THE OPTIMAL STOPPING PROBLEM FOR A GENERAL
AMERICAN PUT-OPTION

NICOLE EL KAROUI* AND IOANNIS KARATZASt
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Abstract. We derive the representation ¥ [f e L r(s)dz (K —M(t, u)) +'r(u)clu+
¢

r .
e f: m(e)ds (KA S(T) — M(x, T—-)) * I.?-'(t)] for the “early exercise premium” V (¢; K) —
P (t; K) of the Americanput-option V(#; K) = esssupi<cr<7& [e_ ft rw)du (K—S(T)) +

|5': (t)] on an asset with positive, contimuous price process S(-)). Here the supremum
is ever all stopping times T with values in [¢,T], r(-) > 0 is the interest rate of the
T
- d
numséraire, K > 0 is the “strike price” of the option, Pe(t; K) = E[e ff ru)du (K —
S (T)) + If' (t)] is the value of the corresponding European put-option, E denotes expec-
tation under the so-called “risk-neutral equivalent martingale measure”, and M(t,8) =
infrcuce M(u), t £ 6 < T is the lower envelope of the “index process” M (t) = inf {K >
0/V(HK)=K - 5(t}}, 0<t < T,

1. Imiroduction and summary. We offer in this paper a represen-
tation for the early exercise premium V(¢; K} — P.(t; K) of an American
put-option with given strike-price K > 0, on a finite time-horizon [0, T
and on an asset with arbitrary continuous, strictly positive process S(-).
Here

(1.1} V(; K) = esssup (<< E[e_ f: ru)du (K—S(T))+|f(t)]

Tstop.time

is the value of the American put-option at time t¢[0, T,

(12) Pt K) = Bl T (K — S(T) |7 (0)

the value of the corresponding European put-option, r(-) > 0 is the interest
rate process for the prevailing pure discount bound (numéraire) in the
economy, and E denotes expectation with respect to the so-called “risk-
neutral” equivalent martingale measure. In terms of the Gittins-index-like
process

(1.3) M) =inf {K > 0/V(3; K):K——?S'(t)}, 0<t<T
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64 NICOLE EL KAROUI AND IOANNIS KARATZAS

which gives at any time ? the smallest value of the strike-price that makes
immediate exercise of the option profitable, and its lower envelope M (t, 6) =
inficu<e M(u),t <8 < T, our representation of the early exercise premium
is

T
(1Z§t;I{) - P(t;K)=FE [/ e J rteyas (K - M(, u))+r(u)du
' t
e LT (e A STy - MGt T-) T |F Q)]
It takes on the simpler, and more familiar, form 7

(15) V(;K) — Po(t; K) f - [} vt le{M(u)<K}r(u)du|f(t]

1
- . —_ d
in a special case where ¢ Jo r(oyas

and leads to the representation

S(t) is a P-martingale (cf. Remarks 5.4);

f r(s)ds o wdu
16) V(t; KY=K — E f (K A M(t,u))r{ )d

dem o T (A S(T) A M(E T )‘}"(f)]

‘for the value of the American put-option as in (1.1).

The paper is organized as follows. Section 2 studies the optimal stop-
ping problem of (1.1) in some detail, including an explicit representation
for the right-hand derivative of the convex mapping K — V(t; K), whereas
section 4 introduces the index process M(-) of (1.3) via its lower enve-
lope, as in El Karoui & Karatzas (1994). The connection of this optimal
stopping problem with the pricing of the American put-option is made in
section 3, using the by now standard framework of Bensoussan (1984). The
representation (1.4) is then derived in section 5, using the formula for the
derivative of K +— V{(¢; K) and properties of the lower envelope for the
index process. Several consequences of the representation (1.4} are also
discussed I section 3.

The paper was presaged by Jacka (1991}, who obtained a special case
of the representation (1.5), using very different methods. Our approach is
fully probabilistic, and reminiscent of our recent work El Karoui & Karatzas
(1994) on the continuous-time dynamic allocation or “multi-armed bandit”
problem.

2. The optimal stopping problem. Consider a complete probabilé
ity space (2, F, P), and a filtration F = {F(1)} ., Of sub-o-fields of F
which satisfies the “usual conditions” of right-confinuity and augmentation
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THE OPTIMAL STOPPING PROBLEM 65

by P-negligible sets, and is quasi-left-continuous. With T" > 0 a fixed real
constant, and any 0 < v < u < T, we denote by S,  the class of all stopping
times of F with values in [v, u]. Let »(-), S(-) be two F-progressively mea-
surable processes with values in [0, co) and (0, o) respectively, and assume
that S(-} has continuous paths with P{S(t) = z) =0, Vte(0, T}, zeR.

QOur object of interest in this paper is the family of optimal stopping
problems '

oy V0 = wompr, B exp{ [ raia} i - 50 o)
| 0<t<T z

parametrized by Ke[0,00). As we shall discuss in more detail in the next
section, the interpretation for S{-) is that of the price-per-share of a certain
asset, and for V(¢; K) that of the value of an American pui-opiion on the
asset (i.e., of a contract which confers to its holder to the right to sell one
share of the asset at the specified “strike-price” K, and at any time during
the interval [£,7]). In this context, the process

o o
(2.2) RWK%=EF@{—]ﬂMMHK—SHﬂWT@L
ogtht

has the interpretation of the value of the corresponding European put-option
(i-e., of a similar contract as before, but in which the holder can exercise
his right only at the terminal time T7).

We shall assume throughout that the process P,(-; K) is strictly posi-
tive on [0, T):

(2.3) P(t;K)>0; Y0<t<T, 0<K <oo.
It is also obvious that
(24) V(EHEK) > P K)V (K -SE)T; Y0<t<T, 0<K<oo.

From standard theory on optimal stopping (e.g. Fakeev (1970), Bismut
& Skalli (1977), El Karoui (1981), Karatzas (1993)) we know that, with K
fixed and

(2.5) V(5 K) = o "™ (g st 0<t<T,

‘the process

(2.6) 2t K) = e~ o MY (1 K)
= esssup,.s,  E[Y(r; K)|F(t)], 0<t<T
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is the Snell envelope of (i.e., the smallest supermartingale that dominates)
Y{-; K). Clearly, Z(T; K) = Y(T'; K) a.s. The stopping time

oi(K) := inf {0e[t, T1/Z(8; K) = Y(6; K)}

(2.7) = inf {0e[t, T]/V(8; K) = K — S()} AT

is optimal, i.e., achieves the supremum in (2.1), (2.6), and
(2.8) the process {Z(0 A 03(K); K), F(0)},cperp is a martingale.

Furthermore, since Y (- ; K) has continuous paths with values in [0, K], the
supermartingale Z{-; K) also takes values in [0, K] and is regular, thus
quasi-lefi-continuous thanks to the quasi-left-continuity of the filiration F.
Here are some basic properties of the random fields (¢, K,w) —
o(K,w), (t, K,w)— V(t; K,w), considered in their measurable versions.

LEMMA 2.1. For every te[0,T), the mapping
(i) K v V(t; K) is convex, increasing, null at K = 0, and strictly positive,
(ii) K — K-V(t; K) is concave, increasing, null at K = 0, and dominated
by K AS (t)
(iii) K s oy(R) is decreasing, rJght-contmuous, with crt(0+) T,
almost surely.

" Proof.

(i) The convexity and increase follow from the facts that the mapping

K — (K —~ z)* has these properties, and that we are then taking
supremum over the class §; 7 of stopping times.
(ii) We have from (2.1)

(29) E [K(l —e N rlwduy 4 em L7 r(w)du (K A S(T)) lj:(t)]
<K AS().

The two functions of K inside the expectation are linear and con-
cave, respectively, and both are increasing; since we are taking an
infimum (over the class S; ), these properties persist.

(iii) Introduce the nonnegative random field

o(t; K) == V(t; K) — K + S(t),

(2.10) 0<t<T, Ke0,00)

in terms of which we can rewrite (2.7) as o(K) =
1nf{96t [t,T]/¢(6; K) = 0} AT. For any fixed ¢e[0,T), the map-
ping K — (t; K) is continuous and decreasing (from (ii)); thus
if {Kp}nen C (K, 00) is a strictly decreasing sequence with K =
limy, oo K;n, we have 0 < o(0:(K2); K1) < p(a3(Kg); K2) = 0 s0
that o¢(K1) < 04(K2), a.s. Therefore, o, = limp o T 0:(Kn)
exists and 0. < oy(K).
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THE OPTIMAL STOPPING PROBLEM 67

More generally, o(ot(Kz); Km) = 0 for £ > m; now let £ T oo to obtain,
from the quasi-left-continuity of Z(-; K) {and thus of V{(-, K),¢(-; K) as
well): o(o.; Km) = 0, YmeN. Finally, let m — oo and exploit the continu-
ity of ¢(%; -), to obtain w{e«; K) = 0, a.s. It follows that ¢(K) < 0., and
thus K — o3(K) is right-continuous. O

THEOREM 2.2. For every te[0,T), the convex mapping K — V(t, K)
has right-hand derivative given by

o+
Y V{t; K)

= B[R, \l{oi(x)<T} + Bolis(m)2k, oui)=T} | F ()]
= E[R iy~ Bpliouxy=r, s>k F )],

with the notation

(2.11)

] .
(2.12) R = exp{ - fr(s)ds}, 0<t<8<T.

t

Proof. Fix (¢, K)e[0,T) x (0,00), and for any given £ > § denote
ot = (K +¢), 0% = 04(K). Of course ¢° < ¢ a.s., and thus Z(-A¢%; K)
is a martingale (from (2.8)); therefore, V(t; K) = E[RL. - V(0*; K)|F(?)].
On the other hand, V(#; K +¢) = E[,i'%f,,r (K + &=~ S(vf ))+|.7-"(t)] from
the optimality of ¢° at (¢, K + ¢), whence
V(t; K+e) = V(i K) =

(2.13) B[R, (K +e— S(o*) " - V(e ) }|F )]

But on {¢° < T}, we have: K+e—S(0°) =V (e*; K+¢) >0, V(o5; K) >
K — S(o%), thus (K +¢— S(o's))'l' — V{(o®; K) < &. Furthermore, on the
event {o° = T'} we have V(o*; K) = (K — S(T))+, and so

(K+¢e— S(a‘))+ -V(e5;K) =
(I{ + &~ S(T))+ — (K - S(T))+ < elikte>s(T)} -

Back into (2.13), these observations lead to the upper bound

V(t; K +¢) - V(T; K)
€
< B[RLel(pecty + R Lioo=rinismi< i re} | F(1)]
< E[Rboligocry + Ry ligo=rinism<iy [ F ()] +
+E[(R§;c - Rio)l{aO<T} + 1{0¢<00=T}-
+lir<s@)sK+e3 [F(@)] -
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But now limgjo T ¢° = ¢¥ a.s., and from the (conditional) monotone and

bounded convergence theorems, we obtain that the last conditional expec-
tation goes to zero as € | 0, whence

e o V(t; K +¢) = V(t; K) <
(2.14) £
E[Rjol{s0cr} + Riliso=r, sery<xy|F(1)] .-

To obtain a lower bound, recall the supermartingale property of
Z(-; K + ¢), which gives V{{; K +¢) > E[R} V(cr K +&){F(@®)], and
in conjunction with V(t; K) = B[R.,(K — S(c?)) |JE' (t)] get

Vit K +¢) -Vt K) ;

(2.15) > B[R {V(¢% K +¢) — (K — 3(c°) "} F(1)]
2 B[R {(K +¢ - 5(0°)" - (K - 5(°) " }F ()]
Now on {¢? < T}, we have K — $(¢?) = V(¢% K) > 0, whence

(K+e-80"))" — (K-8 =¢.

On the other hand, on {¢° = T} the last expression in braces in (2.15)
becomes

(K +e- STt - (K - s(T)*
= {(K+¢-8(T)) — (K - 5(7)) }is(m<xy
-I—(K 4+ £ — S(T))+1{S(T)>K}
2 elys(m<ky -

i
i

Back into (2.15), these considerations give
VK +e) - VEK)
€
-2 E[RLolgpocry + Rplyoo=r, s(ri<ki|F)]
and therefore also (2.11) in conjunction with (2.14). O

Ilmslo

3. The American put-option. Suppose now that the filtration F
is the augmentation of the natural filiration generated by a d-dimensional
standard Brownian motion W = (W1, ..., W)’ on some complete probabil-
ity space (2, F, Py). Consider a financial market M with d+ 1 instruments
(assets), one bond with price So(-) governed by

(3.1) - dSu(t) = So()r®)dt,  Se(0) =1,

and d stocks, with prices-per-share S;{-) which satisfy the stochastic equa-
tions

dS;(£) = Si(8) [b:(H)dt + Z o35 (£)dW;(1)] ;
1=1 d O<t<T

(3.2)

driven
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driven by the Brownian motion W. Here r(-), b(-) = {b;(- )}3__1 , o(*)
{Uij(')}i j=1 are all bounded, F-progressively measurable processes, and
we suppose that the same properties hold for () = o=1(2)[b(t) — 7(¢)1].

We are also assuming here that ¢(t) is invertible for all 0 < ¢ < T, almost
surely. Then

1

(3:3) 2@ =exp [ [¢()aW() - 3 [os)’as], 0se<T

0

is an (F, Pp)-martingale, and thus P(A) := Eo[Z(T)}14] defines a new prob-
ability measure on ({2, ) which is eguwalent to Ps. Under this new mea-
sure P, the process W(t) = W(t) — fo 6(s)ds, 0 < < T is standard Brow-

nian motion and the discounted stock price processes -g;—%—))-, i=1,...,dare
martingales —whence the terminology “risk-neutral equivalent martingale
measure” for P.

Consider now an arbitrary “asset” in this market M, with price-per-
share process S(-) satisfying the conditions of section 2; in particular, we
can take S(-) = S;(-) for some i = 1,...,d but this is not necessary. Sup-
pose that, at time ¢ = 0, you sign a contract with another “agent”, which
gives you the right (but not the obligation) to sell to the agent one share of
the asset, at the contractually specified price Ke(0, 00) and at any time p
in [0,7]. Such a contract is called an American put-option with horizon T
and “strike price” K. (The corresponding contract with only one possible
exercise time, namely p = T, is called a Furopean put-option). The signing
of such a contra.ct effectively commits the agent to make to you a payment
of (K p)) at the exercise time p. What is the “fair price”, or “value”
of the contract, that you should be charged att =09

The agent can of course invest in the instruments of the market M, by
committing an initial capital z > 0 and then selecting a porifolio process
7 = (m1,...,7q) and an increasing cumaulative consumptzon process C' with
c(0)y=0 (both F-progressively measurable with C(T') + fo | =(2)|)? dt <
o0, a.s.). His wealth-process X(-) = X®™Y(.) is then determined by

dX(t) = fj 73 [b: (t)dt + f 053 (£)dW; (2)]
(34) i=1 ; i=1
+(X (@) = 2 m@®)r(t)dt — dC(@), X(0)==z.

1_.

The agent should strive to cover his obligation by selecting z and (m, C) in
such a way that

(3.5) X50o(t) > (K- S@)F, vo<i<T
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holds almost surely. Now the fair price F4 for the American put-option,
should be the smallest initial capital that allows the agent to achieve this,
i.e.,

(3.6) Fy = inf{z > 0/3(x,C) s.t. (3.5) holds a.s.} .

It was shown by Bensoussan (1984), Karatzas (1988, 1989) (see also Karatzas
& Shreve (1994)) that

(3.7) Fa=V(0;K) asin (2.1);

in other words, the valuation of this contract 1s given in terms of the optimal
stopping problem of (2.1). It is a far more straightforward matter to see
that the value

(3.8) Fp:=inf {z > 0/3(r,C)st. xX=5¢(T) > (K S(T)*, as.}

of the corresponding European put-option is given by the famous Black &
Scholes formula

(3.9) Fg = Pe(0; K) asin (2.2).

The nonnegative number Fy — Fgp = V(0; K) — P(0; K) has then an obvi-
ous interpretation as early evercise premium for the American put-option.
Furthermore, oo(K) = inf {6¢[0,T)/V(6; K) = K — S(8)} AT as in (2.7)
has the interpretation of optimal ezercise {tme p for this problem.

Similarly, V(¢; K) (resp. P.(t; K)) can be interpreted as the wvalue for
the American (respectively, European) put-option, and V(t; K) — P.(t; K)
as an “early exercise premium”, at any {ime te[0, T"]; see Karatzas & Shreve
(1994) for the particulars of this interpretation.

Remarks 3.1: Marc Romano (Université de Paris-Dauphine) observes
that the third expression in (2.11) leads to the bounds

g+

(3.10) 0< E[RDO(K)}—— - V(0; K) < B(R}) — 0,

T—00

where the last property holds, for example, if fﬁw r{u)du = oo, a.s.

4. Index processes. For every te[0,T"), the set {K > O/V(t;_K) =
K — 5(t)} is an interval of the form [M(t),00), where M(t) is an F(f)-
measurable random variable that satisfies

(4.1) M{#) =inf {K > 0/V(t;K)= K — S(t)} > S(t), as
We also define

(4.2) M(T) = S(T).
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Now let
M(t,0) =
sup{K>0/o‘t(K)>9}=inf{K>0/G¢(K)§H}, t§9<T}
- M, T-) A S(T), ' - 8=T
(4.3) |

be the right-continuous inverse of the decreasing mapping X — o:(K). We
have the properties

(4.4) oi{K) >80 <= M(,8) > K <= M(u) > K, Vuc[t,b]
for 0 €t <0 < T,s0 that M(%,8) = inficu<s M (u) is the “lower envelope”

of M(-) on [t,d]. It is also clear that o¢(K) == inf { fe[t, T)/M(8) < K} AT.
Remarks 4.1: For every t¢[0,T), we have from (4.4):

ﬂ {os(K +&) < T}

>0 )
= m U {oe(K+e)<T—a}
e>0T—t<a<T 1
=UJ{M¢t,T - a) <K +¢} '
= {MET-) <K +e} = {M@E,T-) <K},
e>0
Therefore, _
M, T-)= inf{K > 0/0’;(1’{) < T}
as well as |
{M_(t,T—) < K}

= {o(K) < T} U {o(K) = T;00(K +) < T, Ve >0}.
We deduce
(45) [MET-)<K<S(T)} ={o(K)<T, S(T)> K},

because on {o:(K +¢) < T} we have S(ox(K +¢)) = K +¢ ~ V(o:(K +
£); K+¢) < K+ and thuson Neso{oe(K) =T, oy(K+e) < T} : S(T) =
S(a:(K)) = S(lime g 04(K +¢)) = limeyo S{0e(K +6)) < K. o

The processes M(-) and M(t, -) have obvious similarities with the Git-
tins inder process and its lower envelope, which have proved very useful
in the study of dynamic allocation (or “multi-armed bandit”) problems;
see, for example, El Karoui & Karatzas (1994). Clearly, in the context
of section' 3, M (%) can be interpreted as the smallest value of the strike-
price KX > 0 that makes immediate exercise of the American put-option
profitable at time .
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5. Early exercise premium in terms of indices. We can present
now our main result, the expression (5.1) for the early exercise premium
V(t; K) — P.(t; K) for the American option of section 3 in terms of the
lower envelope M(t,-) of the index process as in (4.3). This leads to a
similar representation (5.3) for the value V' (t; K) itself.

THEOREM 5.1. In terms of the lower envelope M(t,-) of the index
process M(-) in (4.2), (4.3), we have for every te[0,T) the following repre-
sentation of the “early exercise premium”: '

(5.1)1/@;!{) P, (t K) /Rt (K- M(t u)) r(u)du
+RE (K A S(T)) — M(t,T-))" ‘F(t)] :

. Proof. It is quite easy to compute gf% P.(t;K)=F [R}l{S(T)gK} |.?-"(t)]
‘from (2.2). Therefore, we obtain in conjunction with (2.11):

o+

oK

[V(t; K) — Pu(t; K)]
=F _1{at(K)<T} (Rﬁt(x) - R’E‘l{S(T)SK}) If(t)]
(52) =F _(an(.r{) - RL) + R%l{s(T)>K}n{m('K)<T}lf(t)]

=E / Ry Ly wysxyr(w)du + R Ly o)<k <s() }f (f)] )

using (4.5), (4.4) and its corollary R}, (K)—R} = ftT Ri oy k)<uyr{u)du =

f Rt 1{M(t u)(ﬁ’}?"(ﬂ)dﬂ
Integrating with respect to X in (5.2) over [0, K], and using V(¢;0) =
P.(t;0) = 0, we obtain (5.1) from the conditional Fubini theorem. O

COROLLARY 5.2. For every te[0,T"), Ke(0,00) we have the a.s. repre-
sentation '

V(G K) =
(5.3)

B[ [ RL(K A M6 w)r(u)du+ RE(K AMD)|F0)]
in particular,

(5.4) Jim [K ~ V(5 K)] / RLM (4 u)r(u)du + Ry MG, T)|F(2)]

" This |-
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Proof. We can write (2.2) equivalently as

T
K —P.(:;K)=E| f R Kr(u)du + Ry (K A S(T)) ‘J-'(t)] .

t

Subtracting (5.1) memberwise from this equality, and recalling the defini-
tion of (4.3) for t = T, we obtain (5.3); (5.4) follows then by Monotone -

Convergence. [

Remarks 5.3: The process
1
(5.5) RS[M(0,1) — V (2, M(0,1)] + ] RO M0, w)r(u)du, 0<t<T
4]

is an F-martingale. Indeed, (5.3) gives'

T
8(0,8) — V (t,14(0,0) = B[ [ RO, wr(wdu+ BMOD|FO)]

t

and the martingale property follows directly from this.
Remarks 5.4: In the special setting of section 8 withd =1, r > 0, o=
o11 > 0 real constants and S(-) = S1(-), (5.1) takes the simpler form

T .
V(t; K) — P(t; K) = E| / RL K1 imu)< gyr(u)dul F ()]
(5.6) C

= E[/RiKI{V(u;K)=K_S(u)}'r‘(u)d‘u!f(t)] .

This last expression was obtained by S. Jacka (1991). In fact, for this
special case it can be easily verified that

S(t)

—_ . <t<T
bl(T—t)’ S

(5.7) V@t K) = u(T —t, SE); K), M(t)=

where (6,2, K) — u(8,z; K) : (0,00)° — (0,00) and (8,K) — bg(8) :
(0,00)% — (0, 00) are suitable functions with the scaling properties u(8, «;
K) = Ku(6, £;1), bp(f) = Kb1(6). Furthermore, bi(-) is then continuous
and decreasing with b;(0+) = 1; it is the optimal exercise boundary for
the American put-option corresponding to K =1, in the sense that the
optimal stopping time of (2.7) with ¢ =0, K =1 takes the form oo(l) =
inf {¢e[0,7)/S(t) < b1 (T—t)}; see Jacka (1991), Myneni (1992) or Karatzas
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& Shreve (1994) for details. In this special ca.se; the formulae (5.2), (5.1)
become, respectively,

T
ias o
o= [V K) = P K)] = / mtreren it iy e Ol

4

—r(T ~1)
(5.8) l{mff<e<rb—l-(—gfr_)a—)<K<3(T)}1f(t)]
8.8

T

+

1
—r{T—t - S (9) +
+e T (K AS(T) t<1]ﬂ;{£T Bi(T - 9)) ‘Hﬂ]
(5.9)
This last representation is of some interest, as it involves compound Eu-
ropean options of the path-dependent (or “lock-back”) type. It follows
readily from (5.4) that

. ,
. ) S(6)
limg oo |[K-V(;K) = E r(u—t) A
gy VR | / re tgﬁéu(bl(f_g))du
—r(T—t) ;
+e o (bI(T %) )7 ]
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