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Abstract

We study the problem of portfolio optimization under the “drawdown constraint” that the
wealth process never falls below a fixed fraction of its maximum-to-date, and one strives to
maximize the long-term growth rate of its expected utility. This problem was introduced and
solved explicitly by Grossman and Zhou; we present an approach which simplifies and extends
their results.

1 Introduction and Summary

In a very interesting recent article, Grossman & Zhou (1993) consider the classical portfolio
optimization problem of Merton (1971) under the “drawdown constraint” that the wealth
process X ™(-) satisfy:
X7™(t) > amax X™(s), V0<t<oo (1.1)
0<s<t
almost surely. In other words, one admits only those portfolios 7(-) for which the corresponding
wealth process X7(+) never falls below 100a% of its maximum-to-date, for some given constant
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a € (0,1). The objective is then to maximize the long-term growth rate
— 1
R(r):= lim ~log E(X™(T))° (1.2)

of expected utility, for some power 6 € (0,1), over portfolio rules 7(-) that satisfy (1.1).

Using a mixture of analytical and probabilistic arguments, Grossman and Zhou provide an
explicit solution to this problem, when investment is between a bond and one stock (modeled by
geometric Brownian motion with constant coefficients). They show that the optimal portfolio
#(+) always invests a constant proportion of the difference X7 (1) —a-maxo<s<t X7 (1), 0 < ¢ <
00, in the risky asset. Their insights are impressive, but the arguments are rather lengthy and
detailed.

We present in this paper an approach to the above problem, which simplifies the results
of Grossman & Zhou (1993) — and extends them to the case of several stocks with general
deterministic coefficients. The model and the problem are introduced in sections 2 and 3,
respectively. The approach is based on an auxiliary finite-horizon stochastic control problem,
formulated in section 4 (Problem 4.1, Remark 4.2) in terms of the process NJ(-) in (4.1). This
problem admits an explicit optimal portfolio #(-), which is independent of the time-horizon
T € (0,00) and can be found using “classical” martingale and duality arguments. It is then a
relatively straightforward matter to show that this portfolio (-) is also optimal for the problem
of maximizing (1.2); this is carried out in section 5. In section 6 we find the optimal portfolio
for the case of logarithmic utility function, and in section 7 we show that the same portfolio
maximizes the long-term growth rate almost surely, not only in expectation. Moreover, this
portfolio is optimal even if we allow random (adapted) market coefficients.

2 The Model

Let us consider the following, by now standard, model of a financial market M with one
riskless asset (“bond”, price Py(t) at time ¢) and a risky assets (“stocks”; prices P;(¢) at time
t, 1 <i < d), modeled by the stochastic equations

dPy(t) = Po(t)r(t)dt, Pp(0)=1 (2.1)
d
dPZ'(t) = Pi(t) bi(t)dt + Zaij(t)dwj‘(t) , PZ'(O) =p; >0, (2.2)
7=1
for « = 1,...,d. These equations are driven by the d-dimensional Brownian motion W =
(Wi,...,Wy), which generates all the randomness in the model — in the sense that the interest

rate 7(-), the vector of appreciation rates b(-) = (b1(-),...,bq(+)) and the volatility matrix
o(+) = {04j(-)}1<i,j<q are bounded measurable processes, adapted to the augmentation I =



{F(t)}o<t<oo of the filtration FW(t) = o(W(s),0 < s < t), 0 < ¢ < oo generated by W.
We shall assume throughout that the matrix o(-) is invertible, and the “relative risk” process
0(t) := o 1(t) [b(¢) — r(1)]], 0 < ¢ < oo is bounded as well, where T is a d-dimensional vector
with all entries equal to one. We shall also denote by

IREIACD
t)i=——=exp|— [ r(s)ds], 0<t< 0 2.3
(0= gy = o (= [ 160 (23)
the “discount process” of this model.
Consider now an economic agent who invests in this market according to a portfolio rule
7(-) = (71(),...,ma(+)) in such a way that his corresponding wealth process X ™(-) is governed
by the equation

aM7(t)

d d
dX7(t) = mi(t) (X”(t) =50 ) [bi(t)dt + Z_: aij(t)dwj(t)]

d T T
(1 - Zm(t)) (X”(t) _ oM (t)) + o/‘; (t()t)] r(t)dt (2.4)

and satisfies the “drawdown constraint”
PBHX™(t) > aM™(t), V0<t<oo]=1. (2.5)
Here oo € (0,1) is a given constant, and

M(1) 1= max (3(s)X7(s). (2.6)

The interpretation is this: the agent does not tolerate the “drawdown 1 — %(:)(t) of his
discounted wealth, from its maximum-to-date”, to be greater than or equal to the constant

1 — a, at any time t > 0; thus, he imposes the (almost sure) constraint (2.5). He invests a
proportion 7;(¢) of the difference X™(¢) — oMW 5 0 in the ith stock, i =1,...,d, and invests

A(t)
the remainder (1 -y, m(t)) (X”(t) — a]\gt()t)) + a]\g(rt()t) of his wealth in the bond.

With this interpretation in mind, we set up the formal model as follows.

2.1 Definition: For a given initial capital x > 0, let A,(z) denote the class of measurable,
F-adapted processes 7 : [0,00) x Q — R? which satisfy

T
/0 7' (D)o (1)|2dt < o0, a.5. (2.7)
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for any given T € (0,00), and for which the stochastic functional/differential equation (2.4),
(2.6) has a unique F-adapted solution X™(-) that obeys the constraint (2.5).

The elements of A, (x) will be called “admissible portfolio processes”.

The class of Definition 2.1 is non-empty. In fact, it is shown in the Appendix that

for any measurable, -adapted process p : [0,T] x @ — R,
7 = (p'oc~1) is an admissible portfolio in A, (), . (2.8)
for any z > 0

3 The Grossman-Zhou Problem

Let U : (0,00) — R be a utility function, i.e., a strictly increasing, strictly concave function of
class C'1 with U’(0+) = 00, U’(c0) = 0 and U(0+) > —oc. The convex dual of this function is
given by )

Uly) := max[U(z) — xy] = U(L(y)) — y1(y).y > 0 (3.1)
where [(-) is the inverse of U’(+).
3.1 Problem (Grossman & Zhou (1993)): For some given 0 < § < 1, maximize the long-term
rate of growth

— 1
R(r):= lim = log E(X™(T))° (3.2)
of expected power-utility, over 7 € A, (). In particular, compute

v(a):= sup R(w) (3.3)
rEAq ()

and find 7 € A,(2), for which the limit Tlim 7log E(X™(T))°* = R(#) exists and achieves the
supremum in (3.3).

Grossman and Zhou solved Problem 3.1 for d = 1 and constant r, by, 011, using rather
lengthy analytical and probabilistic techniques. We present in section 5 a simple solution to
this problem that allows general d > 1 and deterministic coefficients r(-),b(-),o(-) in (2.1),
(2.2).

4 An Auxiliary Process and Problem

For any portfolio process m € A, () as in Definition (2.1), consider the auxiliary process

M7 (1)
B(1)

NT(t) = (X”(t) —a ) (MT(1))™=, 0<1< . (4.1)
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Because the increasing process M7 (-) of (2.6) is flat off the set {t > 0/8(t)X™(t) = M™(t)},
we have from (2.4), (2.3), (4.1):

d(BONZ(1)) = (BONI(O))x' () (t)dWo(t),  Wo(t )+ / (4.2)

Consider also the processes

Z(1) := exp {— /Ot 0'(s)dW (s) — %/Ot Ho(s)u2ds} . H() = B()Z(1). (4.3)

From the product rule d(H(t)NZ(t)) = B(t)NI(t)dZ(t) + Z(t)d(B(t)NZ(t))+ d{Z, BNI) (1)

and (4.2), (4.3) we obtain: d(H(t)NJ(t)) = H(t)NJ(t)(7'(t)o(t)—6'(t))dW(t). In other words,
for any m € A, () the process

H(NZ(1) = (1 - a)a ™5 exp {/Ot(ﬂla — 8)(s)dW (s) - %/Ot Ix'o - 9'\12(5)615} (4.4)

is a positive local martingale, hence supermartingale, which thus satisfies
E[H(T)NY(T)] < (1 - a)zT=, YT € (0,00). (4.5)
We now pose an auxiliary stochastic control problem, involving the process N7(-) of (4.1).

al:
4.1 An Auxiliary, Finite-Horizon, Control Problem: For a given T € (0,00) and
utility function U : (0,00) — R, denote by A,(x,T) the class of portfolios n(-) that satisfy
the requirements of Definition 2.1 on the finite horizon [0,T], and find 7(-) € A,(z,T) that
achieves
V(a;T,z):= sup EU(NI(T)). (4.6)
T€Aq(z,T)

There is a fairly straightforward solution to this problem along the lines of Karatzas,
Lehoczky & Shreve (1987), as follows: For any y > 0, 7 € A,(2,T) we have from (3.1), (4.5):

BUN(T)) < EU(yH(T)) + yE(H(T)NI(T)) < EO(yH(T)) + y(1 - a)a™=  (4.7)
The inequalities in (4.7) are equalities, if and only if y = § and 7(-) = 7(+) are such that both

NI(T) = I(GH(T), (1.8)
E[H(DIGH(T)] = (1-a)!/'™ (1.9)

hold. Now 7 is uniquely determined from (4.9), and a portfolio 7 € A,(x) satisfying (4.8) can
be found by introducing the positive martingale

O(t) == E[H(T)I(GH(T)|F 1) = (1 — a)aT™= + /Ot Q(s)¢/(s)dW (s), 0 <t < T. (4.10)
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The second equality follows from the representation theorem for Brownian martingales as
stochastic integrals with respect to the Brownian motion W (e.g. Karatzas & Shreve (1991),
§3.4), and ¢ : [0,T] x @ — R%is a measurable, F-adapted process with fOT lo(s)]|?ds < o0, a.s.
Comparing (4.10) with (4.4) and recalling (2.8), we see that

()= (0 +¢)07) () € Aule. T), HEINT() = O(-).as. (4.11)
In particular, (4.8) follows, and

V(a;T,2) = E[(U o I)(GH(T))). (4.12)

4.2 Remark: Let us consider now Problem 4.1 with utility function

U(z) = %x” fory:=6(1-a), 0<é<1. (4.13)
Then, with y¢ := {2, the formulae (4.9), (4.12) become
1
e C ) L Ty = = —my1/n)’
y = W? ViesT,z) = ; ((1— a)rT==(E(H(T))™") M) : (4.14)

If, in addition, the coefficients 7(-), b(-), o(+) are deterministic, then

1+ u

(H(t)™" = exp lu [ o -2 [ uo<s>u?ds] exp {1 [ (rtor+ 2L o 1) s}

and (4.10), (4.11), (4.14) give

Q1) = (1 - a)a ™= exp {H/Ot 0/(s)dW (s) - %/Ot Ho(s)u2ds}, o) = pb(t)  (4.15)

(t)o(t) = (L+ p)d'(t) = m@'(t), independent of 7', (4.16)
VieiT,2) = % ((1 _ a)eT exp {/OT (r(t) 4 HT’MHO(t)HQ) dt}) ENORTS

Clearly, the portfolio #(-) of (4.16) is well-defined for all 0 < ¢ < oo; it belongs to A, (z) of
Definition 2.1 for any = € (0, 00), by (2.8).



5 Solution of the Grossman-Zhou Problem

We shall assume in this section that

the coefficients 7(-), b(-), o(-) in the model of (2.1), (2.2) are deterministic,
and that 7, := limg_. & [ 7(s)ds, |0.])? := limg—oo & [ [10(s)]|?ds (5.1)
exist and are finite.

5.1 Theorem: Under the assumption (5.1), the portfolio 7(-) of (4.16) is optimal for the
Problem 3.1. In fact, in the notation of (3.2), (3.3), (4.17) and (5.1) we have

Jim %log E(XF(T)) = R(%) = v(a) = V(a) + abr.. (5.2)
where
i L : _ v 2 _ 167 6(1 — @)
V(ia):= Tlgnoo T logV(e;T,2)=yr.+ 2(1 + w||0]]* = 6(1 —a) [+ 2> T—o(i—a)
(5.3)
In order to establish this result, it will be helpful to consider the auxiliary problem
_ _ — 1
o(a):= sup Ro(m), Ro(r):= Tm log E(N™(T))*0=2), (5.4)

WEAa(l’) T—o0

From the fact that the portfolio 7(-) of (4.16) does not depend on the horizon 7' € (0, c0), it
is clear that

lim %log E(NF(T)P0=) = Ro(%) = 5(a) = V(a). (5.5)
It will also be helpful to note from (4.1) that
s &
(VIO = oo (4 (S )) (56)

where the function f,(xz) := (£)% (1 —2)'7%, 0 < 2 < 1 is strictly increasing on (0,«) and
strictly decreasing on (o, 1).
Proof of Theorem 5.1: From (5.6) we obtain

E(N(T) ) < (B(1)*(1 = o)’ BT, (5.7)

whence

Ro(m) < R(7) — abr. < v(a) — abr,, V1€ Au(z) (5.8)



and therefore V(o) < v(a) — adrs. In order to establish the reverse inequality, take n € (0, a)
close enough to a so that f,(n) > f,(n/a), and observe from (5.6) that for an arbitrary
T € As(z) (C Ay(x)) we have

BN > (1) (f,(n/e))’ ECX(T)Y = (B (a7(1 = nfa)'=")" E(XT(T)Y.
(5.9)
Consequently B
V(n) > Ry(m) > R(m)— nér., Vr e Au(z),

whence V(5) > v(a) — nér,; letting n | o and invoking the continuity of the function V(-) in
(5.3), we obtain V(a) > v(a) — adr, and thus the third equality of (5.2):

16.[* (8(1 — @))?
3 TG0 _a) (5.10)

v(a) = V(a)+ adr. = 6r. +

To obtain the second equality in (5.2), it suffices to observe that (5.8), (5.5), (5.10) imply

v(a) > R(T) > Ro(7) + adr. = V(a) + adr, = v(a).

Finally, the first equality in (5.2), i.e., the existence of the indicated limit, follows from the
double inequality

D g1 -0 4 —/ $)ds + o log B(VI(T)) =) < log B(X(T))’

< log(a~n(1 — Lyony 4 10 / (s)ds + o log E(N(T))"0= (5.11)

(a consequence of (5.7), (5.9)) in conjunction with (5.5), by passing to the limit as 7" — oo
and then letting n T . O

5.2 Remark: Formally setting a = 0 in (4.16), we recover the well-known optimal portfolio
T'(t)o(t) = % for the investment problem without the constraint (2.5), with utility function

U(z) = +2° from wealth and deterministic coefficients.

6 Maximizing Long-term Rate of Expected Loga-
rithmic Utility

The methods of section 4-5 can also be used to show that the portfolio

() = (@) (1), 0<t< 00 (6.1)



is optimal for the problem of maximizing the long-term rate of expected logarithmic utility

under the constraint (2.5):

16]]*
2

im %E(logX”(T)) < Jim %E(logX”*(T)) —(1-a) (7‘—|— ) tar, Vre Ada).

(6.2)
This problem was also considered by Grossman & Zhou (1993) in their setting. It turns

out that (6.2) holds for general random, F-adapted coefficients r(-), b(-), o(-), for which the
conditions of section 2 are satisfied and the limits

Fi= lim /T Er(t)dt, ||6]? = lim ~ /TEHe(t)Wdt (6.3)
T Jo ’ T—oo T Jo
exist and are finite.
Indeed, consider u(a) = sup, ¢ 4, () P(7), P(7) := lli_{go 7E(log X™(T)) and u(a) = SUP e Ay (w) PalT),
Pao(r) = Tl?rréo L2 FE(log NI(T)) instead of the quantities in (3.1), (3.2) and (5.4), respectively.
Solving the Problem 4.1 with U(z) = (1 — a)loga leads to Q(+) = (1 — a)z'/*=%, ()= 0 in
(4.10), and thus the optimal portfolio of (4.11) takes the form @*(-) in (6.1), independent of
the finite horizon T > 0; furthermore, (4.14) becomes V(a; T, z) = logz +log(1 —a)' = + (1 -
a)E [ (7‘(8) + %HO(S)HQ) ds, whence

ata) = jim S — (- a) (r+ 1o )

Now one writes (5.6) with 6 = 1, and uses exactly the same methodology as in section 5 to
prove that limg_., 7 E(log X™(T)) = P(7*) = u(a) = u(a) + aF, thus establishing (6.2).

7 Maximization of Long-term Growth Rate from
Investment

More important than the optimality property (6.2), however, is the fact that the portfolio 7*(-)
of (6.1) mazimizes the long-term growth rate from investment

1611

— 1 1 *
= lim — T < lim = T =(1- e *a.s. .
S(m) Tlgnoo T log X™(T) < Tlgnoo T log X™ (T)=(1—«a) (7‘ + 5 ) +ar®, a.s. (7.1)

over all 7 € A,(z). Again, this comparison is valid for general random, F-adapted coefficients
as in section 2, under the proviso that the limits

* = i l/T t)dt 617 := i l/T01t2cl1t 7.2
o= 1mT07‘(), 1|07 | -—TEHOOTOH()H (7.2)

T—co
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exist and are finite, almost surely.
In order to prove (7.1), let us start by noticing that A(t) := NT(¢)/NI (), 0 < t < oo
satisfies the stochastic equation

dA(1) = A() (' (D)a(t) — O/(1)dW (1), A(0) =1

from (4.2) and 1t6’s rule, and is thus a positive supermartingale, for any = € A, (2). It follows
readily from this (e.g. Karatzas (1989), p. 1243) that lim 1logA(t) < 0, or equivalently
t—0o0

— 1 1 *
Sulm)i= i log(NZ(T)! ™ < lim —log(N™"(T))'™ = (7.3)

= (1-a) (r* + @) =:5(a), a.s.

The existence of this last limit, and its value, follow from (A.6) and (7.2). On the other hand,
the inequality (5.6) with ¢ = 1 leads to (as in (5.11))

 log(1 - a) < l1og XT(T)  (T4)

Tros(NZ () =+ [ asyas - 12
< flog(N” )T+ n/ ds——log(a "(1=n/a)' ™)

almost surely, for any 7 € A,(z) C A,(z) and any 1 € (0, ) sufficiently close to a. In
particular, (7.4) gives

So(m) + ar* < s(a) := esssup S(7), a.s. (7.5)
TEAL(T)

in the notation of (7.1)-(7.3), whence 5(a) + ar* < s(a); similarly,
S(m) —nr™ < Sy(7) < (), whence s(a) — nr* < 5(n)

and in the limit as n T a : s(a) — ar* < 3(a), a.s. It develops that s(a) = s(a) + ar* =
(1—a) (7‘* + %HO*HQ) + ar*, and it remains to show the existence of the limit and the equality

n (7.1). But both of these follow by writing the double inequality (7.4) with 7 = 7%, letting
T — oo to obtain in conjunction with (7.3)

s(a) = s(a)+ ar® < lim ilogX”*(T) < lim TlogX7T (T) < s(n),

T—o0 T—oo

and then letting 7 | a to conclude Tlim 7 log X™(T) = s(a), almost surely.
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A Appendix

We devote this section to the proof of the claim (2.8). Clearly, it suffices to show that for any
z € (0,00) and p(-) as in (2.8), the stochastic equation

dX (1) = (X (1) — aM(1)p'(t)dWo(t), M(t) = Orgaé(tX( 5); X(0)=uz (A1)

admits a unique F-adapted solution that satisfies a.s.
X(t) > aM(t), V0 <t < 0. (A.2)

For then X(-)/3(-) coincides with X7(-), the wealth process corresponding to the portfolio
= (p'o™ty according to (2.4), and (2.5) is satisfied; and vice-versa.
Suppose that X (-)is an F-adapted process that satisfies (A.1), (A.2). Following Grossman
& Zhou (1993), p. 269, observe that

X(1) _ (X / dI(t)
d (M 0 — a) = (M(t) — a) p()dWo(t) — M) whence

(
X(T) B 1 dM(t) o
d (10g (M(t) - Oz)) = (1) - I—a M(t) £ '—/0 ( JAWo(s / lp(s H ds.

Therefore,

0 < R(t) :=log(l —a)—log (]\)if((i)) a) = —{(t) + log (@) o . (A.3)

1

. . . . L M(t) 1—a |
Clearly, the continuous increasing process K(t) := log | — is flat away from the set

{t >0/X(t) = M(t)}, i.e., away from the zero-set of the continuous nonnegative process R(-)

of (A.3). From the theory of the Skorohod equation (e.g. Karatzas & Shreve (1991), §3.6) we
have then K(t) = Orilaéitf(s), and from this and (A.3):

M(t) = M(t) ::xexp{(l—a) max &(s )}, (A.4)

0<s<t

X(t) = X(1) := 2 exp {(1 —a) Jnax, (s )} [a + (1 —a)exp {{(t) — ggsa%(tﬁ(s)}] . (Ab)
Notice also (from (A.4), (A.5) and (4.1)) that
BONZ() = (X (1) = el (O)(M(£) 77 = (1 - a)aT 0, (A.6)

It is straightforward to check that X (-) satisfies (A.1), (A.2).
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