− (x− wz)y

}
, y ∈ R.

Theorem 5.8. The function V : D → R is a generalized utility function, in
the sense of being strictly concave and of class C1,1(D); it is strictly increasing in
its first argument, strictly decreasing in the second, and satisfies Vx((wz)+, z) = ∞,
Vx(∞, z) = 0 for any z ≥ 0. Additionally, for all pairs (x, z) ∈ D, we have that

(5.26) lim
(x,z)→(χ,ζ)

V (x, z) =
∫ T

0

u(t, 0+)dt, ∀ (χ, ζ) ∈ ∂D,

where ∂D =
{
(x′, z′) ∈ [0,∞)2; x′ = wz′

}
is the boundary of D. Furthermore, with

X (·) and G(·) given by (5.3) and (5.18), respectively, we have

Vx(x, z) = Y(x− wz), Vz(x, z) = −wY(x− wz), ∀ (x, z) ∈ D,(5.27)

Ṽ (y) = G(y)− yX (y) = E

∫ T

0

ũ(t, yΓ(t))dt, ∀ y > 0,(5.28)

Ṽ ′(y) = −X (y), ∀ y > 0 .(5.29)
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Proof. We show first the strict concavity of V . Let (x1, z1), (x2, z2) ∈ D and
λ1, λ2 ∈ (0, 1) such that λ1 + λ2 = 1. For each (xi, zi) consider the optimal portfo-
lio/consumption policy (πi, ci) ∈ A′(xi, zi) which generates the corresponding wealth
process Xxi,πi,ci(·), and the standard of living process zi(·), i = 1, 2. Define now the
portfolio/consumption plan (π, c) , (λ1π1 +λ2π2, λ1c1 +λ2c2), denoting by Xx,π,c(·),
z(·) the corresponding wealth and standard of living with x , λ1x1 + λ2x2 and
z , λ1z1 + λ2z2. It is then easy to see that (π, c) ∈ A′(x, z) and

Xx,π,c(·) = λ1X
x1,π1,c1(·) + λ2X

x2,π2,c2(·), z(·) = λ1z1(·) + λ2z2(·)
hold almost surely. Therefore, the strict concavity of u(t, ·) implies

λ1V (x1, z1) + λ2V (x2, z2)

= λ1E

[∫ T

0

u(t, c1(t)− z1(t))dt

]
+ λ2E

[∫ T

0

u(t, c2(t)− z2(t))dt

]

< E

[∫ T

0

u(t, c(t)− z(t))dt

]
≤ V (x, z) = V (λ1x1 + λ2x2, λ1z1 + λ2z2).

As a real-valued concave function on D, V is continuous on its domain.
To establish (5.26), we consider pairs (x, z) ∈ D, and observe from (5.17) that

lim(x,z)→(χ,ζ) V (x, z) = limy→∞G(y) holds for any (χ, ζ) ∈ ∂D. But (3.2) indicates
that limy→∞ I(t, yΓ(t)) = 0 for 0 ≤ t ≤ T , and Assumption 5.1 ensures that G(y) of
(5.18) is finite for any y ∈ (0,∞); thus, (5.26) becomes a direct consequence of the
monotone convergence theorem.

We next undertake (5.28). Its second equality is checked algebraically via (4.5),
(5.3) and (5.18). Turning now to the first, for every (x, z) ∈ D, y > 0 and (π, c) ∈
A′(x, z), the relation of (3.4) gives

(5.30) u(t, c(t)− z(t)) ≤ ũ(t, yΓ(t)) + yΓ(t)(c(t)− z(t)).

Taking expectations, we employ (4.5), (5.2), (5.13) and the budget constraint (2.15)
to obtain

E

∫ T

0

u(t, c(t)− z(t))dt ≤ E

∫ T

0

[
ũ(t, yΓ(t)) + yΓ(t)(c(t)− z(t))

]
dt

= E

∫ T

0

ũ(t, yΓ(t))dt

+ y · E
∫ T

0

Γ(t)
(

c(t)− ze−
R t
0 α(v)dv −

∫ t

0

δ(s)e−
R t

s
α(v)dvc(s)ds

)
dt

= E

∫ T

0

ũ(t, yΓ(t))dt− ywz

+ y · E
[∫ T

0

Γ(t)c(t)dt−
∫ T

0

δ(s)

(∫ T

s

e−
R t

s
α(v)dvΓ(t)dt

)
c(s)ds

]
(5.31)

= E

∫ T

0

ũ(t, yΓ(t))dt− ywz

+ y · E
∫ T

0

{
Γ(t)− δ(t)Et

(∫ T

t

e−
R s

t
α(v)dvΓ(s)ds

)}
c(t)dt
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= E

∫ T

0

ũ(t, yΓ(t))dt− ywz + y · E
∫ T

0

H(t)c(t)dt

≤ E

∫ T

0

ũ(t, yΓ(t))dt + y(x− wz) = G(y)− yX (y) + y(x− wz).

The inequalities in (5.31) will hold as equalities, if and only if

(5.32) c(t)− z(t) = I(t, yΓ(t)) and E

∫ T

0

H(t)c(t)dt = x.

Setting Q(y) , G(y)− yX (y) and maximizing over (π, c) ∈ A′(x, z), it follows from
(5.31) that V (x, z) ≤ Q(y)+(x−wz)y for every (x, z) ∈ D, and thereby Ṽ (y) ≤ Q(y)
for every y > 0. Conversely, (5.31) becomes an equality, if the first equation of (5.32)
is satisfied and if X (y) = x−wz, so Q(y) = V (X (y) + wz, z)−X (y)y ≤ Ṽ (y). Hence
(5.28) is established, and clearly the supremum in (5.25) is attained if x−wz = X (y).

We argue now (5.29) by bringing to our attention the identity

yI(t, y)− hI(t, h)−
∫ y

h

I(t, λ)dλ = yI(t, y)− hI(t, h) + ũ(t, y)− ũ(t, h)

= u(t, I(t, y))− u(t, I(t, h)),(5.33)

which holds for any utility function u and 0 ≤ t ≤ T , 0 < h < y < ∞; recall (3.4) and
(3.5). This enables us to compute

yX (y)− hX (h)−
∫ y

h

X (ξ)dξ

= E

∫ T

0

[
yH(t)I(t, yH(t))− hH(t)I(t, hH(t))−

∫ yH(t)

hH(t)

I(t, λ)dλ

]
dt

= E

∫ T

0

[
u
(
t, I(t, yH(t))

)− u
(
t, I(t, hH(t))

)]
dt = G(y)−G(h),

(5.34)

which in conjunction with (5.28) leads to

(5.35) Ṽ (y)− Ṽ (h) = −
∫ y

h

X (ξ)dξ, 0 < h < y < ∞,

and (5.29) follows.
Finally, let us rewrite (5.25) in the more suggestive form

Ṽ (y) = sup
(x,z)∈D

{
V (x, z)− (x, z) · (y,−wy)

}
, y ∈ R,

where v1 · v2 stands for the dot product between any two vectors v1 and v2. We recall
that for (x∗, z∗) ∈ D and y > 0, we have (y,−wy) ∈ ∂V (x∗, z∗) if and only if the
maximum in the above expression is attained by (x∗, z∗) (e.g., Rockafellar (1970),
Theorem 23.5). However, we have already shown that this maximum is attained by
the pair (x∗, z∗) only if x∗ − wz∗ = X (y), implying

∂V (x∗, z∗) =
{(Y(x∗ − wz∗),−wY(x∗ − wz∗)

)}
.

Therefore, (5.27) is proved (e.g. Theorem 23.4 loc. cit.), and implies that Vx(·, z) is
continuous, positive (thus V (·, z) strictly increasing), strictly decreasing on (wz,∞),
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with limx↓wz Vx(x, z) = limx↓wz Y(x−wz) = ∞ and limx↑∞ Vx(x, z) = limx↑∞ Y(x−
wz) = 0; while, Vz(x, ·) is continuous, negative, and so V (x, ·) decreases strictly.
Consequently, V is a generalized utility function since it satisfies all its aforementioned
properties.

Remark 5.9. We note that given any z ∈ [0,∞), (5.17) can be written as G(y) =
V (X (y) + wz, z) for every y ∈ (0,∞). Thus, if X (·) is differentiable, then by (5.27),
the function G(·) is also differentiable with

(5.36) G′(y) = Vx(X (y) + wz, z)X ′(y) = yX ′(y), y ∈ (0,∞).

6. The Role of Stochastic Partial Differential Equations. In Section 5
we established the existence and uniqueness, up to almost-everywhere equivalence,
of a solution to our habit-modulated utility maximization problem in the case of a
complete security market. The analysis resulted in a concrete representation for the
optimal consumption process c0(·), given by (5.10), but not for the optimal portfolio
strategy π0(·); we provided for it no useful expression aside from (5.15). In this
section we shall confront this issue by deploying a technique based on the ideas of
dynamic programming. Our motivation goes back to Theorem 5.5, which reveals the
dynamic nature of the optimal wealth/standard of living pair

(
X0(·), z0(·)

)
in terms

of a stochastically evolving range.
Our analysis will be supported by the recently developed theory of backward

stochastic partial differential equations and their interrelation with appropriate adapted
versions of stochastic Feynman-Kac formulas. This interplay will be based on the gen-
eralized Itô-Kunita-Wentzell formula, and will show that the value function of prob-
lem (4.8) satisfies a nonlinear, backward stochastic Hamilton-Jacobi-Bellman partial
differential equation of parabolic type.

We shall provide the optimal portfolio π0(t) and consumption policy c0(t) in
closed, stochastic “feedback forms” on the current wealth X0(t) and the standard of
living z0(t). In other words, we shall get hold of suitable random fields C : [0, T ) ×
(0,∞)× [0,∞)× Ω → (0,∞) and Π : [0, T )× (0,∞)× [0,∞)× Ω → Rd, for which

(6.1) c0(t) = C(t, X0(t), z0(t)) and π0(t) = Π(t,X0(t), z0(t)), 0 ≤ t < T .

The conditions listed below will allow us to present the main concepts of our
dynamic approach, with a minimum of technical fuss.

Assumption 6.1. The model coefficients r(·), b(·), ϑ(·), σ(·), α(·) and δ(·) are
continuous, δ(·) is differentiable, and ‖ϑ(·)‖ is bounded away from zero and infinity:

(6.2) ∃ k1, k2 > 0 such that 0 < k1 ≤ ‖ϑ(t)‖ ≤ k2 < ∞, ∀ t ∈ [0, T ].

It will also be assumed that r(·)− δ(·) + α(·) is non-random.
This last assumption on r(·) − δ(·) + α(·) is rather severe, and can actually be

omitted. It will be crucial, however, in our effort to keep the required analysis and
notation at manageable levels, without obscuring by technicalities the essential ideas.

Since the market price of risk ϑ(·) is bounded, the local martingale Z(·) of (2.6)
is a martingale. Thus, by Girsanov’s theorem, the process W0(·) of (2.9) is standard,
d-dimensional Brownian motion under the new probability measure

(6.3) P 0(A) , E[Z(T )1A], A ∈ F(T ).

We shall refer to P 0 as the equivalent martingale measure of the financial market M0,
and denote expectation under this measure by E0.

Assumption 6.2. We shall assume that the utility function u satisfies
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(i) polynomial growth of I :

∃ γ > 0 such that I(t, y) ≤ γ + y−γ , ∀ (t, y) ∈ [0, T ]× (0,∞);

(ii) polynomial growth of u ◦ I :

∃ γ > 0 such that u(t, I(t, y)) ≥ −γ − yγ , ∀ (t, y) ∈ [0, T ]× (0,∞);

(iii) for each t ∈ [0, T ], y 7→ u(t, y) and y 7→ I(t, y) are of class C4((0,∞));
(iv) I ′(t, y) = ∂

∂y I(t, y) is strictly negative for every (t, y) ∈ [0, T ]× (0,∞);
(v) for every t ∈ [0, T ], y 7→ g(t, y) , yI ′(t, y) is increasing and concave.

Remark 6.3. Assumption 6.2(i), (ii), together with (3.3) and the strict decrease
of I(t, ·), yields that

∃ γ > 0 such that |u(t, I(t, y))| ≤ γ + yγ + y−γ , ∀ (t, y) ∈ [0, T ]× (0,∞).

Notice that Assumptions 6.1 and 6.2(i), (ii) guarantee the validity of Assumption 5.1
in the preceding section; compare also with Remark 5.7. Moreover, the composite
function u(t, I(t, ·)) inherits the order of smoothness posited in Assumption 6.2(iii)
for its components, for every t ∈ [0, T ].

Preparing the ground of our approach, we state the following implication of the
generalized Itô-Kunita-Wentzell formula (e.g. Kunita (1990), Section 3.3, pp 92-93).
This will enable us to carry out computations in a stochastically modulated dynamic
framework.

Proposition 6.4. Suppose that the random field F : [0, T ] × Rn × Ω → R is of
class C0,2([0, T ]× Rn) and satisfies

F(t, x) = F(0, x) +
∫ t

0

f(s, x)ds +
∫ t

0

g∗(s, x)dW (s), ∀ (t, x) ∈ [0, T ]× Rn,

almost surely. Here g = (g(1), . . . ,g(d)), g(j) : [0, T ] × Rn × Ω → R, j = 1, . . . , d
are C0,2([0, T ] × Rn), F-adapted random fields, and f : [0, T ] × Rn × Ω → R is a
C0,1([0, T ]× Rn) random field. Furthermore, let X = (X(1), . . . ,X(n)) be a vector of
continuous semimartingales with decompositions

X(i)(t) = X(i)(0) +
∫ t

0

b(i)(s)ds +
∫ t

0

(h(i)(s))∗dW (s); i = 1, . . . , n,

where h(i) = (h(i,1), . . . ,h(i,d)) is an F-progressively measurable, almost surely square
integrable vector process, and b(i)(·) is an almost surely integrable process. Then
F(·,X(·)) is also a continuous semimartingale, with decomposition

F
(
t,X(t)

)
= F

(
0,X(0)

)
+

∫ t

0

f
(
s,X(s)

)
ds +

∫ t

0

g∗
(
s,X(s)

)
dW (s)

+
n∑

i=1

∫ t

0

∂

∂xi
F

(
s,X(s)

)
b(i)(s)ds +

n∑

i=1

∫ t

0

∂

∂xi
F

(
s,X(s)

)(
h(i)(s)

)∗
dW (s)

+
d∑

j=1

n∑

i=1

∫ t

0

∂

∂xi
g(j)

(
s,X(s)

)
h(i,j)(s)ds(6.4)
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+
1
2

d∑

`=1

n∑

i=1

n∑

k=1

∫ t

0

∂2

∂xi∂xk
F

(
s,X(s)

)
h(i,`)(s)h(k,`)(s)ds , 0 ≤ t ≤ T .

The following notation will also be in use throughout the section.
Notation 6.5. For any integer k ≥ 0, let Ck(Rn,Rd) denote the set of functions

from Rn to Rd that are continuously differentiable up to order k. In addition, for any
1 ≤ p ≤ ∞, any Banach space X with norm ‖ · ‖X, and any sub-σ-algebra G ⊆ F , let

• Lp
G(Ω,X) denote the set of all X-valued, G-measurable random variables X

such that E‖X‖p
X < ∞ ;

• Lp
F(0, T ;X) denote the set of all F-progressively measurable, X-valued pro-

cesses X : [0, T ]× Ω → X such that
∫ T

0
‖X(t)‖p

Xdt < ∞, a.s.;
• Lp

F(0, T ;Lp(Ω;X)) denote the set of all F-progressively measurable, X-valued
processes X : [0, T ]× Ω → X such that

∫ T

0
E‖X(t)‖p

Xdt < ∞ ;
• CF([0, T ];X) denote the set of all continuous, F-adapted processes X(·, ω) :

[0, T ] → X for P -a.e. ω ∈ Ω.
Define similarly the set CF([0, T ];Lp(Ω;X)), and let R+ stand for the positive real
numbers.

For each (t, y) ∈ [0, T ]× R+ and t ≤ s ≤ T , we consider the stochastic processes

(6.5) Zt(s) , e−
R s

t
ϑ∗(v)dW (v)− 1

2

R s
t
‖ϑ(v)‖2dv, Ht(s) , e−

R s
t

r(v)dvZt(s).

These extend the processes of (2.6) and (2.8), respectively, to initial times other than
zero. In accordance with (5.1), we shall also consider the extended “adjusted” state-
price density process

Γt(s) , Ht(s) + δ(s) · Es

(∫ T

s

e
R θ

s
(δ(v)−α(v))dvHt(θ)dθ

)

= Ht(s)

[
1 + δ(s) · Es

(∫ T

s

e
R θ

s
(δ(v)−α(v))dvHs(θ)dθ

)]
(6.6)

= Ht(s)

[
1 + δ(s)

∫ T

s

e
R θ

s
(−r(v)+δ(v)−α(v))dvdθ

]
= Ht(s)µ(s), t ≤ s ≤ T.

We have invoked here Assumption 6.1, the martingale property of Z(·), and have set

(6.7) µ(t) , 1 + δ(t)w(t), where w(t) ,
∫ T

t

e
R s

t
(−r(v)+δ(v)−α(v))dvds, t ∈ [0, T ] ,

(6.8) w′(t) , d

dt
w(t) =

[
r(t) + α(t)− δ(t)

]
w(t)− 1 =

[
r(t) + α(t)

]
w(t)− µ(t)

for 0 ≤ t ≤ T . Note that w(·) is the deterministic reduction of W(·) in (5.20); namely,
W(·) ≡ w(·) within the context of the current section.

Furthermore, we define the diffusion process

(6.9) Y (t,y)(s) , yΓt(s), t ≤ s ≤ T,

which, from (6.5) and (6.6), satisfies the linear stochastic differential equation

(6.10) dY (t,y)(s) = Y (t,y)(s)
[(

µ′(s)
µ(s)

− r(s)
)

ds− ϑ∗(s)dW (s)
]

,
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or equivalently

(6.11) dY (t,y)(s) = Y (t,y)(s)
[(

µ′(s)
µ(s)

− r(s) + ‖ϑ(s)‖2
)

ds− ϑ∗(s)dW0(s)
]

,

and Y (t,y)(t) = yµ(t), Y (t,y)(s) = yY (t,1)(s) = yH(s)µ(s)/H(t). Invoking the “Bayes
rule” for conditional expectations, a computation akin to the one presented in the
proof of Theorem 5.5 shows that the optimal wealth/standard of living vector process(
X0(·), z0(·)

)
of (5.8), (5.14), satisfies

X0(t)− w(t)z0(t) =
1
ξ

Et

[ ∫ T

t

Y (t,ξ)(s)I(s, Y (0,ξ)(s))ds

]

= E0
t

[ ∫ T

t

e−
R s

t
r(v)dvµ(s)I(s, Y (0,ξ)(s))ds

]
= X

(
t,

Y (0,ξ)(t)
µ(t)

)
(6.12)

for 0 ≤ t ≤ T and ξ = Y(x − wz). We have used here the definition (6.9), and
introduced the random field X : [0, T ]× R+ × Ω → R+ defined as

(6.13) X (t, y) , E0
t

[∫ T

t

e−
R s

t
r(v)dvµ(s)I(s, yY (t,1)(s))ds

]
.

A comparison of (5.3), (6.12) and (6.13) divulges the dynamic and stochastic evolution
of the function X (·) as a random field in the sense that X (·) = X (0, ·).

We proceed with the derivation of the random fields C and Π in (6.1) by for-
mulating first a semimartingale decomposition for the random field X of (6.13). A
significant role in this program will be played by an appropriate backward stochastic
partial differential equation, whose unique adapted solution will lead, via the general-
ized Itô-Kunita-Wentzell rule, to a stochastic Feynman-Kac formula and consequently
to the desired decomposition for X .

Let us start by looking at the Cauchy problem for the parabolic Backward Stochas-
tic PDE (BSPDE for brevity):

−dU(t, η) =

[
1
2
‖ϑ(t)‖2Uηη(t, η) +

(
µ′(t)
µ(t)

− r(t) +
1
2
‖ϑ(t)‖2

)
Uη(t, η)

− r(t)U(t, η)− ϑ∗(t)Ψη(t, η) + µ(t)I(t, eη)

]
dt−Ψ∗(t, η)dW0(t)(6.14)

for η ∈ R, 0 ≤ t < T , as well as the terminal condition

(6.15) U(T, η) = 0, η ∈ R
for the pair of F-adapted random fields U and Ψ. According to Assumptions 6.1, 6.2,
and the study of parabolic backward stochastic partial differential equations by Ma
and Yong (1997), the problem (6.14), (6.15) admits a unique solution pair (U , Ψ) ∈
CF

(
[0, T ];L2(Ω;C3(R+))

) × L2
F
(
0, T ;L2(Ω;C2(R+;Rd))

)
. Apply the generalized Itô-

Kunita-Wentzell formula (cf. Proposition 6.4) for a fixed pair (t, y) ∈ [0, T )× R+, in
conjunction with the dynamics of (6.11) and the equation of (6.14), to get

d
[
e−
R s

t
r(v)dvU(s, log Y (t,y)(s))

]
= −e−

R s
t

r(v)dvµ(s)I(s, Y (t,y)(s))ds

− e−
R s

t
r(v)dv

[
ϑ(s)Uη(s, log Y (t,y)(s))−Ψ(s, log Y (t,y)(s))

]∗
dW0(s),

(6.16)
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almost surely. Adopting the proof of Corollary 6.2 in the above citation (p. 76),
integrate over [t, T ], take conditional expectations with respect to the martingale
measure P 0, and make use of (6.13), (6.15) to end up with

(6.17) X (t, y) = U(t, log(yµ(t)))

for every (t, y) ∈ [0, T ] × R+. We define, accordingly, the random field ΨX : [0, T ] ×
R+ × Ω → Rd by

(6.18) ΨX (t, y) , Ψ(t, log(yµ(t))) .

Lemma 6.6. Considering Assumptions 6.1 and 6.2, the pair of random fields
(X ,ΨX ), where X is provided by (6.13) and ΨX by (6.18), belongs to the class
CF

(
[0, T ];L2(Ω;C3(R+))

) × L2
F
(
0, T ;L2(Ω;C2(R+;Rd))

)
and is the unique solution

of the Cauchy problem

−dX (t, y) =

[
1
2
‖ϑ(t)‖2y2Xyy(t, y) +

(‖ϑ(t)‖2 − r(t)
)
yXy(t, y)− r(t)X (t, y)

− ϑ∗(t)yΨXy (t, y) + µ(t)I(t, yµ(t))

]
dt− (

ΨX (t, y)
)∗

dW0(t)

(6.19)

on [0, T )× R+, as well as the terminal condition

(6.20) X (T, y) = 0 on R+,

almost surely. Furthermore, for each t ∈ [0, T ), we have that X (t, 0+) = ∞, X (t,∞) =
0 and X (t, ·) is strictly decreasing, establishing the existence of a strictly decreasing
inverse random field Y(t, ·, ·) : R+ × Ω onto−−−→ R+, such as

(6.21) X (t,Y(t, x)) = x, for all x ∈ R+,

almost surely. The random field Y is of class CF
(
[0, T ); C3(R+)

)
.

Proof. From (6.14), (6.15), (6.17) and (6.18), it is verified directly that the pair
of random fields (X , ΨX ) possesses the desired regularity and constitutes the unique
solution of the Cauchy problem (6.14), (6.15), almost surely.

Next, we shall verify that Xy(t, y) is strictly negative, almost surely. To this end,
let (t, y) ∈ [0, T )×R+, h > 0, and invoke the (strict) decrease of I(t, ·), coupled with
(2.3), to verify that

1
h

[X (t, y)−X (t, y+h)
] ≥ E0

t

[∫ T

t

e−%

h

{
I(s, yY (t,1)(s))− I

(
s, (y + h)Y (t,1)(s)

)}
ds

]
.

By the mean-value theorem, there is a real number yh ∈ [y, y + h] such that

I(s, yY (t,1)(s))− I
(
s, (y + h)Y (t,1)(s)

)
= −hY (t,1)(s)I ′

(
s, yhY (t,1)(s)

)
,

and conditions (2.3), (4.4), (6.2) imply the inequality Y (t,1)(s) ≤ φ(s)Zt
0(s), in terms

of the deterministic function φ(t) , (1 + ∆w(t))e%+κ2
2(T−t) and the P 0-martingale

(6.22) Zt
0(s) , exp

{
−

∫ s

t

ϑ∗(v)dW0(v)− 1
2

∫ s

t

‖ϑ(v)‖2dv

}
, t ≤ s ≤ T.
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Due to Assumption 6.2(v), the right-hand side of the former inequality attains the
lower bounds

−E0
t

[∫ T

t

e−%

yh
g
(
s, yhφ(s)Zt

0(s)
)
ds

]
≥ −

∫ T

t

e−%

yh
g
(
s, yhφ(s)E0

t

(
Zt

0(s)
))

ds

= −e−%

∫ T

t

I ′(s, yhφ(s))φ(s)ds,

where we have also used Jensen’s inequality. Passing to the limit as h ↓ 0, we obtain
from Fatou’s lemma

Xy(t, y) ≤ e−%

∫ T

t

I ′(s, yφ(s))φ(s)ds < 0.

According to the implicit function theorem, the inverse random field Y : [0, T )×R+×
Ω onto−−−→ R+ of X exists almost surely, in the context of (6.21); in fact, the two random
fields enjoy the same order of regularity on their respective domains. Concluding,
the claimed values of X (t, 0+) and X (t,∞) are easily confirmed, respectively, by the
monotone and dominated convergence theorem.

Remark 6.7. At this point, we should note that Lemma 6.6 assigns to the pair of
random fields (X , ΨX ) an additional order of smoothness than is required in order to
solve the stochastic partial differential equation (6.19), (6.20). Nevertheless, this extra
smoothness allows us to apply the Itô-Kunita-Wentzell formula, as we did already in
(6.16). Furthermore, the above lemma yields the representation

X (t, y) =
∫ T

t

[
1
2
‖ϑ(s)‖2y2Xyy(s, y) +

(‖ϑ(s)‖2 − r(s)
)
yXy(s, y)− r(s)X (s, y)

− ϑ∗(s)yΨXy (s, y) + µ(s)I(s, yµ(s))

]
ds−

∫ T

t

(
ΨX (s, y)

)∗
dW0(s)

for the pair (X , ΨX ), namely, the semimartingale decomposition of the stochastic
processes X (·, y) defined in (6.13) for each y ∈ R+.

The random field Y represents the random dynamic extension of the function
Y(·), established in Section 5. In particular, Y(·) = Y(0, ·).

Remark 6.8. Combining (2.7), (6.16), (6.17) and (6.18), we obtain the dynamics

d

[
β(s)X

(
s,

Y (0,y)(s)
µ(s)

)]
= −β(s)

{
µ(s)I(s, Y (0,y)(s))ds

+
[
ϑ(s)

Y (0,y)(s)
µ(s)

Xy

(
s,

Y (0,y)(s)
µ(s)

)
−ΨX

(
s,

Y (0,y)(s)
µ(s)

)]∗
dW0(s)

}
.

Therefore, via integration, we arrive at the relationship

β(t)X
(

t,
Y (0,y)(t)

µ(t)

)
+

∫ t

0

β(s)µ(s)I(s, Y (0,y)(s))ds(6.23)

= X (0, y)−
∫ t

0

β(s)
[
ϑ(s)

Y (0,y)(s)
µ(s)

Xy

(
s,

Y (0,y)(s)
µ(s)

)
−ΨX

(
s,

Y (0,y)(s)
µ(s)

)]∗
dW0(s)
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for every (t, y) ∈ [0, T ]× R+, almost surely.
We are in position now to obtain stochastic feedback formulae for the optimal

investment and consumption processes. In view of (6.12), for each t ∈ [0, T ), the
effective range for the running optimal wealth X0(t) and for the associated standard
of living z0(t) will be

(6.24) Dt ,
{
(x′, z′) ∈ R+ × [0,∞); x′ > w(t)z′

}
.

Theorem 6.9. Under the Assumptions 6.1 and 6.2, the optimal consumption
c0(·) and the optimal trading strategy π0(·) of the dynamic optimization problem (4.8)
admit the stochastic adapted feedback forms of (6.1), determined by the random fields

C(t, x, z) , z + I
(
t, µ(t)Y(t, x− w(t)z)

)
,(6.25)

Π(t, x, z) , − 1
x

(σ∗(t))−1

[
ϑ(t)

Y(
t, x− w(t)z

)

Yx

(
t, x− w(t)z

) −ΨX
(
t,Y(

t, x− w(t)z
))

]
,(6.26)

for t ∈ [0, T ) and any pair (x, z) ∈ Dt.
Proof. For any initial wealth x and standard of living z such that (x, z) ∈ D0 of

(6.24), we may rewrite (6.12) as

Y (0,J )(t)
∣∣∣∣
J=Y(0,x−wz)

= µ(t)J (t)

with J (t) , Y(
t,X0(t)−w(t)z0(t)

)
. From (5.5) and (5.8), it develops that the optimal

consumption process of (5.10) is expressed by

c0(t) = z0(t) + I
(
t, µ(t)J (t)

)

for 0 ≤ t < T , and (6.25) is proved. Considering (6.23) for y = Y(0, x − wz), in
connection with (6.12), we obtain

β(t)
[
X0(t)− w(t)z0(t)

]
+

∫ t

0

β(s)µ(s)
[
c0(s)− z0(s)

]
ds

= x− wz −
∫ t

0

β(s)
[
ϑ(s)J (s)Xy (s,J (s))−ΨX (s,J (s))

]∗
dW0(s).

Differentiating (6.21), we arrive at Xy

(
t,Y(t, x − w(t)z)

)
= 1/Yx(t, x − w(t)z) for

every (x, z) ∈ Dt; setting Jx(t) , Yx

(
t,X0(t)−w(t)z0(t)

)
and using (6.7), the above

equation becomes

β(t)X0(t) +
∫ t

0

β(s)c0(s)ds

= x−
∫ t

0

β(s)
[
ϑ(s)

J (s)
Jx(s)

−ΨX (s,J (s))
]∗

dW0(s) + β(t)w(t)z0(t)

− wz −
∫ t

0

β(s)δ(s)w(s)
[
c0(s)− z0(s)

]
ds +

∫ t

0

β(s)z0(s)ds.(6.27)

On the other hand, use (4.3) and (6.8) to compute

β(t)w(t)z0(t)− wz =
∫ t

0

d
(
β(s)w(s)z0(s)

)

=
∫ t

0

β(s)δ(s)w(s)
[
c0(s)− z0(s)

]
ds−

∫ t

0

β(s)z0(s)ds,

(6.28)
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and conclude that (6.27) reads

β(t)X0(t) +
∫ t

0

β(s)c0(s)ds = x−
∫ t

0

β(s)
[
ϑ(s)

J (s)
Jx(s)

−ΨX (s,J (s))
]∗

dW0(s),

almost surely. A comparison of the later with the integral expression (2.12) implies
that (6.26) follows from X0(t)π∗0(t)σ(t) = −[

ϑ(t) J (t)
Jx(t) −ΨX (t,J (t))

]∗ .

Remark 6.10. Under the additional assumption of deterministic coefficients,
r(·) : [0, T ] → R, ϑ(·) : [0, T ] → Rd, σ(·) : [0, T ] → L(Rd;Rd), the set of (d × d)
matrices, α(·) : [0, T ] → [0,∞) and δ(·) : [0, T ] → [0,∞), the process Y (t,y)(·) of (6.9)
obtains the Markov property. Hence, the random fields of (6.25) and (6.26), which
represent the optimal policies in feedback form, reduce to the deterministic functions

C(t, x, z) = z + I
(
t, µ(t)Y(t, x− w(t)z)

)
,(6.29)

Π(t, x, z) = −(σ∗(t))−1ϑ(t) · Y(
t, x− w(t)z

)

xYx

(
t, x− w(t)z

) ;(6.30)

here Y(t, ·) is the inverse of the function

X (t, y) = E0

[∫ T

t

e−
R s

t
r(v)dvµ(s)I(s, yY (t,1)(s))ds

]
, 0 < y < ∞ .

[cf. Lemma 6.6 and (6.13)]. It is then evident that the decision-maker needs only
to keep track of his current level of wealth X0(t) and standard of living z0(t), not of
the entire history of the market up to time t; in other words, these processes serve as
sufficient statistics for the optimization problem (4.8)

7. The Stochastic Hamilton-Jacobi-Bellman Equation. We shall investi-
gate now the analytical behavior of the value function for the optimization problem
(4.8) as a solution of a nonlinear partial differential equation, widely referred to as
the stochastic Hamilton-Jacobi-Bellman equation. In this vein, we find it useful to
generalize the time-horizon of our asset market M0 by taking initial date t ∈ [0, T ]
rather than zero. Hence, for a fixed starting time t ∈ [0, T ] and any given capital
wealth/initial standard of living pair (x, z) ∈ Dt (cf. (6.24)), the wealth process
Xt,x,π,c(·), corresponding to a portfolio strategy π(·) and a consumption process c(·),
satisfies the stochastic integral equation

(7.1) X(s) = x +
∫ s

t

[r(v)X(v)− c(v)]dv +
∫ s

t

X(v)π∗(v)σ(v)dW0(v),

for t ≤ s ≤ T, and the respective standard of living process z(·) is developed by

(7.2) z(s) = ze−
R s

t
α(θ)dθ +

∫ s

t

δ(v)e−
R s

v
α(θ)dθc(v)dv, t ≤ s ≤ T.

In this context, we shall call admissible at the initial condition (t, x), and denote
their class by A(t, x), all portfolio/consumption pairs (π, c) such that Xt,x,π,c(s) ≥ 0,
∀ s ∈ [t, T ], almost surely. Each of these pairs satisfies the budget constrain

(7.3) Et

[∫ T

t

Ht(s)c(s)ds

]
≤ x.
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Conversely, a variant of Lemma 2.1, subject to an initial date t that is not necessarily
zero, shows that for every given consumption plan c(·) satisfying (7.3) we can fashion
a portfolio strategy π(·) such that (π, c) ∈ A(t, x). Furthermore, we extend the
optimization problem of Definition 4.2 by the random field

(7.4) V (t, x, z) , ess sup
(π,c)∈A′(t,x,z)

Et

[∫ T

t

u (s, c(s)− z(s)) ds

]
,

where

A′(t, x, z) ,
{

(π, c) ∈ A(t, x); Et

[∫ T

t

u− (s, c(s)− z(s)) ds

]
< ∞, a.s.

}
,

and V (0, ·, ·) = V (·, ·). Summoning Assumptions 6.1 and 6.2, we obtain

(7.5) V (t, x, z) = G
(
t,Y(t, x− w(t)z)

)
, (x, z) ∈ Dt, t ∈ [0, T ),

almost surely, where we have also introduced the real-valued random field

(7.6) G(t, y) , Et

[∫ T

t

u
(
s, I(s, yY (t,1)(s))

)
ds

]
, (t, y) ∈ [0, T ]× R+ .

One observes that the random fields (7.4) and (7.6) constitute the dynamic, prob-
abilistic analogues of those in (4.8) and (5.18) respectively, since V (·, ·) = V (0, ·, ·)
and G(·) = G(0, ·); this complies with the temporal and stochastic evolution of the
function X (·) described in the previous section. Clearly

(7.7) V (T, x, z) = 0, ∀ (x, z) ∈ D ;

in fact, V (t, x, z) < ∞ for every t ∈ [0, T ), (x, z) ∈ Dt, and with ∂Dt =
{
(x′, z′) ∈

[0,∞)2; x′ = w(t)z′
}

the boundary of Dt (cf. (5.26)) we have

(7.8) lim
(x,z)→(χ,ζ)

V (t, x, z) =
∫ T

t

u(s, 0+)ds, ∀ (χ, ζ) ∈ ∂Dt .

We shall derive next a semimartingale decomposition for the random field G
of (7.6). Recalling Assumptions 6.1, 6.2, and making use of the methodology de-
veloped in the proof of (6.19), (6.20), we consider the unique solution (V,Φ) ∈
CF

(
[0, T ];L2(Ω;C3(R+))

)× L2
F
(
0, T ;L2(Ω; C2(R+;Rd))

)
of the Cauchy problem

−dV(t, η) =

[
1
2
‖ϑ(t)‖2Vηη(t, η) +

(
µ′(t)
µ(t)

− r(t)− 1
2
‖ϑ(t)‖2

)
Vη(t, η)

− ϑ∗(t)Φη(t, η) + u(t, I(t, eη))

]
dt− Φ∗(t, η)dW (t)

(7.9)

for η ∈ R, 0 ≤ t < T , and the terminal condition

(7.10) V(T, η) = 0, η ∈ R,
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almost surely. As in (6.16), an application of Itô-Kunita-Wentzell formula, in con-
junction with (6.10) and (7.9), yields

dV(s, log Y (t,y)(s)) =− u
(
s, I(s, Y (t,y)(s))

)
ds

−
[
Vη(s, log Y (t,y)(s))ϑ(s)− Φ(s, log Y (t,y)(s))

]∗
dW (s),

and by analogy with (6.17), leads to

(7.11) V(t, log(yµ(t))) = Et

[∫ T

t

u
(
s, I(s, Y (t,y)(s))

)
ds

]
= G(t, y).

We also introduce the random field ΦG : [0, T ]× R+ × Ω → Rd via

(7.12) ΦG(t, y) , Φ(t, log(yµ(t))),

and have the following result.
Lemma 7.1. Adopting Assumptions 6.1 and 6.2, the pair of random fields (G, ΦG),

where G is given by (7.6) and ΦG by (7.12), is of class CF
(
[0, T ];L2(Ω;C3(R+))

) ×
L2
F
(
0, T ;L2(Ω;C2(R+;Rd))

)
and the unique solution of the Cauchy problem

−dG(t, y) =

[
1
2
‖ϑ(t)‖2y2Gyy(t, y)− r(t)yGy(t, y)

− ϑ∗(t)yΦG
y (t, y) + u(t, I(t, yµ(t)))

]
dt− (

ΦG(t, y)
)∗

dW (t)

(7.13)

on [0, T )× R+, and the terminal condition

(7.14) G(T, y) = 0 on R+,

almost surely. Moreover, for every (t, y) ∈ [0, T )× R+ we have almost surely:

G(t, y)−G(t, h) = yX (t, y)− hX (t, h)−
∫ y

h

X (t, ξ)dξ, 0 < h < y < ∞,(7.15)

Gy(t, y) = yXy(t, y), Gyy(t, y) = Xy(t, y) + yXyy(t, y).(7.16)

Once again (cf. Remark 6.7), the additional smoothness of (G, ΦG) will be essen-
tial in the formalization of explicit calculations, and the semimartingale decomposition
of the process G(·, y), y ∈ R+, is realized by

G(t, y) =
∫ T

t

[
1
2
‖ϑ(s)‖2y2Gyy(s, y)− r(s)yGy(s, y)

− ϑ∗(s)yΦG
y (s, y) + u(s, I(s, yµ(s)))

]
ds−

∫ T

t

(
ΦG(s, y)

)∗
dW (s).

Proof of Lemma 7.1: Use (7.9), (7.10), (7.11) and (7.12) to check that the pair of
random fields (G, ΦG) has the asserted order of regularity and is the unique solution of
the Cauchy problem (7.13), (7.14), almost surely. Repeat the computations in (5.34)
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concerning conditional expectations, subject to an initial time t 6= 0, to obtain (7.15);
differentiation then yields (7.16).

We carry on our analysis with the subsequent lemma, which copes with the semi-
martingale decomposition of the random field Y, defined in Lemma 6.6.

Lemma 7.2. Consider the hypotheses of Lemma 6.6. Then, there exists a pair of
random fields (Θ,Σ) ∈ LF

(
0, T

′
; C1(R+)

)× L2
F
(
0, T

′
; C2(R+;Rd)

)
for each 0 < T

′
<

T , such that

(7.17) −dY(t, x) = Θ(t, x)dt− Σ∗(t, x)dW0(t)

holds almost surely, for every (t, x) ∈ [0, T )× R+. In particular, these random fields
are uniquely determined by the relationships:

1
2

[
‖Σ(t, x)‖2 − ‖ϑ(t)‖2Y2(t, x)

]
Xyy(t,Y(t, x))− µ(t)I

(
t, µ(t)Y(t, x)

)

+
[ (

r(t)− ‖ϑ(t)‖2)Y(t, x) + ϑ∗(t)Σ(t, x)−Θ(t, x)
]
Xy(t,Y(t, x))(7.18)

+ r(t)x +
[
Σ(t, x) + ϑ(t)Y(t, x)

]∗
ΨXy (t,Y(t, x)) + ϑ∗(t)ΨX (t,Y(t, x)) = 0

and

Xy(t,Y(t, x))Σ(t, x) + ΨX (t,Y(t, x)) = 0.(7.19)

Proof. Let (t, x) ∈ [0, T ) × R+. Invoking equation (6.19) for X and postulating
the representation (7.17) for Y, we may apply differentials and Proposition 6.4 on
identity (6.21), and integrate over [0, t], to compute

∫ t

0

{
1
2

[
‖Σ(s, x)‖2 − ‖ϑ(s)‖2Y2(s, x)

]
Xyy(s,Y(s, x))− µ(s)I

(
s, µ(s)Y(s, x)

)

+
[ (

r(s)− ‖ϑ(s)‖2)Y(s, x) + ϑ∗(s)Σ(s, x)−Θ(s, x)
]
Xy(s,Y(s, x))

+ r(s)x +
[
Σ(s, x) + ϑ(s)Y(s, x)

]∗
ΨXy (s,Y(s, x)) + ϑ∗(s)ΨX (s,Y(s, x))

}
ds

+
∫ t

0

{
Xy(s,Y(s, x))Σ(s, x) + ΨX (s,Y(s, x))

}∗
dW (s) = 0,

almost surely; (2.9) has also been used. Thus, the uniqueness for the decomposition
of a continuous semimartingale [e.g. Karatzas & Shreve (1991), p 149] implies that
both integrals of the above equation vanish. Differentiation of the Lebesgue integral
implies (7.18), while the quadratic variation of the stochastic integral vanishes as well,
leading to (7.19). The derived equations define uniquely the random fields Θ and Σ,
assigning to them the claimed order of adaptivity, integrability and smoothness.

Lemma 7.3. Under the Assumptions 6.1, 6.2, the random fields ΨX and ΦG of
(6.18) and (7.12) accordingly, satisfy almost surely the relationship

(7.20) ΦG
y (t, y)− yΨXy (t, y) = 0, ∀ (t, y) ∈ [0, T )× R+.

Proof. Taking time-differentials, then integrating (7.16) over [z, y], 0 < z < y <
∞, we get

dG(t, y)− dG(t, z) = ydX (t, y)− zdX (t, z)−
∫ y

z

dX (t, λ)dλ,
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almost surely, for 0 ≤ t < T. Now make the substitutions (6.19), (7.13) in the above
formula, and equate the respective martingale parts (e.g. Karatzas & Shreve (1991),
Problem 3.3.2) to end up with

(7.21) ΦG(t, y)− ΦG(t, z) = yΨX (t, y)− zΨX (t, z)−
∫ y

z

ΨX (t, λ)dλ.

Of course, (7.21) is valid only if the interchange of Lebesgue and Itô integrals
∫ y

z

∫ t

0

ΨX (s, λ)dW (s) dλ =
∫ t

0

∫ y

z

ΨX (s, λ)dλ dW (s)

holds almost surely, for each t ∈ [0, T ). But this is true, due to the observation that
L(t, ·) =

∫ ·
z
ΨX (t, λ)dλ is a C2 random field on [z,∞), and Exercise 3.1.5 in Kunita

(1990). Differentiating (7.21) we obtain (7.20).
We are ready now to state the main result of this section.
Theorem 7.4. (Stochastic Hamilton-Jacobi-Bellman Equation): Under Assump-

tions 6.1 and 6.2, the pair of random fields (V, Ξ), here the value random field V (t, x, z)
is given by (7.5), (7.7), and

(7.22) Ξ(t, x, z) , ΦG
(
t,Y(t, x− w(t)z)

)− Y(t, x− w(t)z)ΨX
(
t,Y(t, x− w(t)z)

)
,

is of class

CF
({

t ∈ [0, T ]; V (t, ·, ·) ∈ C3,3(Dt)
})× L2

F
({

t ∈ [0, T ); Ξ(t, ·, ·) ∈ C2,2(Dt;Rd)
})

.

Furthermore, this pair (V,Ξ) solves on
{
(t, x, z); t ∈ [0, T ), (x, z) ∈ Dt

}
the stochas-

tic Hamilton-Jacobi-Bellman partial differential equation of dynamic programming

−dV (t, x, z) = ess sup
0≤c<∞
π∈Rd

{
1
2
‖σ∗(t)π‖2x2Vxx(t, x, z)

+
[
r(t)x− c + π∗σ(t)ϑ(t)x

]
Vx(t, x, z) +

[
δ(t)c− α(t)z

]
Vz(t, x, z)(7.23)

+ π∗σ(t)xΞx(t, x, z) + u(t, c− z)
}

dt− Ξ(t, x, z)dW (t)

with the boundary conditions (7.7) and (7.8), almost surely. Furthermore, the pair of
random fields (Π(t, x, z), C(t, x, z)) of (6.25), (6.26) provides the optimal values for
the maximization in (7.23).

Proof. Differentiation of (6.21), (7.5) and (7.22), in combination with (7.16) and
(7.20), leads almost surely to

Xy

(
t,Y(t,x− w(t)z)

)Yx(t, x− w(t)z) = 1,

Vx(t, x, z) = Y(t, x− w(t)z), Vz(t, x, z) = −w(t)Y(t, x− w(t)z),

Vxx(t, x, z) = Yx(t, x− w(t)z), Ξx(t, x, z) = −Yx(t, x− w(t)z)ΨX
(
t,Y(t, x− w(t)z)

)

for (x, z) ∈ Dt, 0 ≤ t < T. Using these formulae and (6.7), we may rewrite the
right-hand side of (7.23) as

[
r(t)xY(t, x− w(t)z) + α(t)w(t)zY(t, x− w(t)z)
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+ ess sup
0≤c<∞

{
u(t, c− z)− c µ(t)Y(t, x− w(t)z)

}

+ ess sup
π∈Rd

{
1
2
‖σ∗(t)π‖2x2Yx(t, x− w(t)z) + π∗σ(t)x

[
ϑ(t)Y(t, x− w(t)z)

− Yx(t, x− w(t)z)ΨX
(
t,Y(t, x− w(t)z)

)]}
]
dt

−
[
ΦG

(
t,Y(t, x− w(t)z)

)− Y(t, x− w(t)z)ΨX
(
t,Y(t, x− w(t)z)

)]
dW (t).

The strict concavity of both expressions to be maximized allows us to differentiate
and solve the resulting equations, in order to attain the optimal values of c and π.
These values turn out to coincide with (6.25) and (6.26), respectively. Substituting
them now into the later expression, we are led to

[
r(t)xY(t, x− w(t)z) + α(t)w(t)zY(t, x− w(t)z)

+ u
(
t, I

(
t, µ(t)Y(t, x− w(t)z)

))

− µ(t)Y(t, x− w(t)z)
[
z + I

(
t, µ(t)Y(t, x− w(t)z)

)]

− 1
2Yx(t, x− w(t)z)

∥∥ϑ(t)Y(t, x− w(t)z)(7.24)

− Yx(t, x− w(t)z)ΨX
(
t,Y(t, x− w(t)z)

)∥∥2
]
dt

−
[
ΦG

(
t,Y(t, x− w(t)z)

)− Y(t, x− w(t)z)ΨX
(
t,Y(t, x− w(t)z)

)]∗
dW (t).

On the other hand, employing differentials on (7.5), we have that

dV (t, x, z) = dG
(
t,Y(t, x− w(t)z)

)− w′(t)zYx(t, x− w(t)z)Gy

(
t,Y(t, x− w(t)z)

)
.

Also, couple (7.17) with (2.9) to derive the alternative representation of Y:

dY(t, x) =
[
ϑ∗(t)Σ(t, x)−Θ(t, x)

]
dt + Σ∗(t, x)dW (t).

Then, a straightforward application of Itô-Kunita-Wentzell formula, involving (7.13),
yields that the left-hand side of (7.23) is equal to

−
[

1
2

[
‖Σ(t, x− w(t)z)‖2 − ‖ϑ(t)‖2Y2(t, x− w(t)z)

]
Gyy

(
t,Y(t, x− w(t)z)

)

+
[
r(t)Y(t, x− w(t)z) + ϑ∗(t)Σ(t, x− w(t)z)

−Θ(t, x− w(t)z)
]
Gy

(
t,Y(t, x− w(t)z)

)

+
[
Σ(t, x− w(t)z) + ϑ(t)Y(t, x− w(t)z)

]∗
ΦG

y

(
t,Y(t, x− w(t)z)

)

− u
(
t, I

(
t, µ(t)Y(t, x− w(t)z)

))
]
dt

−
[
Gy

(
t,Y(t, x− w(t)z)

)
Σ(t, x− w(t)z) + ΦG

(
t,Y(t, x− w(t)z)

)]∗
dW (t),
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which via (7.16) becomes

−
[

1
2
‖Σ(t, x− w(t)z)‖2Xy

(
t,Y(t, x− w(t)z)

)

+ Y(t, x− w(t)z)
{

1
2

[
‖Σ(t, x− w(t)z)‖2

− ‖ϑ(t)‖2Y2(t, x− w(t)z)
]
Xyy

(
t,Y(t, x− w(t)z)

)

+
[
r(t)Y(t, x− w(t)z)− 1

2
‖ϑ(t)‖2Y(t, x− w(t)z)

+ ϑ∗(t)Σ(t, x− w(t)z)−Θ(t, x− w(t)z)
]
Xy

(
t,Y(t, x− w(t)z)

)}

+
[
Σ(t, x− w(t)z) + ϑ(t)Y(t, x− w(t)z)

]∗
ΦG

y

(
t,Y(t, x− w(t)z)

)

− u
(
t, I

(
t, µ(t)Y(t, x− w(t)z)

))
]
dt

−
[
ΦG

(
t,Y(t, x− w(t)z)

)− Y(t, x− w(t)z)ΨX
(
t,Y(t, x− w(t)z)

)]∗
dW (t).

Finally, Lemmata 7.2 and 7.3 transform the latter to

−
[
− r(t)

[
x− w(t)z

]Y(t, x− w(t)z)− u
(
t, I

(
t, µ(t)Y(t, x− w(t)z)

))

+ µ(t)I
(
t, µ(t)Y(t, x− w(t)z)

)
+

1
2
‖ϑ(t)‖2Y

2(t, x− w(t)z)
Yx(t, x− w(t)z)

− ϑ∗(t)ΨX
(
t,Y(t, x− w(t)z)

)
+

1
2
‖ΨX (

t,Y(t, x− w(t)z)
)‖2Yx(t, x− w(t)z)

]
dt

−
[
ΦG

(
t,Y(t, x− w(t)z)

)− Y(t, x− w(t)z)ΨX
(
t,Y(t, x− w(t)z)

)]∗
dW (t).

Expanding the norm in (7.24) and recalling (6.8), we conclude that both sides of
(7.23) coincide almost surely.

Remark 7.5. Carrying out the maximization according to the proof of Theorem
7.4, the equation (7.23) takes the more conventional form

−dVt(t, x, z) = H
(
Vxx(t, x, z), Vx(t, x, z), Vz(t, x, z),Ξx(t, x, z), t, x, z

)
dt

−Ξ(t, x, z)dW (t),
(7.25)

where

H(A, p, q, B, t, x, z) ,− 1
2A
‖ϑ(t)p + B‖2 +

[
r(t)x− z − I(t, p− δ(t)q)

]
p

+
[
(δ(t)− α(t))z + δ(t)I(t, p− δ(t)q)

]
q + u

(
t, I(t, p− δ(t)q)

)

for A < 0, p > 0, q < 0 and B ∈ R. Notice that we have obtained a closed-form so-
lution of the strongly nonlinear stochastic Hamilton-Jacobi-Bellman equation (7.25),
by solving instead the two linear equations (6.19), (7.13) subject to the appropriate
initial and regularity conditions, and then performing the composition (7.5).



Aspects Of Utility Maximization With Habit Formation 31

Remark 7.6. Theorem 7.4 provides a rare illustration of the Peng (1992) ap-
proach to stochastic Hamilton-Jacobi-Bellman equations. More precisely, it formu-
lates the nonlinear stochastic partial differential equation satisfied by the value ran-
dom field of the stochastic optimal control problem (7.4). To our knowledge, this is
the first concrete illustration of BSPDE’s in a stochastic control context beyond the
classical linear/quadratic regulator worked out in Peng (1992).

As a consequence, (7.23) provides a necessary condition that must be satisfied
by the value random field V of (7.4). On the contrary, due to the absence of an
appropriate growth condition for V as each component of (x, z) ∈ Dt increases to
infinity, (7.23) fails to be also sufficient; in other words, we cannot claim directly that
V is the unique solution of (7.23) with boundary conditions (7.7), (7.8). We decide
though to treat this matter by establishing a necessary and sufficient condition for
the convex dual of V , defined as

(7.26) Ṽ (t, y) , ess sup
(x,z)∈Dt

{
V (t, x, z)− (

x− w(t)z
)
y
}
, y ∈ R,

by analogy with (5.25). Doing so, we avoid investigating the solvability of the nonlin-
ear stochastic partial differential equation (7.23), since it turns out that Ṽ is equiva-
lently characterized as the unique solution of a linear parabolic backward stochastic
partial differential equation (cf. (7.32)) and V can be easily recovered by inverting
the above Legendre-Fenchel transformation to have almost surely

V (t, x, z) = ess inf
y∈R

{
Ṽ (t, y) +

(
x− w(t)z

)
y
}
, (x, z) ∈ Dt.

We formalize these considerations as follows.
Theorem 7.7. (Convex Dual of V (t, ·)): Considering Assumptions 6.1, 6.2, and

a given t ∈ [0, T ), V (t, ·, ·) is a generalized utility function, as defined in Theorem 5.8,
almost surely; also,

Vx(t, x, z) = Y(t, x− w(t)z), ∀ (x, z) ∈ Dt,(7.27)
Vz(t, x, z) = −w(t)Y(t, x− w(t)z), ∀ (x, z) ∈ Dt.(7.28)

Furthermore, for (t, y) ∈ [0, T ]× R+, we have

Ṽ (t, y) = G(t, y)− yX (t, y) = Et

[∫ T

t

ũ(s, yY (t,1)(s))ds

]
,(7.29)

Ṽy(t, y) = −X (t, y),(7.30)

almost surely. Finally, the pair of random fields (Ṽ , Λ), where

(7.31) Λ(t, y) , ΦG(t, y)− yΨX (t, y), (t, y) ∈ [0, T ]× R+,

belongs to CF
(
[0, T ];L2(Ω; C3(R+))

)×L2
F
(
0, T ;L2(Ω;C2(R+;Rd))

)
and is the unique

solution of the following Cauchy problem for the linear BSPDE

−dṼ (t, y) =

[
1
2
‖ϑ(t)‖2y2Ṽyy(t, y)− r(t)yṼy(t, y)− ϑ∗(t)yΛy(t, y)

+ ũ(t, yµ(t))

]
dt− Λ∗(t, y)dW (t) on [0, T )× R+,(7.32)
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Ṽ (T, y) = 0 on R+.(7.33)

Merging now (7.22) and (7.31), we notice that the random fields Ξ and Λ of the
martingale parts of V and Ṽ , respectively, are related via the a.s. expression

(7.34) Ξ(t, x, z) = Λ
(
t,Y(t, x− w(t)z)

)
, t ∈ [0, T ), (x, z) ∈ Dt.

Proof of Theorem 7.7: Setting claim (5.26) aside, the first two parts of this result
represent the dynamic, stochastic counterpart of Theorem 5.8. Thus, all the respective
assertions, including (7.27)−(7.30), can be proved through a similar methodology,
keeping in mind the new feature of conditional expectation. From Lemmata 6.6, 7.1,
(7.29) and (7.31), it is easy to verify the stated regularity for the pair (Ṽ , Λ), while
the equations (7.32) and (7.33) are direct implications of (7.29), (7.13), (3.4), (6.19)
and (7.14) with (6.20).

Remark 7.8. In a Markovian framework, and with nonrandom model coefficients
(cf. Remark 6.10), the unique solutions (6.13), (7.6), (7.4) and (7.26) of the stochastic
partial differential equations of Lemmata 6.6, 7.1, and Theorems 7.4, 7.7, respectively,
are deterministic functions. In particular, the stochastic integrals in these equations
vanish, reducing them to deterministic ones.

The example that follows illustrates the use of Theorem 7.7 as an alternative
method for characterizing, even computing, the value random field and the stochastic
feedback formulas of the optimal portfolio/consumption pair.

Example 7.9. (Logarithmic utility). Take u(t, x) = log x, ∀ (t, x) ∈ [0, T ]× R+;
thus, I(t, y) = 1/y, ũ(t, y) = − log y − 1 for (t, y) ∈ [0, T ]× R+.
Case 1: Deterministic coefficients. The Cauchy problem (7.32) takes now the form

(7.35) Ṽt(t, y) +
1
2
‖ϑ(t)‖2y2Ṽyy(t, y)− r(t)yṼy(t, y) = −ũ(t, yµ(t)) on [0, T )× R+.

Motivated by the non-homogeneous term of (7.35), we seek appropriate functions
ν,m : [0, T ] → R such that

(7.36) ṽ(t, y) , −ν(t) log(yµ(t))−m(t)

satisfies (7.35), (7.33). Indeed, this is the case if and only if

(7.37) ν(t) = T − t, m(t) =
∫ T

t

[
1− (T − s)

(
1
2
‖ϑ(s)‖2 + r(s)− µ′(s)

µ(s)

)]
ds,

for 0 ≤ t ≤ T , and then ṽ ∈ C([0, T ] × R+) ∩ C1,3([0, T ) × R+). From Theorem 7.7,
ṽ is the unique solution of the Cauchy problem (7.35), (7.33), thus Ṽ ≡ ṽ,

X (t, y) =
ν(t)
y

, G(t, y) = ν(t)
[
1− log(yµ(t))

]
−m(t), (t, y) ∈ [0, T ]× R+.

Therefore,

Y(t, x) =
ν(t)
x

, x ∈ R+, V (t, x, z) = ν(t) log
(

x− w(t)z
ν(t)µ(t)

)
+ν(t)−m(t), (x, z) ∈ Dt,

and the feedback formulae (6.29), (6.30) for the optimal consumption and portfolio
are given, for every 0 ≤ t < T , by

C(t, x, z) = z +
x− w(t)z
ν(t)µ(t)

and Π(t, x, z) = (σ∗(t))−1
ϑ(t)

x− w(t)z
x

, (x, z) ∈ Dt.
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Case 2: Random coefficients. Our goal is to find an F-adapted pair of random fields
that satisfies (7.32), (7.33). By analogy with (7.36)− (7.37), we introduce in this case
the F-adapted random field

ṽ(t, y) , −ν(t) log(yµ(t))−m(t)

for (t, y) ∈ [0, T ]× R+, with ν(t) = T − t and

m(t) = Et

[ ∫ T

t

{
1− (T − s)

(
1
2
‖ϑ(s)‖2 + r(s)− µ′(s)

µ(s)

)}
ds

]
.

Moreover, the completeness of the market stipulates the existence of an Rd-valued,
F-progressively measurable, square-integrable process `(·), such that the Brownian
martingale

M(t) = Et

[ ∫ T

0

{
1− (T − s)

(
1
2
‖ϑ(s)‖2 + r(s)− µ′(s)

µ(s)

)}
ds

]

has the representation

M(t) = M(0) +
∫ t

0

`∗(s)dW (s), 0 ≤ t ≤ T.

It is verified directly that the pair (ṽ, `), where ṽ ∈ CF
(
[0, T ];L2(Ω;C3(R+))

)
, satisfies

(7.32), (7.33). Therefore, Theorem 7.7 implies that (ṽ, `) agrees with (Ṽ , Λ), and

X (t, y) =
ν(t)
y

, G(t, y) = ν(t)
[
1− log(yµ(t))

]−m(t), (t, y) ∈ [0, T ]× R+.

Consequently, for 0 ≤ t < T, it transpires that Y(t, x) = ν(t)/x , x ∈ R+ and

V (t, x, z) = ν(t) log
(

x− w(t)z
ν(t)µ(t)

)
+ ν(t)−m(t), (x, z) ∈ Dt .

For this special choice of utility preference, X (and so Y) is deterministic, and the
feedback formulas (6.25), (6.26) for the optimal consumption and portfolio decisions
are the same as those of the previous case.

Remark 7.10. Within the Markovian context stipulated by nonrandom coeffi-
cients, Detemple & Zapatero (1992) obtain a closed form representation for the opti-
mal portfolio via an application of the Clark (1970) formula; this reduces to “feedback
form” for the logarithmic utility function. This feedback formula now becomes a spe-
cial case of (6.30) (cf. Example 7.9, Case 1) that was established in Theorem 6.10 for
any arbitrary utility function.

In the case δ(·) = α(·) = 0 and z = 0, namely, without habit formation in
the market model, we have that µ(·) = 1 from (6.7), whence our analysis remains
valid for a random interest rate process r(·) as well. Then, this paper generalizes
the role of dynamic programming and partial differential equations in classical utility
optimization, explored in Karatzas, Lehoczky & Shreve (1987) for the special case of
deterministic coefficients.
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8. Conclusion. In this paper we explored various aspects of portfolio-consump-
tion optimization under the presence of addictive habits in complete financial markets.
The effective state space of the optimal wealth and standard of living processes was
identified as a random wedge, and the investor’s value function was found to exhibit
properties similar to those of a utility function. Of particular interest is the interplay
between the dynamic programming principles and the stochastic partial differential
equation theory that led to the characterization of the value random field as a so-
lution of a (highly non-linear) Hamilton-Jacobi-Bellman backward stochastic partial
differential equation. In fact, the convex dual of the value random field turned out
to be the unique solution of a parabolic backward stochastic partial differential equa-
tion. A byproduct of this analysis was an additional representation for the optimal
investment-consumption policies on the current level of the optimal wealth and stan-
dard of living processes.

The existence of an optimal portfolio/consumption pair in an incomplete market
(that is, when the number of stocks is strictly smaller than the dimension of the
driving Brownian motion), is an open question. Following the duality methodology
deployed by Karatzas, Lehoczky, Shreve & Xu (1991), one can complete the market
with fictitious stocks by parametrizing a certain family of continuous exponential local
martingales, which includes Z(·) of (2.6) and gives rise to an analogous class of state-
price density processes. An associated dual optimization problem can be defined in
terms of the respective parametrized “adjusted” state-price density processes, such
that a possible minimizer induces a null demand for the imaginary stocks. But in the
context of habit formation, the dual functional fails to be convex with respect to the
dual parameter, and new methodologies are needed to handle the problem.
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