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Integration with respect to the initial position of a continuous process killed upon reaching a moving
boundary, yields the paths of the solution to the Skorohed problem of reflecting the process along this
boundary.

This idea is employed to show that direct integration of the optimal risk in a stopping problem for
Brownian motion, yields the value function of the so-called monotone follower stochastic control
problem and provides an explicit construction of its optimal process. Ideas from the theory of balayage
for continuous semimartingales are employed, in order to find novel and useful representations for the
value functions of these problems.
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excessive functions, dual predictable projections, balayage, principle of “smooth fit”,
singular stochastic control.

1. INTRODUCTION AND SUMMARY

We show that integration with respect to the initial position of a continuous
process killed upon reaching a moving boundary, yields the paths of the solution
to the Skorohod problem of reflecting the process along this boundary.

This simple observation is employed to show that direct integration of the
optimal stopping risk

wr,x)= inf El:j h(r+t,x+W)dt+flr+o)l g-n+8g(x+ Wr,)l{azr_,)] (1.1)
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58 N. EL KAROUI AND 1. KARATZAS

for the Brownian motion W on the finite horizon [0,1], leads ultimately to the
relationships

a+i>Q(r,x,y)iu(r,X); {r.x,Nel0,7]x Bx &, (1.2)

g 9
dx dy

P Vir,x)= (

for the value functions

V(r,x)=ir1fE|: § hr+ex+W,—&)dt
& 0

+ I f(r+t) d€z+g(x+ Wt—r”‘ét—r):l (13)
[0.t—-1)
Qlr, x, y)= ir}f E|:rj_.rh(r+t,x+mw§,)dt
c‘uigy 0
+ f(r+t)d€r+g(x+m_rér_r)} (1.4)
[0,7—#)

of the monotone follower stochastic control problem and its finite-fuel counterpart,
respectively (£ nondecreasing and adapted in {1.3), (1.4)). The methodology
provides also a complete description of the optimal processes for the two problems
(1.3) and (1.4), in terms of the optimal stopping boundary {s(r);0=<r <z} for the
problem of (1.1}, thus complementing and extending the results of the articles
[10-111].

On the other hand, techniques analogous to those used in the theory of
balayage for semimartingales establish the representation

T—r

u(ra )C) = E|: j hx(r+ t: x4+ ”/t)l{x+W‘<s(r+ﬂ} dt +gl(x+ Wr—r)
0

- I f'(r+t)1[x+W[§s(r+r)}dt:| (1.3)

0

and its corollary

T—F

Vir, x)=E|: { hr+6,s(r+0 A (x+ W) dr+glx+W,_,)

0
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—Tf’(r+t)(x+ W,ms(rﬂ))*dt} (1.6)

0

for the optimal risk u of (1.1) and the value function V of (1.3), respectively. It
turns cut that, in a certain sense, the representation (1.5) subsumes the celebrated
“principle of smooth fit” for the optimal stopping problem. In its turn, the
representation (1.6) leads to the computation

14

V(r,s(r) =[O, s(0) d0— | f(8)ds(d)+g(s(r)), (L.7)

r [0

which expresses the value function along the moving boundary {s(r);0<r<t} as
the cost of a (deterministic) ride on this boundary.

We present our approach to the Skorohod problem in Section 2 (Proposition
2.1). The optimal stopping problem of (1.1) is studied thoroughly in Section 3,
whereas Section 4 reviews the monotone follower problems (1.3), (1.4). The
identities of (1.2) are then derived in Section 5 using, in a very direct and
elementary way, the methodology of Proposition 2.1, and Section 6 obtains the
relations (1.6), (1.7). The representation (1.5) is one of the most important results
of this paper; its (rather demanding) proof is carried out in an Appendix
(Section 7).

2. THE SKOROHOD PROBLEM

On a complete probability space (Q,&#,P) we consider a Brownian motion
W={W;0=t=1} adapted to a filtration {%,}, which satisfies the usual conditions
and # =#. Let «/(t) denote the class of {# }-adapted processes é={¢;0=t=1},
such that for P—ae. wel)

i) &fw)=0 and

ii} ¢+ &,(w) is nondecreasing and left-continuous.
We shall also use the notation </(z, y) £ {£eo/(z); £,<y,as. P}, for 0< y<co. We
shall denote by £ the right-continuous modification of ¢ e .#/(1).

Given a continuous function s:[0,7) —= £, a number ref0,7}, and an initial

position x <s{r), the Skorohod problem is to find a continuous process {ef(t—7),
such that the resulting process

X=x+W,—¢; 0t t—r {2.1)
satisfies

X, Zs5(r+1); Yee[0,7—r) (2.2)

Tr

[ Lix e +0p 46, =0 (2.3)
]
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almost surely. In other words, one wants to apply a “downward push” to the
Brownian path x+ W that would keep the resulting process X below the moving
boundary s(r+ ), and to do this in a minimal way (ie., only when X is on the
boundary).

The solution to this problem is well-known (cf. [14] or [12], p. 210), and is
given by the process

0 ; t=0
2dr.x) ={max [0,5upg cp< {x+ Wy—s(r+6)}1; 0<t§1—r} @4

Equivalently, &r,x) is the smallest amongst the continuous processes £e./(1—r)
which satisfy (2.2). The resulting process

X,(r,x) & x+ Wa—fz(l’,x); 0ZtE1~-r (25)

is the Brownian motion started at x and reflected along the moving boundary s(r+-).

Remark 2.1. 1f x>s(r), the process &, x) in (2.4) has an immediate jump of size
Eg+(r,x)=x—35(r), which brings X(r,x) instantaneously on the boundary; from
then on the situation is the same as before. O

Now consider the stopping time o(r,x)=inf{re[0,1—r); x+W,2s5(r+1)} A
(t—r), and define the Brownian motion started at x and killed upon reaching the
moving boundary s(r + ).

a fx+W; 0=Zt<a(r,x)
K,(r,x)—{ A arx)Sr<t—rf 26)

Here, A= —co is the so-called “cemetery state”. We are using throughout the
convention inf §=co.

It will be shown that the paths of the reflected process X{r,x} of (2.5}, can be
obtained from those of the killed process K(r,x), by integrating in the spatial
variable:

X (r,x)=log | exp{K,r,2)}dz; O<t<t—r. 27

ProrosiTion 2,1 For every absolutely continuous function ¢:R& — & of the form
d(x)=[" o, ¢'(w) du, with ¢’ integrable on (—o0,x] for all xe R and ¢'(—c0) £ 0, we
have

HX (r, x)}= ]f &' {K(r,2)} dz; O<t<t—r. (2.8)

In particular, (2.7) holds.
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Proof For simplicity of notation, take r=0 and write &(x), o(x) for &0,x),
o(0,x). The rather obvious equivalences

o(x~u)St <> x—u+ Wyzs(r+8), forsome(0<0=¢

< sup {x+W,—s(r+0)}=u

0s8s:
= {Hx)zu (2.9)
g(x—u)<t <= E(x)>u O0Zu<oo, (2.10)

lead to
o(x—u)=inf {0t <7 £ (x)=u} A T O<u<aoo. (2.11)

In other words, the process {6(x—u); O<u< oo} is the left-continuous inverse of
{ér+(x); 0=t< T}-
Now let ¢: #Z — & be any absolutely continuous function; we obtain

,f ' (z+W)l,pendz= i Plx—u+ W), yendu

Il
Qe 8

Plx—u+ W)l oy du

=@(x+W)—dlx+W,—E (X)) 0=t<t (212
from (2.9), and

I Pz+ W) Lisizy<n dz= _[ S(x—u+ I’Vr)l{f,(x):vu} du
—a Q0

=p(x+W)—d(x+ W~ (x)) (2.13)
from (2.10). For a function ¢ enjoying the properties of the theorem, (2.8) follows
from (2.12) and the fact that £(x) can have a jump only at t=0. O

Obviously, the identities (2.12), (2.13} and their corollaries (2.8}, {2.7) hold for
every process W with continuous paths, and not just for Brownian motion. On the
other hand, suppose that W is Brownian motion, and consider the semigroups

Pif & Ef(X(r,), Qif & Ef(K(r; ) =EL[f("+ Wiy, ]

of the two processes in (2.5), (2.6). For every absolutely continuous function
¢: & — # with compact support we obtain, by taking expectations in {2.8):
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Pig(x)= ]f Qrd'(2) dz; O<t<t—r. (2.14)
In the presence of densities
Pig(x)= [ o(pilx, »dy, Qidlx)= [ ¢, y)dy

an integration by parts in (2.14) leads to the relation

X

8
pix,y=— | Fyqi(z,y)dZ; O<t<t—r. (2.15)

— oo

To our knowledge, the representations (2.8), (2.15) are new.

3. THE OPTIMAL STOPPING PROBLEM

Throughout this paper, the functions 4:[0,7]x £ —[0,00) and g: & — [0, c0) will
be of class C%! and C?, respectively, the function f:[0,7]-+[0,c0) will be
continuous, and the growth condition

|h e, x)| +|g'(x)| S K exp {p|x|'}; V{r,x)e[0,7] x # (3.1)

will be assumed to hold for some positive constants K, u and v<2.
For certain results we shall also need some, or all, of the following conditions:

The functions k(r,-) and g(-) are convex. (3.2)
The function h(r,-) is strictly convex. (3.3)
gx)Sflr);  Vxe. (3.4)

One of the following holds:

0<c<f(NEC;  VYOSrsr
elx[P—d<h,x) SC(L+|x[Py  Y(rnx)e[0.7]x 2

c|xP-dgSCU+[xP)y Ve (3:9)

for some finite constants 0 <cZC,d=0, p>1.

We shall study an optimal stopping problem for the Brownian motion
W={W, #;0=t=1} of Section 2, in which the nondecreasing functions h.(r,-)
and g'(-) rcpresent the running cost and the terminal cost, respectively, and the
function f{(r) represents the cost of stopping before the terminal time. More
precisely, the risk (expected total cost) in this problem, corresponding to an
{#,}-stopping time ¢ <77, is given by
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R(O', r, )C) = E [I kx (r+ t’ X+ le} dt +f(r+ 0')1{0.<.,_._,.} +g’(x + I/]'71:—J-)l[a'—'r---r}»:l (3'6)
0
for every pair (r,x) e [0, 7] x &, and the optimal risk is defined as

ulr,xy= inf Rie;r, x). 3.7

aeyu,,f,-

Here and in the sequel, we denote by &, , the class of {#}-stopping times with
values in [u,v], 0Su<v<t

In order to cast the optimal stopping problem of {3.7) into a more conventional
form, let us introduce the functions

Gir, x)=E[tfrh,(r+t,x+ W)dt+g(x+ Wr_,)} (3.8)
0

Hir, x)=E|:tjrhx(r+t,x+ Wy di+{gx+ mw,)—f(r)}lw.ﬂ(r)], (3.9)

which are continuous on [0,7] x # and [0,1) x #, respectively. We have then from
(3.6} and (3.7):

o(r, x) 2 G(r, x) — ulr, x)

— sup E[I hor 4+t x+ Wt)dt+{g’(x+Wéwr)—f(r+0)}1gg<f-,;],

TeFo,emr v
(3.10)

and by the strong Markov property the function of (3.10) is given as
ofr,x)= sup EH{r+o,x+W)), (3.11)

TEF 0, 1—r

ie., as the maximal reward in a problem of optimal stopping for Brownian motion,
with payoft function H(r,x). It is well known (e.g. [1]; [16], Lemma 4) that » is
continuous on [0, 1) x # and that the stopping time

ar,x) 2 inf{0<t<t—r, or+t,x+W)SH(r+t,x+W)+e} A (1—7)
=inf{0<t<t—r, ulr+t,x+W)+eZfr+0)} A (z—7) (3.12)
is e-optimal, for every ¢>0 and initial time-space pair (r,x)e[0,7) x Z. It is also

well known (e.g. [51,[7],[8],[17]) that the RCLL (Right Continuous with Left-
hand Limits) supermariingale
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Zr9=ur+t,x+W), 02tst—r (3.13)
is the Srell envelope of the process
YOO=H(r+t,x+W,), 0st<t—r (3.14)

(ie., the smallest RCLL supermartingale that majorizes ¥**), and that

Zrd=esssup E[Y"D|£], as.
peFaer | (3.15)

holds for every se % .,
Let us suppose now that the condition (3.2) holds; the stopping time of (3.12)
can then be written equivalently as

e r,x)=inf{0<t<t—r; x+W,Z590r+10)} A (1—7), (3.16)
for a suitable function s® on [0,) given as

sHr)Linf {xe®; u(r,x)+ezf(N}=inf{xeB; v(r.x)SH(rx)+e} (3.17)

for 0<r<x If, in addition to (3.2}, the condition (3.4) is valid, then the stopping
time o'®(r,x) in the notation of (3.12) is actually optimal (cf. [16], Lemma 6; [7],
Theorem 4; or [17], Theorem 6). This stopping time can also be cast in the form
(3.16) as
oolr,x) 2inf{0<t<t—1; Xx+W,Zs(r+1)} A (t—1), (3.18)
where now, by analogy with (3.17),
s(r) £inf {x e & u(r, x) = f(r)} =inf {x e B;0(r,x)=H(r,x)}; 0=rgt (3.19)

is the optimal stopping boundary. For concreteness, we shall assume in certain
parts of our development that

both intervals {xe%; u(r,x)<f(¥)} and {xed; u(r,x)=1(r)} (3.20)
are nonempty, for every 0Sr <. ’
The notation
CL{r,x)e[0,)x & u(r,x)<f(r)} (3.21)

will be employed for the optimal continuation region of this problem.

- Lemma 3.1 Under the assumptions (3.2) and (3.20), the function s(-) of (3.19) is
lower-semicontinuous on [0,1).

If (3.3) holds as well, then the function s°(-) of (3.17) is continuous on [0,1), for
every ¢>0 sufficiently small.

Proof Let us take a sequence {r,}2, =[0,7) with lim,_ ,*,=r in [0,7) and
lim, , ,,5(r,)=s* in & From u(r,s(r,)}=f(r,), Vn=1 and the continuity of u on
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[0,7) x &, we have u(r,s*)=f(r), whence s(r)<s* and the lower-semicontinunity of
s{):s(r) £lim,, , , s(r,).

For the second claim, fix re[0,7) and take y<x <s(r); the optimality of o,(r, x)
at (r,x) and the assumption (3.3) imply

u{r, x) —ulr, y) Z R(a(r, x); v, X} — R(ao(r, X); 1, )

aolr, x)

=E [ {hfr+t,x+W)~h(r+t,y+W,)}dt
0

+E[{g'(x+ Wt—r)_gl(y-’_ Wr—r)} 1(ao(r,x}=t—r}] >0.

In other words, u(r,-) is strictly increasing on {— oo, s(r)) for any given re[0,1).
Then for sufficiently small ¢>0, s°(-) is characterized by

u(r,s*(r)}=f(r)—e, 0=r<s, (3.22)

But du/dr, du/dx exist and are continuous in ¥ (e.g. [16], Lemma 5), and we just
showed that du/0x(r,x) >0 in ¥. From these observations, (3.22), and the implicit
function theorem, it follows that s%(+} is continuous. O

In an Appendix (Section 7) we establish the following representation (3.23) for
the maximal reward function o(r,x) of {(3.11), and show that it subsumes the
“principle of smooth fit” {c¢f. Remark 7.7). The proof is rather lengthy; it uses
techniques analogous to those employed in the theory of balayage for semi-
martingales as developed in [4], [6] and [18], as well as ideas from excursion
theory.

TrEOREM 3.2 Suppose that conditions (3.2)-(3.4), (3.20) are satisfied, and that the
Sfunction f is absolutely continuous. Then the function v:[0,7]x & — & of (3.11)
admits the representation

U(r, x)=E[ I {hx(r+t,x+ m}'i‘fr(r'i‘t)}1[1+W:§S(r+!)) dt} . (3.23)
0

CoroLLARY 3.3 Under the conditions of Theorem 3.2, the optimal stopping risk
u=G—v of (3.7) can be represented as

ulr, x) =E[ { hr+tx+ Wilsrw.grrodt +8(x+We_,))
0

- I f’(r+r)1(x+W;§s(r+£]] dt]- (3.24)
o

Remark 3.4 Suppose that fis of class C'([0,7]). Then the set {(r,x)e [0, 1) x &,

STOCH. €




66 N. EL KAROUI AND I. KARATZAS

h.(r,x)+f'(r) <0} is included in the continuation region % of (3.21); see [16], page
110, as well as Corollary 7.2. Therefore, the first interval in (3.20) is nonempty if
{xe@&; hr,x)+f'(r)<0}#0.

Conditions guaranteeing that the second interval in (3.20) is nonempty are
provided in [16], Sections 3.1 and 3.2.

Remark 3.5 Suppose that, in addition to satisfying conditions (3.2){3.4), the
functions h, g and f are three times continuously differentiable and satisfy,
together with their derivatives, polynomial growth conditions as |x| tends to
infinity, Suppose also that

flinzl, V0si=s

lim g'(x)< f(7)

X—+ —a

ha(t, ) Z a1+ [A (LX)~ " @)]],  Y(,x)e[0,]x 2

hold, for some «>0. Then it is shown in [15], using analytical methods, that the
function s:[0,7) = # is locally Lipschitz continuous, that the condition (3.20)
holds, and that the function u(r, x) of (1.1) is of class C**([0,7)} x %) and satisfies a
polynomial growth condition in |x|

4. THE MONOTONE FOLLOWER PROBLEM

With the notation of (2.1) and the assumptions of Section 3 on the cost functions
h, f and g, the Monotone Follower stochastic control problem consists of
minimizing the expected cost

J(é;r,x)=E[TIrh(r+t,X,)dt+ i f(r+t)d§f+g{Xr-r)] @.1)
0 [0, —r}

over {esf/(t—r), for any given ref0,7) and xe%#. We shall denote by

Vir,x)= inf J(&r %) (4.2)
cesl(t—r)

the value function of this problem, and by

Hr,x,y)= inf  J(&r,x) D<y<w (4.3)
Sesdlt—ry)

the value function of its finite-fuel counterpart (i.e., subject to the constraint
& Zy,a8)

We shall single out the “cost of doing nothing” in the monotone follower
problem of (4.2), i.e., the function
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P(r,x) 2 J(0; r, x)
=E|:t§rh(r+t,x+ Wt)dt+g(x+ Wr—r)]' (4.4)

It is not hard to see, using the Feynman-Kac Theorem 4.4.2 in [12], that P{r,") is
an anti-derivative of the function G(r,*) in (3.8):

o P(r, x) = G(r, x). (4.5)
ax :

The problems (4.2), (4.3) were studied in the articles [11] and [10], respectively.
Under the assumptions (3.2), (3.4) and (3.5), it was shown there that for every
(r,x)e[0,1) x &

i) there exists an optimal process £*{r,x) € /(1 —r, x) for the problem of {4.2),

ii) the “truncated version” of this process, namely

(4.6)

¥r.x, y) = {é?(n x);  0=t=T(y) }

; T(nN<tEr—r

with T(y)=inf{0Zt<t—r EF(r.X)2 ¥} A (z—7), is optimal for the finite-fuel
problem of (4.3), and
fii) the identities

@ v x)=u(r, %) (4.7)

ox

o 0
(5; + (3})) Q(rs X, J’) = u(r, x) (4'8)

hold.

The methodology of both articles [11], [10] had the control problems of (4.2),
(4.3), respectively, as its starting point, and used a probabilistic technique of
“switching of paths” at appropriate random times as a means of comparing
expected costs at nearby points, differentiating the functions V{r,-), and Q(r,","),
and obtaining the identities (4.7) and (4.8).

In the next section we shall use the approach of Section 2 (in particular, the
identities {2.11)+2.13)), to integrate directly the optimal stopping risk u(r,"} and to
provide an alternative derivation of the above results; cf. Theorems 3.5, 5.7 and
Remark 5.6. A useful stochastic representation for the value function ¥(r, x) will be
derived in Section 6, this time by integrating both sides of (3.23) in the spatial
argument; cf. Theorem 6.1 and Remark 6.2.




68 N. EL KAROUI AND 1. KARATZAS
5. FIRST INTEGRATION

For an arbitrary process £ e «/(7), let us introduce the left-continuous inverse

T(w) £ inf{0Zt<T; & zu) A 1 0Zu<o (5.1)
and notice the a.s. equivalences

Tyst < & zu;  02t<7,0<u<o (5.2)
Tlu)=1 <= £ Zy; 0Zu<oo (5.3)

which gencralize (2.9), (2.10). In particular, (5.2) leads via a monotone class
argument to the change-of-variable formula

O e— g

ST g du=[oj ) f(ndé. as.P (5.4)

for every Borel-measurable function f:[0,1] — [0, co).

LemMa 5.1 For any £cs#(1) and xe &, we have

] [ [ htz+Wyde+{gla+ Wz)_f(T(X—Z))}l{r(xz)(z;:fdz

—w ]| Tix—2z)

T

= [{h(s, x+ W) —h(t,x + W,— &)} dt

a

~ | SO dE+{glx+ W) —g(x+W,— &)}, (5.5)
[0,

almost surely. In particular,

PO, x)—J(£0,x)= f (0, z) dz; Vée(1), xe . (5.6)

— o

Proof From (5.4) we get
_f f(T(x_Z))l{T(x—z)(r) dz= £ S T(“))I{T(u)(r] du

= | f(Hd¢, as.P. (57)

[0,17)

Similarly, we obtain from (5.2) and the Fubini theorem, by analogy with (2.12):
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x

j j hx(t,z+ m)dtdz—_— I Ihx(t,z‘l‘ W/‘I}l{']"(x*z}gl}dtdz

—o Tix—z) =00 0

Ot

§ btz +Wle s, dzdt

=jr' Ih(t,x+ W)—hit,x+ W,— &)} dr, as. P, (58)
0

because &(w), £ (w) differ on a set which is at most countable, for P-ae weQ.
Finally, with the help of (5.3) we have, by analogy with (2.13):

_[ g’(z+wt)1{T(x*z]<r}dz= I gl(z+v1/;)1{¢(>x—z}dz

=gx+W,)—gx+W,-¢{), as.P (59

Putting these identities together we obtain (5.5), and (5.6) follows by taking
expectations and using the Fubini theorem. O

Remark 52 It should be noted at this point that (5.5), as well as its
consequences (5.6) and

PO, x)— V(0,x) < j »(0,2) dz, (5.10)

-

have been obtained under minimal assumptions on the functions k, f,g; in
particular, nore of (3.2)<3.5), (3.20) has been utilized. However, we shall need some
of these conditions in order to show that {5.10) actuaily holds as an equality.

Remark 53 Repeating the proof of Lemma 5.1, one can show that for every
ye(0, o) the equation

[ Ei: .[ hx(t,Z"l'- VV;) dt+ {g’(z+ Wr) _f(T(x_z)}}l(T(x—z)fz}:| dz

T{x—2z)

=P(0,x)~J(£;0,x) (5.11)

and its consequence

PO, x)—J(£0,x) 2 f v(0,z)dz (5.12)

x—y

hold for every {es#(tr,v) and xe . For (5.11), notice that T(x—z)=1 holds if
zZx—y, thanks to (5.3). |
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In order to obtain inequalities in the opposite direction of (5.10), (5.12), let us
consider a continuous function s:[0,7) = # and the corresponding process of
entrance times

o(x)=inf {0St<nx+ W, 2s(t)} A 7 XER
which has a.s. nonincreasing and right-continuous paths. Recall also the proof of

Proposition 2.1 and the notation employed there.

LEMMA 34 For every fixed x e R, we have

PO,x) J(E0:0.1)= | E[i btz W,y dt
—® a(z)

+1{g'(z+ W) — f(o(z))} 1(,(2‘,}:' dz. (5.13)

Furthermore, for any ye(0, co) and with &(x, y) oblained from the process &(x} as in
(4.6), we have

PO, %)~ J(&(x, 10, %) = ] E[} (24 W) de

x—y a{z)

+1g'(z+ W) —f(a(z))} 1(6(2}@] dz. (5.14)
Proof Follows directly from (2.12) and (2.13), just as in the proof of Lemma
5.1 and Remark 5.3.
TheorEM 5.5 Under the conditions (3.2), (3.3) and (3.20), the identities

Vir, x)= P(r, x) — j o(r, 2) dz (5.15)

—

and
Q% ) =P(r.x)— | ol 2)dz
x—y

=P(r,x—y) —V(r,x—y)+ V(r,x) (5.16)

hold for every (r,x, y)€[0, 0) x # x (0, ). In particular, (4.7) and (4.8) hold.

Proof It is quite plausible, and not hard to show, that
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lim Q(r,x, )= V(r,x) (5.17)

y= o

holds; cf. Section 8 (Appendix). For simplicity of notation, we shall establish (5.15),
(5.16) only for r=0. Let us recall the notation of (3.16), (3.17) for e-optimal
stopping times ¢ and their corresponding moving boundaries s (Lemma 3.1),
and read Lemma 54 with (s,0,&(x),&x, v) replaced by their counterparts
(5%, ¢, £9(x), &¥(x, ¥)). We obtain from (5.14):

P(0,x) — Q(0, x, y) 2 P(0, ) ~ J((x, ¥);: 0, x) 2 Jfr n0,z) dz—sy

x=y
for every £>90, whence

HQm—QOwzfvmam.

x—y

In conjunction with (5.12), this establishes the first identity in (5.16) for r==0; the
identity (5.15) follows then easily thanks to (5.17) upon letting y — o, and leads
immediately to the second identity in (5.16). For the last claim, we just differentiate
in (5.15), {5.16) with respect to x, and recall (4.5) as well as (3.10).

Remark 5.6 The relations (4.7), (4.8) were established in [10,11] under the
assumption that there exists an optimal process for the problem (4.2).

THEOREM 5.7  Suppose that (3.2)43.4) and (3.20) hold, and that the function s(*) of
(3.19) is continuous on [0,1). Then the process &r,x) of (2.4) is optimal for V(r,x),
and its truncated version as in (4.6) is optimal for O{r,x, y).

Proof Again, we discuss only the case r=0. We recall from (3.18) the notation
o(x)=0a,(0,x) for the optimal stopping time of the problem (3.7), and obtain from
(5.13)

P(0, x) —J(&(0,x); 0, x) = T v(0, z} dz.

The conclusion J(&0, x); 0, x)=V(0, x} follows from (5.15). The second claim is
proved similarly, using {5.14}) and (5.16).

6. SECOND INTEGRATION
Let us integrate now both sides of the expression

T=r

wr,2)=E [ [hr+6z4+ W)+ r+ 01 g s zsrrodt (3.23)
0

with respect to the spatial argument z.
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THEOREM 6.1  Suppose that (3.2}, (3.4}, (3.20) are satisfied, and that [ is absolutely
continuous. Then the value function of the monotone follower problem (4.2) admits
the representation

T=r

V(r,x):EI: | Wr+e,s(r+0) A (x+W)dt+g(x+W,_,)
0

“tJrf’(r+r)(x+m—s(r+t»+dr]. (6.1)
In particular, if the function s(°) is of bounded variation:
Vi, s(r))= f H(®, s(8)) d —§ f(6) ds(6) + g(s(x)). (6.2)

Proof Let us integrate both sides of {3.23) over (—oo,x); from the straight-
forward as. identity

X

f hir+tz+ Wllisw zsrrm @2

-

=h(r+,x+W)—h{r+t,s(r+1) A (x+ W),
the Fubini theorem, and Theorem (3.2), the result is

{ U(r,z)dz=E|:tjr{h(r+r,x+ W)—Hhr+t,s(r+1) A (x+W)}} dt
o

— X

£ T SOk W s ) dr}
0
= P{r, x)— N(r,x); VxedR (6.3)
where

T=r

N(r,x)éE[ [ Br+ts(r+8) A (x+W,)dt+g(x+W,_,)
0

—r}rf’(r+t)(x+ W,—S(r+t))+dt:|. (6.4)
o

From (5.15) and (6.3) we conclude that N =V, and obtain the representation (6.1);
thus, for x=s(r) we have, thanks to (4.7):
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x

V(r,s(r)=V(r,x)— | ul(r,z)dz
s(r)

=N(r,x)—(x—s(r) f(r)
=E[r£rh(r+t,5(r+f) A (x4 ) dt+g(s(e) A (x+ W)
@) {(x+ W,y —s(8)* —(x— ()
—rgrf’(r+ £) {(x+W,—s(r+1)) 7 — (x—s(r))} dt] (6.5)

The expression on the right-hand side of (6.5) is thus independent of x, as long
as x2s(r). If we let xT co and appeal to the Dominated Convergence Theorem, we
obtain the value of the function V along the moving boundary s(-):

T—F

V(r,s(r))=E|: [ h(r+t, s(r—i—t))dt—rjjrf'(rﬂ) {(W,—s(r+0)+s(r)} dt

T gls() + £(0) (Wi, —(0) + s(r)}],

whence

Vir, () = [ 16, () d6 -+ | F(B)s(6) dO— F(D)s() + F(AIs(r) +8(s(0).  (6.6)

The expression {6.2) follows from (6.6), in case s(-) is of bounded variation. (In this
case, (0.2) acquires the significance of the cost corresponding to a “deterministic
ride along the moving boundary s(8), r£0=<17) ]

Remark 6.2 Equating (6.6) with the expression (6.1) evaluated at x=s(r), we
obtain the integral equation

E[tf’h(m,s(m) A (509 + W) de +8(s) + W)
1]

—tjrf’(r+t)(s(r)+ W, —s(r-+1)* dt:|
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—jh(B s(9)) d9+ff )s(8) df — f(7)5(t) + f(r)s(r) + g(s(z))

for the free-boundary function s(-). It would be interesting to study questions of
existence and uniqueness of solution for the equation (6.7), as an alternative to the
integral equations of [16] which require a lot more smoothness.

7. APPENDIX 1: A NEW REPRESENTATION FOR THE OPTIMAL
STOPPING RISK

We want to justify here the representation

v(r,x)=E[ e+ x+ W)+ 0+ 0] e w o se sy dt:| (3.23)
0

for the function of (3.10), (3.11), under the conditions of Theorem 3.2.
In the notation of (3.11), (3.9) and (3.19), let us write this function as

wrx)= sup E[rj'{hx(mx+W)+f(r+r}dr+{g(x+W ) f(r)}lgm_,,J

e, r—r

_E[C(r XY __ (b 1, (7.1)

o(r x}

where g,(r, x) is the optimal stopping time of (3.18) and
T
Cro & [ {h(r+0,x+ W)+ f(r+0)} d0+{g (x+ W, ) =[O} sy (7:2)
0

This process is absolutely continuous on [0,7—#), with a possible jump at t=1—7;
it is quite easy to see that it is also predictable ([3], T 31 on p. 85).
Now for every fixed &[0, 7 —r], introduce the stopping time

olr,x) 2 inf {0e(t,t—r], x+Wo=s(r+8)} A (1—7r) (7.3)

and observe that
i) from the as. continuity of W and the lower-semicontinuity of s(-} (Lemma
3.1) it follows that: x+ W, ,=s(r+0o(r,x)), as. on {o(r,x)<t—r},
1) for every fixed (t,r), the mapping x+—o,(r,x) is a.s. decreasing and right-
continuous, and
i) for fixed (r,x), the mapping t—ofr,x) 1is as. increasing and
right-continuous.
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If one considers the non-adapted process of bounded variation
C’i!’,x) % t(;;l(:'c.)x) - Cg'rn‘(ﬁ x)s (7'4)
then (7.1) takes the form
v(r, x)= E[En® {7.5)

of a potential associated with ¥, But an excessive function such as o(r, x) is also
the potential associated with an adapted, nondecreasing process D™ (see [2],
Section 1V.4 for general theory concerning the representation of excessive functions
as potentials of appropriate additive functionals). The basic result of this section is
the following theorem, which provides an explicit characterization of the process
D" in question.

THEOREM 7.1 The dual predictable projection D™ of the process C™* in (7.4) is
nondecreasing, and admits the representation

Dgr!xl =I {hx(r+ 9’ x+ WB) -}-f’(?‘-i- 9)} }'lx+WnZS(f +8)} dé. (76)
Q

CoroLiary 7.2 From the nondecreasing nature of D and its representation (7.6),
it follows readily that, if [ is of class C'([0,7)), the set {(r,x)e[0,7)x %
hyr,x)+ f'(r) <0} is included in the continuation region € of (3.21). On the other
hand, from (7.5) and the nature of D™ as the dual predictable projection of C*%, it
develops that

o(r,x) = E[DI7],
which is the desired representation (3.23). O

In the (french!) terminology of the general theory of processes, D™ is called the
“balayée prévisible” of C*™. In fact, our methodology for establishing Theorem 7.1
is inspired by the theory of “balayage” for semimartingales, as developed in [4],
[6] and [18].

The existence of D"* is established easily; indeed, it suffices to write the process
of (3.13) in the form

ZrP = E[ChY — Cod | 7] = E[CL) - Cr 9| #]. (7.7)
In order to derive this representation we use (7.1), the strong Markov property,
and the fact that {Z"7, . . %y tS0<7—r} is a martingale for every fixed
(t,x)€[0,7 —r) x . Now the process Z"* of (3.13) is a RCLL supermartingale of
class D[0,7—r], and as such it admits the Doob—Meyer decomposition

Z{ = E(DY3| 7]~ D™ (78)

for some predictable nondecreasing process D™ with RCLL paths (cf. [12],
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Section 1.4). Comparing the right-hand sides of (7.7), (7.8) we conclude that D%
is the dual predictable projection of &,

In order to actually calculate D*¥, we need to study the process C"* of (7.4) a
bit more closely. Let us take a realization weQ for which the Brownian path
t— W) is continuous, and introduce the set

H(w) & {ogw)Su<t—r,  x+ W/ w)Zs(r+u)} (7.9)
and the function
L(w) & sup {se[0,t); se#H(v)}, OLtgT—r {7.10)

Thanks to the lower-semicontinuity of s(+) (Lemma 3.1) the set # () is closed in
[eo{w), 7—#); on the other hand, the function of (7.10) is the left-continuous inverse
of the right-continuous function {(w), 0Zr=t—r}, and the sets {£;/(w)=t} and
H(w) can differ by at most countably many points. The complement #°(w) of the
closed set #(w) is the union of a countable collection of disjoint open intervals,
and we shall denote by £7(w) (7 (w)) the collection of their left-endpoints
(respectively, the subset of £7(w) which consists of points that are not totally
isolated). Now for any given >0, there exists a finite number N (@) of such
intervals whose length exceeds ¢ let us denote by (L%, R%) the nth of them, and
recall from Dellacherie {[13], p. 126) that

S,&e+L;, R,=os arestopping times. (7.11)

With this notation, and dropping from now on the dependence on (r,x) and w,
we obtain the decomposition

C= ) dCu=jl{0<1“§,,dCu=It+jt (7.12)

{70, a;]
for the process of (7.4), where

L% I Lodsola,=udC,y

= j [h_‘(r+u,x+ Wu)+f'(1‘+u):]1{[u=u,du-i—AIt_,l{O(t_,.é,)

(60.¢c]

[hx(r+u,x+ W") +f'(?‘+u)] 1{x+wugs(r+un du+AIt—r1{0<:—r§t]! (7.13)

O ey

AL 2[g 0+ W)~ (O, =emnp (7.14)

and
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7zéj1(o<zugr}luu<u>dcu= Z [Cug—Cg].

ged;’
O<g=zt

77

(7.15)

The process I of (7.13) is predictable, absolutely continuous on [0,7—r), and has

a possible jump size Al _, at t=1—r. Its absolutely continuous part
r
L [[h(r+u,x + W)+ ' (r+ 11wz g0 +ay dU
0
can be written equivalently as

t
IF 2 [ Th(r+u,x+ W)+ [+ w11 5w s s vuy A4
0

with

i &lms(r+8), 0Zr<t,
510

(7.16)

(7.17)

because the lower-semicontinuous function s(-) can have at most countably many

points of discontinuity (e.g. [13], p. 492).

On the other hand, the Monotone Convergence Theorem allows us to approxi-

mate the process J of (7.15) by
~ Ne
JO2 Y lypcy[Cry—Csp ]
n=1

Indeed, we have

Jt=1im,[1{£+lu<u)1[0<!u§t} dc,
EN]

=lim ¥ 1y, [C,, ~Cs]
el0azl B " )

=limJ®, almost surely
€l 0

and lim, | o E|J¥ —J | =0, for every fixed t[0,7—r].

(7.18)

Lemma 7.3 The dual predictable projection of J® in (7.18) is the same as that of

the nonincreasing, pure jump process

N
JOL S 1 [H+85,x+ W) —0(r+ %, x + W, )1
n=1

(7.19)
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Proof The process J© of (7.18) has the same dual predictable projection, as the
process

L 1150 ELC, = Ces| 5]
1]

=) Vg oy [H(r + 85, x+ ng)“E{H(""'R;,x"‘WR;) gsg,}]

=3 Ligg oo LH + S5 x + W) — E{o(r + R}, x + Wey)) | Fs, }1 =717,
n

because of the strong Markov property and the fact that v is harmonic in the
continuation region % of (3.21); ¢f, [16], Lemma 5. |

ProposiTioN 7.4 The dual predictable projection J of the process J in (7.15) is a.s.
nonincreasing and flat away from the set Z(@)2{0Su<t—r;x + W, (@) S3(r+u)},
for ae well

Proof Tt is seen from (7.15) that J itself is flat off the set & (w), and thus, by
Lemma 7.5 below, also flat off the set Z(w). But then this is also true for its dual
predictable projection J, because Z is predictable. On the other hand, for every
O<s<t<t—rand Ae %, we have

E{IA(Jt*r—-Js)} =E|:1A(jr*r_‘75)] =hmE[1A(‘T£:E-]‘rgj§E))]
el 0

=lim E[1,(J& ,—J®)]

el 0

Slim E[1,(J2, I =E[1,(J..,—J)].
£10
This shows that the process {M,2 E[J,_,|#,]—J; 0<t<t-r} is a submartin-
gale; we may assume that this process has RCLL paths, because the function
t— EJ,=EJ, is right-continuous; of [12], p. 16. From the fact that J is a
predictable process of bounded wvariation, and the unigqueness part of the Doob-
Meyer decomposition, we conclude that J is nonincreasing, ]

LemMa 7.5 For ae. weQ, the sets £ (w) and {0Su<t—r; x+ W, (w)>5r+u)}
are disjoint.

Proof Take any ge &~ (w). Thanks to the continuity of Wi{w), and the fact that
g+ is in s#(w) for all 6> 0 sufficiently small, we obtain

x4+ W{w)=1lim (x+ Wy, ) <lim s(- + g+ 8) =3(r +g).
440 310
according to the notation of (7.17). O
We can now conclude the

Proof of Theorem 7.1 Taking dual predictable projections in {7.12), we obtain
D=I+J. It develops that I=D+(—J) is nondecreasing, because so are both D
and —J. This means, in particular, that the random variable AI,_, of (7.14) is a.s.
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nonnegative and this, in conjunction with the assumption (3.4), vields AI,_,=0, a.s.
Consequently [“=D+(—J) is nondecreasing, and --J is absolutely continuous
with respect to I%. But from (7.16), I* is flat away from {0Su<t—r;, x+W,>
$(r +w)}, and J is flat away from Z, and these two sets are disjoint. It follows that
J is evanescent and thus I} is given by (7.6), as claimed. O

CorOLLARY 7.6 For every (r,x) [0, 7] x &, the process
t
M2 &u(r+6,x+ W)+ [ h{r+6,x+ Wl v wy<sir+ay 49
L

t

_jf’(r+5)1{x+Wu§s(r+9)}d9; Osr=z7—7 (7.20)

\]

is a martingale. In particular, (3.24) holds.
Proof TFrom (7.8), (3.13) and (7.6) it develops that

t
u(r+t,x+ PV:)+,[I:hx(r+95x+W9)+fr(r+e)]1[x+Wo>s(r+9)}d9; Oél‘féf—f‘
Q

is a martingale. Now recall the definitions (3.10) and (3.8); the latter implies that
G{r+6,x+ W)+ [y h(r+6,x+ W,) df is a martingale. [

Remark 7.7 In the region {{r,x)e[0,7) x &; x=s(r)} we have v=H; now H is
continuous on [0,7]x % and of class C'? on [0,7)x #. In particular, v(r,-} is
differentiable from the right at the point x=3s(r):

v (v, s(r)+)=H (r, s(r)); Vre[0,1).

On the other hand, v is harmonic in the continuation region % of (3.24); suppose
that the left-derivative v,(r,s(r)—) also exists at every re [0, 7). Then from the fact
that o(r,x) is the potential of an absolutely continuous process D¥*, we conclude
that the jump

vs(r,8(r) +) — il 5(r) —)

cannot but be equal to zero; for otherwise it would charge the Brownian local
time, giving rise to a singular component in D", The conclusion

v.(r, x) is continuous at x=s(r) (7.21)
is the celebrated principle of “smooth fit” in optimal stopping.

An equivalent derivation of the principle of smooth fit (inspired by [9]) runs as
follows: write the representation (3,23) in the form

onX)= | | [Chdr+68+f(r+0]p(t%8) dE (722

0 sir+i)
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with
p(t;x, &) =(2nt) " Pexp[—(x—&)%/24],

and assume that 4 is actually of class C%? with second derivative h,_(r,-)
satisfying a polynomial growth condition of the type (3.1). Differentiating in (7.22)
one obtains.

blra )= | Thalr 4, 5(r+ 0)+ Fr+ 0 1p(e %, s(r-+ ) dt
Q

+rfr T ho(r + 1,8 p(t; x, §) dE dt,
¢ s+

an expression which is continuous in x; in particular, (7.21) holds.

8. APPENDIX 2

We shall establish here the identity (5.17). Let us start by noticing that the
function Q(r, x, -) is decreasing and dominates V(r, x); therefore,

lim Q(r,x, )= V{r, x). (8.1)

y—*w

Take now an arbitrary #e./(1) with J(i; 0,x) <o, and create #{y)e =#(z, y) as in
(4.6), with T(y)=inf{0<t<1; 5,= y} A 7. We obtain

00, x, y)—J(1; 0, x) £ J(n(y); 0, x) — J(#; 0, x)

=Eﬁ{h(t,x—y+m)—h(r,X,)}dr— [ f(dn,

T(y) (Tiyh o)

~(rrs — D ITON irintey + {&lc—y+ W) — g(X)} lmy,@]

éII(.};) +12{y):
where X, =x+W,—#n, and

Iy & Eg {h(t. x —y+ W) —h(t, X )} Lz, o(2) dt

L(y) 2 E[{g(x—y+ W) —8(X )} oo ]-

But on {T(y)<i<t} we have X,Sx—y+W,<x+W, and the nonnegativity and
convexity of A{t, ) imply
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ht, x—y+ W) Sh(t,x+ W) +h(t, X ).

Consequently,

|11(y)J§E_Oi{h(r,x+ W)+ 20(, X} g0 o(0) dt

ZP0,x)+2-J(n;0,x) < c0.

But T(y)Tt as y— oo, as. P, and the dominated convergence theorem gives
lim, ., I,(y)=0. Similarly, lim,.,1,(»)=0, and so for every nes#(r) with
J(n; 0, x) < oo

lim Q(0, x, y) £ J(1; 0, x).

y—a
But now we can take the infimum over such #, to obtain

lim Q(0,x,y) £ V(0,x). (8.2)

y—+eo

The relation (5.17) follows from (8.1) and (8.2), at least for r=0; the general case is
similar.
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