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Abstract

We study the problem of portfolio optimization under the \drawdown constraint" that the

wealth process never falls below a �xed fraction of its maximum-to-date, and one strives to

maximize the long-term growth rate of its expected utility. This problem was introduced and

solved explicitly by Grossman and Zhou; we present an approach which simpli�es and extends

their results.

1 Introduction and Summary

In a very interesting recent article, Grossman & Zhou (1993) consider the classical portfolio

optimization problem of Merton (1971) under the \drawdown constraint" that the wealth

process X�(�) satisfy:

X�(t) > � max
0�s�t

X�(s); 80 � t <1 (1:1)

almost surely. In other words, one admits only those portfolios �(�) for which the corresponding

wealth process X�(�) never falls below 100�% of its maximum-to-date, for some given constant
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� 2 (0; 1). The objective is then to maximize the long-term growth rate

R(�) := lim
T!1

1

T
logE(X�(T ))� (1:2)

of expected utility, for some power � 2 (0; 1), over portfolio rules �(�) that satisfy (1.1).

Using a mixture of analytical and probabilistic arguments, Grossman and Zhou provide an

explicit solution to this problem, when investment is between a bond and one stock (modeled by

geometric Brownian motion with constant coe�cients). They show that the optimal portfolio

�̂(�) always invests a constant proportion of the di�erence X �̂(t)�� �max0�s�tX
�̂(t), 0 � t <

1, in the risky asset. Their insights are impressive, but the arguments are rather lengthy and

detailed.

We present in this paper an approach to the above problem, which simpli�es the results

of Grossman & Zhou (1993) { and extends them to the case of several stocks with general

deterministic coe�cients. The model and the problem are introduced in sections 2 and 3,

respectively. The approach is based on an auxiliary �nite-horizon stochastic control problem,

formulated in section 4 (Problem 4.1, Remark 4.2) in terms of the process N�
�(�) in (4.1). This

problem admits an explicit optimal portfolio �̂(�), which is independent of the time-horizon

T 2 (0;1) and can be found using \classical" martingale and duality arguments. It is then a

relatively straightforward matter to show that this portfolio �̂(�) is also optimal for the problem

of maximizing (1.2); this is carried out in section 5. In section 6 we �nd the optimal portfolio

for the case of logarithmic utility function, and in section 7 we show that the same portfolio

maximizes the long-term growth rate almost surely, not only in expectation. Moreover, this

portfolio is optimal even if we allow random (adapted) market coe�cients.

2 The Model

Let us consider the following, by now standard, model of a �nancial market M with one

riskless asset (\bond", price P0(t) at time t) and a risky assets (\stocks"; prices Pi(t) at time

t, 1 � i � d), modeled by the stochastic equations

dP0(t) = P0(t)r(t)dt; P0(0) = 1 (2.1)

dPi(t) = Pi(t)

2
4bi(t)dt+ dX

j=1

�ij(t)dWj(t)

3
5 ; Pi(0) = pi > 0; (2.2)

for i = 1; : : : ; d: These equations are driven by the d-dimensional Brownian motion W =

(Wi; : : : ;Wd)
0, which generates all the randomness in the model { in the sense that the interest

rate r(�), the vector of appreciation rates b(�) = (b1(�); : : : ; bd(�))
0 and the volatility matrix

�(�) = f�ij(�)g1�i;j�d are bounded measurable processes, adapted to the augmentation F =
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fF(t)g0�t<1 of the �ltration FW (t) = �(W (s); 0 � s � t), 0 � t < 1 generated by W .

We shall assume throughout that the matrix �(�) is invertible, and the \relative risk" process

�(t) := ��1(t) [b(t)� r(t)I], 0 � t < 1 is bounded as well, where I is a d-dimensional vector

with all entries equal to one. We shall also denote by

�(t) :=
1

P0(t)
= exp

�
�

Z t

0
r(s)ds

�
; 0 � t <1 (2:3)

the \discount process" of this model.

Consider now an economic agent who invests in this market according to a portfolio rule

�(�) = (�1(�); : : : ; �d(�))
0 in such a way that his corresponding wealth process X�(�) is governed

by the equation

dX�(t) =
dX
i=1

�i(t)

�
X�(t)�

�M�(t)

�(t)

�24bi(t)dt+ dX
j=1

�ij(t)dWj(t)

3
5

+

" 
1�

dX
i=1

�i(t)

!�
X�(t)�

�M�(t)

�(t)

�
+ �

M�(t)

�(t)

#
r(t)dt (2.4)

= r(t)X�(t)dt+

�
X�(t)�

�M�(t)

�(t)

�
�0(t) [(b(t)� r(t)I)dt+ �(t)dW (t)] ;

X�(0) = x;

and satis�es the \drawdown constraint"

P [�(t)X�(t) > �M�(t); 80 � t <1] = 1: (2:5)

Here � 2 (0; 1) is a given constant, and

M�(t) := max
0�s�t

(�(s)X�(s)): (2:6)

The interpretation is this: the agent does not tolerate the \drawdown 1 �
�(t)X�(t)
M�(t)

of his

discounted wealth, from its maximum-to-date", to be greater than or equal to the constant

1 � �, at any time t � 0; thus, he imposes the (almost sure) constraint (2.5). He invests a

proportion �i(t) of the di�erence X
�(t)��

M�(t)
�(t)

> 0 in the ith stock, i = 1; : : : ; d, and invests

the remainder
�
1�

Pd
i=1 �i(t)

��
X�(t)� �

M�(t)
�(t)

�
+ �

M�(t)
�(t)

of his wealth in the bond.

With this interpretation in mind, we set up the formal model as follows.

2.1 De�nition: For a given initial capital x > 0, let A�(x) denote the class of measurable,

F-adapted processes � : [0;1)� 
! R
d which satisfyZ T

0
k�0(t)�(t)k2dt <1; a.s. (2:7)
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for any given T 2 (0;1), and for which the stochastic functional/di�erential equation (2.4),

(2.6) has a unique F-adapted solution X�(�) that obeys the constraint (2.5).

The elements of A�(x) will be called \admissible portfolio processes".

The class of De�nition 2.1 is non-empty. In fact, it is shown in the Appendix that8><
>:

for any measurable, F-adapted process � : [0; T ]� 
! R
d;

�̂ = (�0��1)0 is an admissible portfolio in A�(x);

for any x > 0

9>=
>; : (2:8)

3 The Grossman-Zhou Problem

Let U : (0;1)! R be a utility function, i.e., a strictly increasing, strictly concave function of

class C1 with U 0(0+) =1; U 0(1) = 0 and U(0+) � �1. The convex dual of this function is

given by
~U(y) := max

x>0
[U(x)� xy] = U(I(y))� yI(y); y > 0 (3:1)

where I(�) is the inverse of U 0(�).

3.1 Problem (Grossman & Zhou (1993)): For some given 0 < � < 1, maximize the long-term

rate of growth

R(�) := lim
T!1

1

T
logE(X�(T ))� (3:2)

of expected power-utility, over � 2 A�(x). In particular, compute

v(�) := sup
�2A�(x)

R(�) (3:3)

and �nd �̂ 2 A�(x), for which the limit lim
T!1

1
T
logE(X �̂(T ))� = R(�̂) exists and achieves the

supremum in (3.3).

Grossman and Zhou solved Problem 3.1 for d = 1 and constant r; b1; �11, using rather

lengthy analytical and probabilistic techniques. We present in section 5 a simple solution to

this problem that allows general d � 1 and deterministic coe�cients r(�); b(�); �(�) in (2.1),

(2.2).

4 An Auxiliary Process and Problem

For any portfolio process � 2 A�(x) as in De�nition (2.1), consider the auxiliary process

N�
�(t) :=

�
X�(t)� �

M�(t)

�(t)

�
(M�(t))

�

1�� ; 0 � t <1: (4:1)
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Because the increasing processM�(�) of (2.6) is 
at o� the set ft � 0=�(t)X�(t) =M�(t)g,

we have from (2.4), (2.3), (4.1):

d(�(t)N�
�(t)) = (�(t)N�

�(t))�
0(t)�(t)dW0(t); W0(t) :=W (t) +

Z t

0
�(s)ds: (4:2)

Consider also the processes

Z(t) := exp

�
�

Z t

0
�0(s)dW (s)�

1

2

Z t

0
k�(s)k2ds

�
; H(t) := �(t)Z(t): (4:3)

From the product rule d(H(t)N�
�(t)) = �(t)N�

�(t)dZ(t) +Z(t)d(�(t)N�
�(t))+ dhZ; �N�

�i(t)

and (4.2), (4.3) we obtain: d(H(t)N�
�(t)) = H(t)N�

�(t)(�
0(t)�(t)��0(t))dW (t). In other words,

for any � 2 A�(x) the process

H(t)N�
�(t) = (1� �)x

1

1�� exp

�Z t

0
(�0� � �0)(s)dW (s)�

1

2

Z t

0
k�0� � �0k2(s)ds

�
(4:4)

is a positive local martingale, hence supermartingale, which thus satis�es

E [H(T )N�
�(T )] � (1� �)x

1

1�� ; 8T 2 (0;1): (4:5)

We now pose an auxiliary stochastic control problem, involving the process N�
�(�) of (4.1).

4.1 An Auxiliary, Finite-Horizon, Control Problem: For a given T 2 (0;1) and

utility function U : (0;1) ! R, denote by A�(x; T ) the class of portfolios �(�) that satisfy

the requirements of De�nition 2.1 on the �nite horizon [0; T ], and �nd �̂(�) 2 A�(x; T ) that

achieves

V (�;T; x) := sup
�2A�(x;T )

EU(N�
�(T )): (4:6)

There is a fairly straightforward solution to this problem along the lines of Karatzas,

Lehoczky & Shreve (1987), as follows: For any y > 0, � 2 A�(x; T ) we have from (3.1), (4.5):

EU(N�
�(T )) � E ~U(yH(T )) + yE(H(T )N�

�(T )) � E ~U(yH(T )) + y(1� �)x
1

1�� (4:7)

The inequalities in (4.7) are equalities, if and only if y = ŷ and �(�) = �̂(�) are such that both

N �̂
�(T ) = I(ŷH(T )); (4.8)

E[H(T )I(ŷH(T ))] = (1� �)x1=1�� (4.9)

hold. Now ŷ is uniquely determined from (4.9), and a portfolio �̂ 2 A�(x) satisfying (4.8) can

be found by introducing the positive martingale

Q(t) := E[H(T )I(ŷH(T ))jF(t)] = (1� �)x
1

1�� +

Z t

0
Q(s)'0(s)dW (s); 0 � t � T: (4:10)
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The second equality follows from the representation theorem for Brownian martingales as

stochastic integrals with respect to the Brownian motion W (e.g. Karatzas & Shreve (1991),

x3.4), and ' : [0; T ]�
! R
d is a measurable, F-adapted process with

R T
0 k'(s)k2ds <1, a.s.

Comparing (4.10) with (4.4) and recalling (2.8), we see that

�̂(�) =
�
(�0 + '0)��1

�0
(�) 2 A�(x; T ); H(�)N �̂(�) = Q(�); a:s: (4:11)

In particular, (4.8) follows, and

V (�;T; x) = E[(U � I)(ŷH(T ))]: (4:12)

4.2 Remark: Let us consider now Problem 4.1 with utility function

U(x) =
1



x
 for 
 := �(1� �); 0 < � < 1: (4:13)

Then, with � := 

1�
 , the formulae (4.9), (4.12) become

ŷ
� 1

1�
 =
(1� �)x

� 1

1��

E[(H(T ))��]
; V (�;T; x) =

1




�
(1� �)x

1

1�� (E(H(T ))��)1=�
�


: (4:14)

If, in addition, the coe�cients r(�), b(�), �(�) are deterministic, then

(H(t))�� = exp

"
�

Z t

0
�0(s)dW (s)�

�2

2

Z t

0
k�(s)k2ds

#
exp

�
�

Z t

0

�
r(s) +

1 + �

2
k�(s)k2

�
ds

�

and (4.10), (4.11), (4.14) give

Q(t) = (1� �)x
1

1�� exp

(
�

Z t

0
�0(s)dW (s)�

�2

2

Z t

0
k�(s)k2ds

)
; '(t) = ��(t) (4:15)

�̂0(t)�(t) = (1 + �)�0(t) =
1

1� �(1� �)
�0(t); independent of T; (4:16)

V (�;T; x) =
1




 
(1� �)x

1

1�� exp

(Z T

0

�
r(t) +

1 + �

2
k�(t)k2

�
dt

)!

: (4:17)

Clearly, the portfolio �̂(�) of (4.16) is well-de�ned for all 0 � t < 1; it belongs to A�(x) of

De�nition 2.1 for any x 2 (0;1), by (2.8).
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5 Solution of the Grossman-Zhou Problem

We shall assume in this section that8><
>:

the coe�cients r(�), b(�), �(�) in the model of (2.1), (2.2) are deterministic,

and that r� := limT!1
1
T

R T
0 r(s)ds; k��k

2 := limT!1
1
T

R T
0 k�(s)k2ds

exist and are �nite.

9>=
>; (5:1)

5.1 Theorem: Under the assumption (5.1), the portfolio �̂(�) of (4.16) is optimal for the

Problem 3.1. In fact, in the notation of (3.2), (3.3), (4.17) and (5.1) we have

lim
T!1

1

T
logE(X �̂(T ))� = R(�̂) = v(�) = V (�) + ��r�; (5:2)

where

V (�) := lim
T!1

1

T
logV (�;T; x) = 
r�+




2
(1 + �)k��k

2 = �(1� �)

"
r� +

k��k
2

2

�(1� �)

1� �(1� �)

#
:

(5:3)

In order to establish this result, it will be helpful to consider the auxiliary problem

�v(�) := sup
�2A�(x)

�R�(�); �R�(�) := lim
T!1

1

T
logE(N�(T ))�(1��): (5:4)

From the fact that the portfolio �̂(�) of (4.16) does not depend on the horizon T 2 (0;1), it

is clear that

lim
T!1

1

T
logE(N �̂

�(T ))
�(1��) = �R�(�̂) = �v(�) = V (�): (5:5)

It will also be helpful to note from (4.1) that

(N�
�(t))

�(1��) = (�(t))��(X�(t))�
�
f�

�
�M�(t)

�(t)X�(t)

���
; (5:6)

where the function f�(x) :=
�
x
�

��
(1 � x)1��, 0 � x � 1 is strictly increasing on (0; �) and

strictly decreasing on (�; 1).

Proof of Theorem 5.1: From (5.6) we obtain

E(N�
�(T ))

�(1��) � (�(T ))��(1� �)�(1��)E(X�(T ))�; (5:7)

whence
�R�(�) � R(�)� ��r� � v(�)� ��r�; 8� 2 A�(x) (5:8)
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and therefore V (�) � v(�)� ��r�. In order to establish the reverse inequality, take � 2 (0; �)

close enough to � so that f�(�) � f�(�=�), and observe from (5.6) that for an arbitrary

� 2 A�(x) (� A�(x)) we have

E(N�
� (T ))

�(1��) � (�(T ))�� (f�(�=�))
�E(X�(T ))� = (�(T ))��

�
���(1� �=�)1��

��
E(X�(T ))�:

(5:9)

Consequently

V (�) � �R�(�) � R(�)� ��r�; 8� 2 A�(x);

whence V (�) � v(�)� ��r�; letting � " � and invoking the continuity of the function V (�) in

(5.3), we obtain V (�) � v(�)� ��r� and thus the third equality of (5.2):

v(�) = V (�) + ��r� = �r� +
k��k

2

2

(�(1� �))2

1� �(1� �)
: (5:10)

To obtain the second equality in (5.2), it su�ces to observe that (5.8), (5.5), (5.10) imply

v(�) � R(�̂) � �R�(�̂) + ��r� = V (�) + ��r� = v(�):

Finally, the �rst equality in (5.2), i.e., the existence of the indicated limit, follows from the

double inequality

�
�(1� �)

T
log(1� �) +

��

T

Z T

0
r(s)ds+

1

T
logE(N �̂(T ))�(1��) �

1

T
logE(X �̂(T ))�

� �
�

T
log(���(1�

�

�
)1��) +

��

T

Z T

0
r(s)ds+

1

T
logE(N �̂(T ))�(1��) (5.11)

(a consequence of (5.7), (5.9)) in conjunction with (5.5), by passing to the limit as T ! 1

and then letting � " �:

5.2 Remark: Formally setting � = 0 in (4.16), we recover the well-known optimal portfolio

�̂0(t)�(t) =
�0(t)
1�� for the investment problem without the constraint (2.5), with utility function

U(x) = 1
�
x� from wealth and deterministic coe�cients.

6 Maximizing Long-term Rate of Expected Loga-

rithmic Utility

The methods of section 4-5 can also be used to show that the portfolio

��(t) = (�0(t)��1(t))0; 0 � t <1 (6:1)
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is optimal for the problem of maximizing the long-term rate of expected logarithmic utility

under the constraint (2.5):

lim
T!1

1

T
E(logX�(T )) � lim

T!1

1

T
E(logX��(T )) = (1� �)

 
�r +

k��k2

2

!
+ ��r; 8� 2 A�(x):

(6:2)

This problem was also considered by Grossman & Zhou (1993) in their setting. It turns

out that (6.2) holds for general random, F-adapted coe�cients r(�), b(�), �(�), for which the

conditions of section 2 are satis�ed and the limits

�r := lim
T!1

1

T

Z T

0
Er(t)dt; k��k2 := lim

T!1

1

T

Z T

0
Ek�(t)k2dt (6:3)

exist and are �nite.

Indeed, consider u(�) = sup�2A�(x)P(�),P(�) := lim
1!1

1
T
E(logX�(T )) and �u(�) = sup�2A�(x)

�P�(�);

�P�(�) := lim
T!1

1��
T
E(logN�

�(T )) instead of the quantities in (3.1), (3.2) and (5.4), respectively.

Solving the Problem 4.1 with U(x) = (1� �) logx leads to Q(�) � (1� �)x1=1��, '(�) � 0 in

(4.10), and thus the optimal portfolio of (4.11) takes the form ��(�) in (6.1), independent of

the �nite horizon T > 0; furthermore, (4.14) becomes V (�;T; x) = log x+log(1��)1��+(1�

�)E
R T
0

�
r(s) + 1

2
k�(s)k2

�
ds, whence

�u(�) = lim
T!1

V (�;T; x)

T
= (1� �)

 
�r +

k��k2

2

!
:

Now one writes (5.6) with � = 1, and uses exactly the same methodology as in section 5 to

prove that limT!1
1
T
E(logX��(T )) = P(��) = u(�) = �u(�) + ��r, thus establishing (6.2).

7 Maximization of Long-term Growth Rate from

Investment

More important than the optimality property (6.2), however, is the fact that the portfolio ��(�)

of (6.1) maximizes the long-term growth rate from investment

S(�) := lim
T!1

1

T
logX�(T ) � lim

T!1

1

T
logX��(T ) = (1� �)

 
r� +

k��k2

2

!
+ �r�; a:s: (7:1)

over all � 2 A�(x). Again, this comparison is valid for general random, F-adapted coe�cients

as in section 2, under the proviso that the limits

r� := lim
T!1

1

T

Z T

0
r(t)dt; k��k2 := lim

T!1

1

T

Z T

0
k�(t)k2dt (7:2)
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exist and are �nite, almost surely.

In order to prove (7.1), let us start by noticing that �(t) := N�
�(t)=N

��

� (t), 0 � t < 1

satis�es the stochastic equation

d�(t) = �(t)(�0(t)�(t)� �0(t))dW (t); �(0) = 1

from (4.2) and Itô's rule, and is thus a positive supermartingale, for any � 2 A�(x). It follows

readily from this (e.g. Karatzas (1989), p. 1243) that lim
t!1

1
t log �(t) � 0, or equivalently

�S�(�) := lim
T!1

1

T
log(N�

�(T ))
1�� � lim

T!1

1

T
log(N��(T ))1�� = (7.3)

= (1� �)

 
r� +

k��k2

2

!
=: �s(�); a.s.

The existence of this last limit, and its value, follow from (A.6) and (7.2). On the other hand,

the inequality (5.6) with � = 1 leads to (as in (5.11))

1

T
log(N�

�(T ))
1�� +

�

T

Z T

0
r(s)ds�

1� �

T
log(1� �) �

1

T
logX�(T ) (7.4)

�
1

T
log(N�

� (T ))
1�� +

�

T

Z T

0
r(s)ds�

1

T
log(���(1� �=�)1��)

almost surely, for any � 2 A�(x) � A�(x) and any � 2 (0; �) su�ciently close to �. In

particular, (7.4) gives
�S�(�) + �r� � s(�) := esssup

�2A�(x)

S(�); a.s. (7:5)

in the notation of (7.1)-(7.3), whence �s(�) + �r� � s(�); similarly,

S(�)� �r� � �S�(�) � �s(�); whence s(�)� �r� � �s(�)

and in the limit as � " � : s(�) � �r� � �s(�), a.s. It develops that s(�) = �s(�) + �r� =

(1��)
�
r� + 1

2
k��k2

�
+�r�, and it remains to show the existence of the limit and the equality

in (7.1). But both of these follow by writing the double inequality (7.4) with � � ��, letting

T ! 1 to obtain in conjunction with (7.3)

s(�) = �s(�) + �r� � lim
T!1

1

T
logX��(T ) � lim

T!1

1

T
logX��(T ) � s(�);

and then letting � " � to conclude lim
T!1

1
T
logX��(T ) = s(�), almost surely.
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A Appendix

We devote this section to the proof of the claim (2.8). Clearly, it su�ces to show that for any

x 2 (0;1) and �(�) as in (2.8), the stochastic equation

dX̂(t) = (X̂(t)� �M̂(t))�0(t)dW0(t); M̂(t) = max
0�s�t

X̂(s); X̂(0) = x (A:1)

admits a unique F-adapted solution that satis�es a.s.

X̂(t) > �M̂(t); 80 � t <1: (A:2)

For then X̂(�)=�(�) coincides with X �̂(�), the wealth process corresponding to the portfolio

�̂ = (�0��1)0 according to (2.4), and (2.5) is satis�ed; and vice-versa.

Suppose that X̂(�) is an F-adapted process that satis�es (A.1), (A.2). Following Grossman

& Zhou (1993), p. 269, observe that

d

 
X̂(t)

M̂(t)
� �

!
=

 
X̂(t)

M̂(t)
� �

!
�0(t)dW0(t)�

dM̂(t)

M̂(t)
; whence

d

 
log

 
X̂(T )

M̂(t)
� �

!!
= �(t)�

1

1� �

dM̂(t)

M̂(t)
; �(t) :=

Z t

0
�0(s)dW0(s)�

1

2

Z t

0
k�(s)k2ds:

Therefore,

0 � R(t) := log(1� �)� log

 
X̂(t)

M̂(t)
� �

!
= ��(t) + log

 
M̂(t)

x

! 1

1��

: (A:3)

Clearly, the continuous increasing process K(t) := log

�
M̂(t)
x

� 1

1��

is 
at away from the setn
t � 0=X̂(t) = M̂(t)

o
, i.e., away from the zero-set of the continuous nonnegative process R(�)

of (A.3). From the theory of the Skorohod equation (e.g. Karatzas & Shreve (1991), x3.6) we

have then K(t) = max
0�s�t

�(s), and from this and (A.3):

M̂(t) � ~M(t) := x exp

�
(1� �) max

0�s�t
�(s)

�
; (A:4)

X̂(t) � ~X(t) := x exp

�
(1� �) max

0�s�t
�(s)

��
�+ (1� �) exp

�
�(t)� max

0�s�t
�(s)

��
: (A:5)

Notice also (from (A.4), (A.5) and (4.1)) that

�(t)N �̂
�(t) = (X̂(t)� �M̂ (t))(M̂(t))

�

1�� = (1� �)x
1

1�� e�(t): (A:6)

It is straightforward to check that ~X(�) satis�es (A.1), (A.2).
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