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Abstract
In the context of complete financial markets, we study dynamic measures for the risk

associated with a given liability C' at time ¢ = T, of the form

s (S5m0

Here z is the initial capital available at time ¢ = 0, .A(z) the class of admissible portfolio

z;C) :=su inf
w0 =5 ke

strategies, Sy(-) the price of the risk-free instrument in the market, P = {P,},ep a
suitable family of probability measures, and [0, 7] the temporal horizon during which
all economic activity takes place. The classes A(z) and D are general enough to
incorporate margin requirements, and uncertainty about the actual values of stock-
appreciation rates, respectively. For this latter purpose we discuss, in addition to the
above “max-min” approach, a related measure of risk in a “Bayesian” framework.
Risk-measures of this type were introduced by Artzner, Delbaen, Eber and Heath

in a static setting, and were shown to possess certain desirable “coherence” properties.
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1 Introduction

It is well-known that in a financial market which is free of arbitrage opportunities and
complete, any liability C' > 0 can be hedged perfectly on a finite time-horizon [0, T]: starting
with a large enough initial capital z > 0, and trading skillfully in the market, an agent can
find portfolio rules that will allow his wealth X*™(-) to hedge the liability without risk at
time ¢ = T', that is

X®™(T)>C as., forsome portfolio 7(-), (1.1)

while maintaining solvency throughout [0,7]. The smallest amount of x > 0 that makes

(1.1) possible, is given by the expected discounted value

C(0) := El >0 (1.2)

So(T)

of the liability under the (unique, risk-neutral) equivalent martingale measure P, where
So(+) is the price of the risk-free instrument. In fact, with x = C(0) in (1.1), the corre-
sponding “optimal hedging portfolio” 7(-) = m¢(-) achieves exact replication of the liability:
XCOmo(T) = C, as.

We discuss in this paper the predicament of an agent who is unable to comit at timet =0
the entire amount C(0) necessary for such perfect hedging. Then the liability C' represents
genuine risk for the agent, and the question is how to quantify this risk. Various ways
for doing this have been proposed, and we refer to the excellent recent papers of Artzner,
Delbaen, Eber & Heath (1996) and Follmer & Leukert (1998) for discussion and overview.
Motivated by the paper of Artzner et al. (1996), we propose measuring risk by the quantity

o m( ) )

(such a measure of risk is also discussed briefly by Follmer & Leukert (1998), section 2.4;
see also Edirisinghe, Naik & Uppal (1993)). This is the smallest expected discounted net-loss
that can be achieved by trading in the market; the expectation in (1.3) is under the original,
“real-world” probability measure Py. Of course, the expression (1.3) vanishes for z > C(0),
as is clear from (1.1); and it becomes an interesting problem in stochastic control, to compute
the quantity of (1.3) as well as the portfolio that attains the infimum, for any z < C(0).
Suppose now that, in addition to the genuine risk that the liability C' represents, the
agent also faces some uncertainty regarding the model for the financial market itself. We
capture such uncertainty by allowing for a family P = {P”}uep of “real-world probability

measures”, equivalent to the risk-neutral measure P, instead of just one (i.e., Py). For



instance, each such measure may correspond to a different specification of the various stock-

appreciation-rates. Thus, the “max-min” quantity

So(T) (1.4)

V(z):= sup inf E, <—C — XI’W(T)>+
veD ()
represents the maximal risk of the type (1.3) that the agent can encounter, when faced with
the “worst possible scenario” v € D. Motivated again by Atzner et al. (1996), we propose
(1.4) as a reasonable measure of risk in this situation. It was shown by these authors, in a
static setting (that is, with = 0, 7 = 0, Sy(-) = 1) and on a finite probability space, that
such measures of risk satisfy certain reasonable and desirable coherence properties, and are
indeed characterized by them. In the special case P = P, for some 7 € D (i.e., when the
risk-neutral measure is included in the set of possible “real-world” measures), we show that

the quantity V (z) is equal to

o C— x> (T)\"
V(z) = ;Igg ilelg EU(W) , (1.5)

the upper (min-max) value of a fictitious “stochastic game between the market and the
agent”. The saddle-point of the game is then shown to be the pair (7(-),?), where 7(-)
corresponds to the investment strategy that borrows the amount C(0) — z from the bank at

time zero, and then invests in the stock according to the “optimal hedging portfolio” m¢(-)
for C.

We present in Section 2 the details of the model for the financial market, and for the
dynamics of the agent’s wealth X®7(-); this latter is flexible enough to allow for interest-
ing margin requirements. Section 3 presents the general solution of the stochastic control
problem (1.3), and several examples that allow explicit computation are treated in Section
4. With such computations in place, it is then straightforward to determine the smallest
amount of initial capital that keeps the exposure to risk below a given, acceptable level. We
discuss in Section 5 the stochastic game associated with (1.4) and (1.5). Finally, we present
in Section 6 an alternative Bayesian formulation to the problem of measuring risk as least-
expected-discounted-net-loss, in the presence of uncertainty about stock-appreciation-rates,

along with examples for which computations are possible.



2 The Market Model

We shall work throughout this paper within the context of a financial market M that
consists of one bank account (risk-free instrument) and several stocks (risky instruments).
The respective prices Sp(-) and Si(+), .. ., S4(+) of these financial instruments evolve according

to the equations
dSo(t) = So(t)r(t)dt, Sp(0)=1

d .
j=1
Here Wy (-) = (Wi (-),...,Wg(-))" is a standard d—dimensional Brownian motion on a com-
plete probability space (€2, F,Py), endowed with a filtration F = {F(t) }o<t<r; this filtration

is the Pg-augmentation of
FVt) :=o(Wy(s); 0<s<t), 0<t<T,

the filtration generated by the Brownian motion Wy(-). The coefficients r(-) (interest-rate),
b(-) = (b1(:),---,ba4(-))" (vector of stock-appreciation-rates) and o(-) = {04;(-) }1<i,j<a (matrix
of stock-volatilities) of the model M, are all assumed to be progressively measurable with
respect to F. Furthermore, the matrix o(-) is assumed to be invertible, and all processes
r(-), b(-), o(-), o7!(-) are assumed to be bounded, uniformly in (¢,w) € [0,7] x Q. In the
special case of deterministic coefficients r(-), b(-) and o(-), the filtration F coincides with
the augmentation of F5(t) = o(S(u); 0 < u < t), 0 <t < T, the filtration generated by
the vector S(-) = (S1(+), ..., Sa(-))" of price-processes.
Thanks to these assumptions, the “relative risk” process

0o(t) := o ()[b(t) —r(t)1], 0<t<T (2.2)
where 1 = (1,...,1) € R?, is itself bounded and F—progressively measurable; thus
t 1 st
Zo(t) = exp [—/ () aWols) - 5 [ ||90(s)||2ds], 0<t<T (2.3)
0 0

is a Pg—martingale, and
P(A) :=Ey[Zo(T)14], Ae F (2.4)

is a probability measure equivalent to Pg. Under this so-called risk-neutral equivalent mar-

51() Sa()
So(-)’ R 50(.)

tingale measure P, the discounted stock prices become martingales, and the

process
W(t) = Wo(t)+ | bo(s)ds, 0<t<T (2.5)



becomes Brownian motion, by the Girsanov theorem. This is the standard setup of a com-
plete financial market model M; see, for example, Karatzas (1996).

In the context of the above market-model M, consider an agent who starts out with
initial capital  and can decide, at each time t € [0,7], which amount m;(t) to invest in
each of the stocks i = 1,...,d without affecting their prices. With 7 (t) = (71(¢), ..., ma(t))’
chosen, the agent places the amount X (¢) — X% , m;(¢) in the bank account, at time #; here

X (-) = X®7(-) denotes his wealth process, which is thus seen to satisfy the equation

dX(t) = lX (t) — Z m(t)] r(t)dt + Z mi(t) [bi(t)dt + 3" 04 (t)dW{ (t)

=1

= r)X@)dt + 7' (t)o@)dW () ; X(0) =z,

or equivalently

X@)) _ ©) O —a
d( So(t)> = GO X0 == (2.6)

Let us formalize these considerations as follows.

Definition 2.1 (i) A portfolio process w : [0,T] x Q — R¢ is F—progressively measurable
and satisfies [ ||7(t)|]?dt < oo, a.s..

(ii) For a given portfolio process m(-), the process X(-) = X®"(-) defined by (2.6) is
called the wealth process corresponding to portfolio 7(-) and initial capital z.

(iii) Given a random variable A € L'*¢(Q, F(T), P) for some ¢ > 0, a portfolio process

7(-) is called admissible for the initial capital z, and we write 7(-) € A(x), if
A
X®7(t) > So(t) -E [— ‘ f(t)] =: A(t), 0<t<T (2.7)
So(T)

holds almost surely. Here E denotes expectation with respect to the probability measure P
of (2.4).

a

Remark 2.1 From standard results on complete financial markets (e.g. Karatzas (1996),
Chapter 1), the quantity

A(0) = E l%] <z (2.8)

in (2.7) is the “Black-Scholes price” of the contingent claim A at time ¢ = 0: the smallest
value of the initial capital z, for which there exists a tame portfolio 7(-) with X*™(T") > A,

5



a.s. Similarly, A(t) can be interpreted as the “price” of A at time ¢, for any given ¢ € [0, 7.
The bound of (2.7) has the interpretation of a margin requirement: the value X*7(.) of
the portfolio 7(-) is never allowed to fall below the value A(-) = X474 (.) of the optimal
hedging portfolio m4(-) for the contingent claim A, with

5 - el [ Gowars szzx

Remark 2.2 From (2.6), (2.9) it is clear that %)(_)A() is a P—local martingale; and from
A()

(2.7) we see that this process is nonnegative, thus also a P—supermartingale. Since 50) is

clearly a P—martingale from (2.9), we conclude that %z()) is a P—supermartingale, and

thus (T
El (1)

o) <z, Vu() € Alx). (2.10)

Definition 2.2 If the process X;’(’g)

(in other words, if (2.10) holds as equality), then we say that the portfolio 7(-) € A(x) is

martingale-generating.

is not just a P—supermartingale but also a P—martingale

O

Let us suppose now that, at time ¢ = T', the agent faces total liabilities (net of targeted

profits) described by a contingent claim C: a random variable in L'*¢(Q, F(T), P, ) for some
e > 0, with

P[C > Al=1 and P[C > A] > 0. (2.11)

Starting with a given, fixed initial capital x > A(0), and subject to the margin requirement
of (2.7), the agent then tries to “cover his liability” at ¢ = T as well as he can. Of course,
with initial capital x > A(0) sufficiently large, the liability can be covered perfectly, without
risk (see (2.14) below). Indeed, if we introduce the Black-Scholes price

C(0) :=E l%] (2.12)

Ot) == So(H)E l 50((1:/1) ‘f(t)] =C(0) + /0 t 7;3‘((;‘)) o) dW(u), 0<t<T  (2.13)

of C then, by analogy with Remark 2.1:

X®™(T) > C a.s. for some =(:) € A(zx), Vo > C(0). (2.14)



In fact, the a.s. inequality of (2.14) holds as equality, if we take x = C(0) and 7 (-) = m¢ (),
the optimal hedging portfolio of the contingent claim C' in (2.13).

Achieving a “hedge without risk” (i.e., the inequality of (2.14) with probability one) is
no longer possible if A(0) <z < C(0). In this case, we shall adopt the value function of the
stochastic control problem

W) ' (2.15)

Vola) = Vol(; C) 1= 'g;(w)Eo( i

(")
(least expected discounted net loss, over all admissible portfolios) as a reasonable - and in
the terminology of Artzner et al. (1996), coherent - measure of risk.

We shall present the general solution of this problem in the next section, and then work
out explicit computations for concrete contingent claims A, C' in section 4. In section 5 we
shall look at a whole family P = {P,},cp of possible “real-world probability measures”,
equivalent to P, rather than at only one measure Pg, and replace (2.15) by the following
stochastic game .

o | O~ X*7(T)
p(z; C) := 51618 n(-)lgft(z) E, (W) . (2.16)

This quantity is the supremum of least expected discounted losses, under all possible
probability measures (or “scenarios”) in D. In the static hedging of x = 0, .A(0) consisting
of only 7(-) = 0, 7(-) = 0, and with a finite probability space, Artzner et al. (1996)
characterized p(C) = p(0;C) := sup,p E,(CT) as the only possible measure of risk with
certain desirable coherence properties. Our motivation for studying the problem of (2.16)
came from the paper of Artzner et al. (1996); see also Dembo (1997) for a related study of
measures of risk based on scenarios.

In the present context, and for simplicity with 7(-) = 0, A = 0 and A(z) replaced by the
class of martingale-generating portfolios, the measure of risk in (2.16) satisfies the following
properties (related to those of Artzner et al. (1996)):

() p(x;C0) <I(C = 2)"||oo = esssup(C(w) — z)"

weN

(@)  p(x1 + 22; C1 + C) < p(w1; Ch) + p(a2; Cy)

(173)  p(Az; AC) = Ap(z; C), for A >0 (2.17)
(iv) z i+ p(z; C) is convex decreasing and
i

z— x4+ p(x;C) is convex increasing, for fixed C.



Remark 2.3 Property (i) states that p(z; C') cannot exceed the maximal possible net loss.
The subadditivity property (ii) guarantees that an agent with initial capital x = x; + o,
faced with a liability C' = C; + (', is not motivated to set up two different accounts with
initial holdings z;, xo and with the hedging of the liabilities C;, C as their respective goals.
According to Artzner et al. (1996), properties (ii) and (iii) cease to be appropriate when
the size of the position C is so large as to influence risk directly (by making liquidation time

depend on size). Property (iv) says that, as the initial capital x increases, both the risk

p(@;C)

T (@0 decrease.

p(x; C) and the “exposure-to-risk-ratio”

Remark 2.4 A particularly interesting margin requirement, when one tries to hedge a

contingent claim C at time ¢t = T, is to have to satisfy the a.s. lower bound
X%T(t) > C(t) — kSo(t) forall 0<t<T (2.18)

and some given, fixed £ > 0. In other words, the value of the hedging portfolio 7(-) is never
allowed to fall below the current price C(-) of the contingent claim (as in (2.13)), by more
than a fixed multiple of the price of the risk-free instrument. The requirement (2.18) can be
cast in the form (2.7) by taking

A=C—kSy(T). (2.19)



3 One Probability Measure

Our focus in this section will be the stochastic control problem of (2.15). If x > C(0), the
property (2.14) shows that Vy(z) = 0; thus, we shall concentrate on initial capital z with
A(0) <z < C(0).

We shall employ the familiar tools of convex duality: starting with the convex function

R(z) = z*, consider its (random, F(T)—measurable) Legendre-Fenchel transform

. : 1-9Cw) —Aw)] ;5 ¢>1
— + _ _
RGw)i= _uin, - 2= | ‘ SPSUG SR
Here the minimum is attained by any random variable of the form
Clw)—Aw) ; ¢>1
I(¢,w) = 0 ; 0< (<1 (3.2)
U(w) ;o (=1

where U is F(T)—measurable and satisfies 0 < U < C — A, a.s.
It follows from (3.1) that, for any initial capital = € [A(0),C(0)) and any «(-) € A(x),
¢ > 0 we have

(C = X"M(T))* 2 R(¢Zo(T)) + CZo(T)(C = X*™(T)), a.s. (3-3)
Thus, in conjunction with (2.4), (2.10) and (3.1) we obtain
C—X*"(T)\" gzo C — X (T)
() > e[ e
> [ CZ“ 2o -0 (34)
= Go(¢) +C[ ( ) — ) = Ho(Q)] = Fo(C),
where we have set
C—-A
Go(g) = Ej [SO T) {CZO )>1}] , 0< C < o0 (35)
C—-A
(@) =B S5 ticmmon | L 0<C < (3.5)
Both these functions are right-continuous and increasing, with Go(0+) = Ho(0+) = 0 and
Cc-A C-A
Gl = |G| - Fee) =B [ S| —c0 a0, 6

CHo(C) — Go(C) = /Ho( Ydu, 0< ¢ < oo,

9



In particular, the function Fy(-) of (3.4) is concave, and is given by

¢
Fo(Q) = C(C0) =) = [ Ho(u)du, 0<¢ < oo.
Remark 3.1 The inequalities of (3.4) hold, in fact, as equalities for some 7(-) € A(z) and

é > 0, iof and only if we have )
X&™(T
E [ ( )] =z (3.8)

So(T)
(i.e., 7(-) € A(z) is martingale-generating),

inf{C >0/ Hy({) > C(0) —z} < f <inf{¢( >0/ Hy(¢) > C(0) — z} (3.9)
and
C—X‘”’”( )= (C — A)l (£ 2Z0(T )>1}+U1{5Z0(T):1} , Q.. (3.10)

for some F(T)—measurable random variable U that satisfies 0 < U < C — A, a.s. In this
case, 7(-) is optimal, since the lower bound of (3.4) is attained. Notice also that Fg(-) attains
its maximum at the point ¢ of (3.9), and we have 4 < X»#(T) < C, a.s.

Proposition 3.1 For every z € [A(0),C(0)) and { € (0,00] as in (3.9), there ezists a
random variable U with 0 < U < C — A such that

X(T) = Clgzmeny + Alggzary>y ~ Uliezom-1y (3.11)
satisfies
(T)
[S0]_ oo
Proof: From (3.6), (2.12) and Hy(¢) > C(0) — z, we see that

1 C .
E lSo(T) (CLiczoirran +A1{{ZO(T)>1})] E lm] — Ho(¢) <z

It is then clear that (3.12) holds for the random variable X (T)) of (3.11), if we show that

1

rs B lSO(T) (Cligmmsny + Aligzmmsn) |- (3.13)

Since the function Fy(-) attains its maximum at CA , forany 0 < e < é we have

Fo(Q) ~ Fo(C—¢) _ c C—A4
0 -+ E —E|——1
= : B ET) e T R
Cc—-A A
+ —Eo [So( 7) (1- CZO(T))l{%gzo(ka—ls}] :

This last term is non-positive, and we obtain (3.13) by omitting it and letting € | 0. a

10



Theorem 3.1 For any given z € [A(0),C(0)), ¢ € (0,00] as in (3.9) and U as in Propo-
sition 3.1, there exists a portfolio process w(-) € A(x) for which (3.8) and (3.10) hold, and
which is optimal for the problem of (2.15):

Vo(x)=Eo<C X” ) = Go(C (3.14)

Proof: Consider the random variable X (T) of (3.11) and the P—martingale

TR

] (3.15)

<t<
:v-l—/ So(u a(u W(u), 0<t<T

in its representation as a stochastic integral with respect to W (-), for a suitable portfolio
process 7(-) (see Karatzas (1996), Exercise 3.6, p.9). The process X (-) defined by (3.15)
clearly satisfies X (0) = z, X(-) = X®7(-), as well as (3.10) and (3.8), by Proposition 3.1.

Optimality of the portfolio process 7 (-) is now a consequence of Remark 3.1.

a

According to (3.15), the optimal portfolio 7(-) of (3.14) coincides with the hedging portfo-
lio for the contingent claim X (T)) of (3.11); in the special case A = 0 and Po[( Zy(T) = 1] = 0,
this latter is just C' “knocked out” on the event {CZy(T) > 1}. Note that for z = A(0),
the conditions (3.8), (3.9) are satisfied by ¢ = co, X%#(T) = A, and the optimal portfolio
7(-) of Theorem 3.1 coincides with 74(-), the hedging portfolio for the contingent claim A
n (2.9).

Proposition 3.2 Suppose that Zy(T) > 0 is a (non-random) constant, namely Zy(T) = 1
and 6y(-) = 0. Then we have

Vo(z) = Eo (%ﬂ) —C0) =2, for AQ0)<z<C(0),  (3.16)

where 7 () is any martingale-generating portfolio in A(x) that satisfies

A< X®(T)<C, a.s. (3.17)

Proof' In this context, the functions of (3.6), (3.5) become Hy(({) = Go({) =0for 0 < { <

ZO(T) =1, and Hy(¢) = C(0) — A(0) = Zo(T)Go(¢) = Go(€) 7oy = 1 Thus ( =1
n (3.9), and writing (3.4) with ¢ = 1, we obtain
T, +
E, (%ﬂ) > FB(1) = C(0) -, Vr() € Ax). (3.18)

11



But for any martingale-generating portfolio 7(-) € A(z) that satisfies (3.17), we have

and (3.16) follows from this in conjunction with (3.18). O

Note that one possible choice for the strategy 7(-) attaining the minimal risk C'(0) — x
in the case of constant Zy(7T), is to borrow the amount C(0) — z from the bank at ¢ = 0,
and then use the hedging portfolio 7¢(-) for C in the stock. This strategy 7(-) results in
final wealth X% (T) = (z — C(0))So(T) + C, but is admissible if and only if this latter
quantity dominates A almost surely; indeed, (z — C(0))So(T) + C > A leads to X®7(¢) =
(x — C(0))So(t) + C(t) > A(t), V0 <t < T as., in conjunction with (2.9), (2.13).

Example 3.1 Maximizing the Probability of Perfect Hedge. Consider the case A = 0,
C = So(T). We have

Ho(¢) = P[CZo(T) =2 1], Go(¢) = Po[CZ(T) = 1]
and

X#7(T)
—S(T)

Vo(z) := inf Eg (1 >+ =Go((), 0<z <1 (3.19)

7(-)€A(z)

where é is the smallest positive number that satisfies Ho(f ) =1 — z. The optimal portfolio

#(-) € A(z) and wealth X (-) = X®7(.) processes for this problem, are given by

X(t) _ - B t ,ﬁ_l(u)
S = PLad <UF@ =+ L% 7AW (), 0<E<T (3.20)
and are also optimal for the problem
sup  Po[X*"(T) > C] (3.21)

w(-)EA(x)

of mazimizing the probability of a perfect hedge (Kulldorff (1993), Heath (1993); see also
Follmer & Leukert (1998) for a more general study of the problem). This is easily seen if
one applies the duality method of the present section to the function z = 11 o) (2), instead
of the function z — 2*. However, the two problems do not share the same optimal policies in

general, for non-constant discounted value % of the contingent claim; see Spivak (1998).

12



4 Examples: Constant coefficients, one stock

Consider now the case d = 1, with constant o(-) =0 > 0, r(-) = r € R in the model of (2.1)
so that 6y(t) = (b(t) — r)/o. Suppose also that A = 0 in (2.7) and that the contingent claim
C, in the problem of (2.15), is given as a function

C =g(5(T)) (4.1)

of the stock-price at ¢t = T, for some g : (0,00) — [0, 00) which is continuous and piecewise

continuously differentiable. In this case the stock-price satisfies
S(T) = S(t)esWIM=WH+uT=) <t < T and S(0) =s > 0, (4.2)

where
w=rjo—aoa/2. (4.3)
Moreover, the functions of (3.6), (3.5) take the form

_ T o(W(T)+uT)Y |
_ T o (Wo(T)+uT+ [ 0o(s)ds ) _
GO(C) =€ EO |:g (86 0 I fo 0 ) 1{‘[0,11 Qo(s)dWO(s)Slog C—% fOT 03(5)d5}:| . (4.5)
Case A: Constant 6y = (b —r)/o > 0. In this case an easy computation shows
log ¢ + 62T )
Hy(¢) = — 20 T,
O(C) Q+< 90\/T u
log¢ — 20T )
G = 2 aT: 53 0 + )
O(C) Q+< 0()\/7 0 u
where we have set
" VIV
U, T, S ; =e 7 SeTVVTTHT)) (2. 4.6
Qe )= [ g i (16)

Clearly, the function u — Q. (u; ) = Q4 (u, T, s; 1) is absolutely continuous and increasing,
with Q4 (—oo; ) = 0 and Q4 (co;u) = C(0). We denote its left-continuous inverse by
Q7' (+; 1) and obtain

log Vo(x) + 33T

0T = Q. (C(0) -z ; p) (4.7)
as well as
Volz) = Go(Do(z)) = Q4 (log yoe(:\)/% Ut ; B+ M)
= Q+ (Q:1(C(0) ~z3) — 60VT: 00 + 1), (48)

13



where we have set YVy(z) = inf{¢ > 0/Hy(¢) > C(0) — z} for the quantity of (3.9).

Case B: Constant 6y = (b — r)/o < 0. The above results remain true in this case too, if

we replace ;. by

efz2/2

Q-(u, 7, s5) :i=e"" /u ” g(se?=VTHT) T dz = Q4+ (00,7, 81 p) — Q4 (u, 7,8, 1);  (4.9)
in particular,
Vo(z) = Go(Vo()) = Q- (Q1(C(0) — 2), 1) — VT ; Oy + ps) (4.10)

Remark 4.1 Note that as we let 6y | 0 in (4.8), or 6y 1 0 in (4.10), we recover the value

function
Vo(z) = Q= (Q'(C(0) — 2) 5 w)iu) =C0) —z, A(0) <z < C(0)

of (3.16) for the case 6y(-) = 0.

a
Now let us try to compute the optimal portfolio 7 () of (3.14), as well as its associated
wealth-process X (-) = X®7(-). We use as our starting point the expression of (3.15), now

in the form
X(t) — e—T(T—t)E |:g (S(t)e(U(W(T)_W(t)‘l'M(T_t))) 1{90(W(T)—W(t))§10gyo(m)—HOW(t)-f—%gg} f(t):|

_[Q (U0 T 1S . i B> 0 oy

Q+ (U-(t), T —¢,5(t);p) , i 6 <0 '
for 0 <t < T. Here, the process
TQNC(0) —z;p) — W(t
T—1t
satisfies the linear stochastic differential equation
U(t) dW (t) 1
dU(t) = dt - ——=, UL(0) = C0) —z; ). 4.1
() = so— gyt = g U+(0) = Q3(C(0) ~2:p) (13)

Now we can apply Ité’s rule to the P—martingale e "X (¢), and obtain

sagj -~ \/;__taé%) (Us(D), T — £, S(@): ) - dW (D) (4.14)

d(e X (1)) = oe " (
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since the bounded-variation term vanishes. A comparison of this expression with d(e "X (t)) =
oe " (t)dW (t) of (3.15) yields

. 0Q= 1 0Q«
t) = - UL(t), T —1t,5(t);u). 4.15
0 = (% - =T ) 0.7 - t5(0n) (4.15)
But
aQ:I: B e—u2/2
= 4 T sea(uﬁ+N7) -
50 e ""g( T
0 u —22/2
= i /00 Nl
— T Seo' 2N/ T T dz
5 s e | S ) 75
where f(s) := sg'(s). Finally, substituting into (4.15) we obtain the optimal portfolio in the
form M, (U (), T — t, S(t if 0y > 0
3 RG] 3 >
H_(U_(t), T —1t,S(t) , 1if 6, <0
for 0 <t < T, where
I ool € e (un/7u7) 417
u, T, 8) = e~ T ge? (VT HuT 2+ ge0(uVTHuT ’ )
dnrs) = | [T 1 )t | @
I —rr | [ o(2/T+uT) e_ZQ/Zd e/ o(uy/T+uT) 4.18
_(u,7,8):=¢e l/_oof(se ) N z- - 27rTg(se )| - (4.18)

Remark 4.2 (i) In this one-dimensional, constant-coefficient framework, the expressions
(4.16) and (4.11) for the optimal portfolio and its associated wealth-process do not depend on
the appreciation rate b of the stock, except through the sign of b—r. This feature is attractive
from a practical point of view, given the difficulties in estimating stock appreciation rates.
(ii) The above analysis also gives that the functions Qi (u, 7, s) = Q+(u, 7, s; u) of (4.6),
(4.9) satisfy the linear parabolic PDE
0 1 2282Q+182Q 20382Q]+ 0Q v 0Q

ar — 2|7% 82 T T o /T Ouds

r$s——+——-—rQ . (4.19)

Example 4.2 Constant claim C = ¢ > 0, A = 0. In this case, we have the straightforward
computations Q4 (u,7) = ce TP (+u), QL (¢, T) = iqyl(@%), C(0) = ce ' and

W(t) £ VTo ! (2er?)

Ualt) == T—1

15



In particular,
log ¢ + §0§T>

H(Q) = e ( 0T

if 6y # 0. Thus, (4.8) and (4.10) yield

Vo(z) = ce '™ l1 By <<I>1 (#) + |00|\/T)] (4.20)

for 0 < z < ce™™". Moreover, from (4.11), (4.16) it is not hard to verify the expressions

Xt) = Q+U:(t),T—t)=ce " (iW(t) tvTe (L)) , (421

Tt
ce—r(T—t) Ce—r(T—t) X(t)
i) = t——Us(t) = t———x ot (=) 4.22
W() Umgp( ﬂ:()) Um(SOO )( c € ( )

for the optimal wealth and portfolio processes, respectively, on 0 < t < T. We have denoted
by =+ the sign of 8y = (b —r)/o, as well as

<I>(u)=/ w(z)dz , @(u) = T (4.23)

Consider the case r = 0, ¢ = 1; then 1—V,(z), #(-), X (-) coincide with the value function,
optimal portfolio and corresponding wealth process, respectively, for the problem (3.21) of
maximizing the probability Po[X*7(T') > 1] of perfect hedge, for 0 < z < 1. These were
obtained by Kulldorff (1993) and Heath (1993).

Example 4.3 European call-option C = (S(T) — q)* for some ¢ > 0, A = 0. In this case
9(s) = (s — @), f(s) = sl(go0)(s) in the formulae of (4.6), (4.9) and (4.17), (4.18). With
the notation

a(N) = 0\/_log< ) + AT
these now become
Q-(u,1,8,1) = / b se” VT g)(2)dz
uV

= s® (o7 - u) No(p+0)) = ge 7O ((—u) Aolp)),
Q-l—(u: T, S, /,1,) = Q,(—OO, T, S, ,U') - Q,(’LL, T, S; ,U')
= 5(®(a(ut0) @ ((ov7—u))" —ge (P (alu)) - B(-u))*
as well as

I, (u,7,8) = s® ((a T—u) A a(p+ a)) + :(—\q/g (se"(“ﬁ_%T) — qe‘”)+
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I_(u,7,8)=s ((ID (a(p+0)) — D(oy/T — u))+ _ :(_\;2 (Sea(u\/?—%r) _ qe—r7)+.

Example 4.4 Margin Requirement, Arbitrary Contingent Claim. Consider now an arbi-
trary contingent claim C, and take A := C' — kSy(T) as in (2.19). Thus, for C(0) —k < z <
C(0), we are trying to minimize the expected discounted loss

Ele "7(C — X**(T))"]
over portfolio processes 7(-) that satisfy the “margin requirement”

X®(t) > A(t) = C(t) — kSo(t), YO<t<T (4.24)
almost surely. However, with y := 2 + &k — C(0) € (0,k), ¢ := ke'", p(-) := 7(-) — 7m¢(+) and
YUR() i= XOT() + KSo() — C(),

this is the same as minimizing
Eole ™" (¢ = Y¥(T))*]
subject to the new margin requirement
Y¥P(t) > 0,V0<t<T

almost surely. Thus we are in the setting of Example 4.2 with ¢ = ke’?, which gives

Vo) = _inf B [e(C = xmm@)] =k [1-0 (07 (1) +10IVT)]
S l@ (@1 (%) - |90|\/T>] (4.25)

for the value function, and

) ket LIV () + VIO~ (1)
p(t) = i(;\/T—tw( T—i )
= j:aki% ((p o <I>71) (% (4.26)

. +W(t) + VTO ! (¥ ]
keft.q)( ®) — (k)>EYy’p(t), 0<t<T

17



for the auxiliary portfolio and wealth processes p(-), 7 (-). Thus, the optimal processes for

our original problem of (4.25) can be expressed as

Lot (\/Tqu (C’(O)—z) + W(t))

T 17
o1 (M)) , (4.27)

#(t) = me(t) +p(t) = me(t)+

k ert

oVl —t v

= ’ﬂ'c(t) +

Sy

—

=
I

Y(t) + Ot) — ke

-1 (C0)—=x
C(t) — ke’ - @ (\/T@ Ciz)=we
T-t

) = X% (t). (4.28)

For any given 0 < ¢ < 1, the number
(e) = C(0) — k- ® (27" () + (6o VT) (4.29)

provides the smallest value of initial capital x € (C'(0) — &, C(0)) for which the risk V;(x)
does not exceed ek; and the unique solution z, = z.(¢) of the equation

3! (%) _ ¢t (1‘%%) = 6|VT (4.30)

provides the smallest value of initial capital x € (C'(0) — k, C(0)) such that the “exposure-

Vo(z)
z+Vo(z

to-risk” ratio does not exceed &.

18



5 A family of probability measures

Let us now try to modify appropriately our model M of (2.1), in order to incorporate some
degree of uncertainty about the stock appreciation rates. One possible way to do this,
is by means of random but bounded perturbations v;(-) with values in [—Nj, V;], where
N; € [0,00) is a known maximal possible deviation of the actual appreciation rate for the
i stock from the value b;(-), i =1,...,d.

More formally, let us denote by D the space of such random perturbations; it consists of
all F—progressively measurable vector processes v(-) = (v1(-), ..., vq4(-))" with values in the

rectangle x¢_,[—N;, N;]. For every v(-) € D, we introduce the exponential Po—martingale

L(0) = e [~ [0 (s dWals) = 5 [ Nlo™ (sw(e)|Pds|s 00 <t (51)

and the probability measure
P,(A) := Eg[L,(T)14] (5.2)

on F(T), under which the process
t
W, (1) == Wo(t) — / (0N (s)u(s))ds, 0<t<T (5.3)
0

is Brownian motion. This way, under the new probability measure P,, the model M of

(2.1) becomes

dSo(t) = Se(t)r(t)dt, Sp(0) =1

dsi(t) = Si(t) [(bi(t) +v(t))dt + Yoy (H)dWI ()| (5.4)

Jj=1

Si(0) = s;€(0,00); i=1,...,d.

The resulting modified model M, resembles that of (2.1); now W, (-) plays the role of the
driving Brownian motion (under P,), but the stock appreciation rates have been modified
and incorporate the random fluctuations v;(-), |v;(-)|] < N; to the original terms b;(-), for
every © = 1,...,d. In the context of this new model M,,, we can formulate and solve the

analogue
C — X>™(T)
So(T)

of the stochastic control problem (2.15), where E, denotes expectation with respect to the

>+ ., A0) <z < o0 (5.5)

measure P, of (5.2). Indeed, consider the analogues

Cc-A
6ul0) = B | S5 Lo+ 0<¢ <00 5.6
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C-A
H,/(C) =K lT 1{CZV(T)21}] , 0< C <o (57)

of the functions in (3.5), (3.6). We have denoted by

Z,(t) = exp [— /Ot 0 (5)dW, () — %/Ot ||0,,(s)||2ds] 0<t<T (5.8)
the likelihood ratio (dP/dP,)| ), where
0,(t) == (O)[b(t) +v(t) —r(®)1], W) =W, (t) + /Ot 6, (s)ds. (5.9)
Then just as in Theorem 3.1, we have
G,(0)=0 ; x> C(0)
V,(z) =4 Gu(0) =B, [§5] z = A(0) , (5.10)
G,(V(x)) : A(0) <z < C(0)

where we have denoted by ), (z) the smallest number ¢ € (0,00) that satisfies H,({) >
C(0) — z.

Remark 5.1 Suppose that

() — ()| < N;, YVO<t<T (5.11)

holds a.s. for every i = 1,...,d; then with &(-) := r(-)1 — b(-), we have
Vi(z) = (C(0) — )™ (5.12)

This is because, under the condition (5.11), the process (-) belongs to the space D and has
0,(-) =0, Z5(-) =1 in (5.9), (5.8); then (5.12) follows from Proposition 3.2.

O

The least expected discounted net loss V,,(z) of (5.5), (5.10) provides a measure of the

risk involved when an agent tries to hedge the liability C' in the market-model M,, of (5.4),

starting with initial capital z > A(0) and using portfolios 7(-) that satisfy the margin
requirement (2.7). Then the “max-min” quantity

Viz) := su inf 1,
V(o) u(-)EpD m()eA(x) (

o= X“(T)>+

So(T) (5.13)

is the mazimal risk that can be incurred, over all possible random perturbations v(-) € D of

the stock appreciation rates. It is dominated by its “min-max” counterpart

_ . C— X (T)\"
V(z):= inf sup B, [ ) 5.14
(=)= dnfe, iy A ( So(T) ) 514

20



the upper-value of a fictitious stochastic game between an agent (who tries to choose 7 (-) €
A(x) so as to minimize his risk) and “the market” (whose “goal” is to perturb the stock
appreciation rates to the agent’s utmost detriment). A question of immediate interest, is to
settle whether the “upper-value” (5.14) and the “lower-value” (5.13) of this game coincide
and, if they do, to compute this common value. We shall answer this question only in the
relatively straightforward context of (5.11); the general case will be considered elsewhere

(see, however, Example 5.3 below).

Theorem 5.1 Under the assumption (5.11) and with the notation v(-) :=r(-)1 —b(-) € D,

we have

000 = B (g ) S v e
If, in addition,
A< (z—C(0)So(T)+C =:C (5.16)
holds almost surely, then
V(z)=V(x) =Vi(z) = (C0) —z)". (5.17)

In particular, there exists then a portfolio 7(-) € A(x) such that the pair (0(-),7(-)) €
D x A(x) is a saddle-point

E, (%ﬁ) <(C(0)—2)" <Ep (%) ; V() eD, n() € Alz)
(5.18)

of the stochastic game with value (5.17).

Proof: We have argued the validity of all (5.15), (5.17) and (5.18) for x > C(0), so let
us concentrate on A(0) < z < C(0). The conditions of (5.15) and the second inequality of
(5.18) follow from (5.12). Next, if (5.16) holds, then starting with initial capital z, we can
find a portfolio #(-) € A(x) that replicates the contingent claim C, i.e., with X%#(T) = C,
a.s. (note that C(0) := E [%] = z). Indeed, as we mentioned in the discussion following
the proof of Proposition 3.2, we can borrow the amount C(0) — z from the bank at ¢ = 0,

and from then on invest in the stock according to the portfolio 7¢(-). In particular, this

<C—X—”(T))+ —C0) =, as.

gives

So(T)
which leads to the first inequality of (5.18) - in fact, valid as equality. Taking the supremum
over v(-) € D in (5.18), we deduce

C - waf(:r))+
sup E, | ————] <C(0)—=z,
u(-)epD ( So(T) ©
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thus also V(z) < C(0) — z. But we have C'(0) — 2 < V(x) < V(x) from (5.12), so (5.17)
follows.

|

Example 5.5 Consider the setting of Example 4.2 with d = 1, constant r, b, ¢ > 0 and
C =c¢ >0, A=0. Denote by D, the class of constant perturbations v(-) = v € [-N, N|.
Then 6, = (b—r+ v)/o of (5.9) is also constant and, by analogy with (4.20), the value
function of (5.5) is given by

T

w@gzw”TF—¢<®46w >+MWWN,|WSN (5.19)

Cc

for0 <z <ce ™. If |b—r| < N, then 0 :=r — b € [-N, N] and we have

V(z) =V (x) = sup V,(z) = Vp(x) =ce™™" -z
V<N
from (5.17), as well as from maximizing directly the expression of (5.19) over v € [-N, N].

We can do this, however, even if |b — r| > N; indeed, the expression of (5.19) is maximized
by

N : ifr—b>N
v:=< =N ; ifr—b<—-N,, (5.20)
r—b ; ifjr—b <N
so that
T 1 .’EGTT d
sup V,(z) = Vi(x) = ce 1—-d(® + VT, (5.21)
lv|<N c o

where d := dist(r — b, [N, NJ).

|

Remark 5.2 In the setting of Example 4.4 with d = 1, constant r, b, 0 > 0and C — A =
kSo(T) for some k > 0, and considering the class D, of constant perturbations, we can show

similarly that o of (5.20) is again the perturbation that maximizes V, ().
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6 A Bayesian measure of risk

In Section 5 we discussed a min-max method for measuring risk in the presence of uncertainty
about the appreciation rates of stocks. Another way to incorporate such uncertainty into our
model, is to adopt the Bayesian approach, which assumes that these rates are unobservable
random variables By, -- -, B, independent of the driving Brownian motion Wy(-), and with
some known prior joint-distribution pu. As observations about stock-prices keep coming in,
the agent has to update this distribution constantly, while at the same time trying to hedge
the liability C' subject to a margin requirement of the type (2.7).

Such a Bayesian approach necessitates a few changes in the model of Section 2, which
we now carry out. In order to help concentrate on the novel aspects of this approach while

keeping notation reasonable, we shall take

r(-) =0, o(-)=14 (6.1)

throughout this section.

Let us start then with a probability space (2, F, P), which carries an R —valued Brown-
ian motion W (t) = (Wi (t),---,Wy(t))', 0 <t < T as well as an independent random vector
B = (By,---,By)" with known distribution u(F) = P[B € E], E € B(R?) that satisfies

u{0Y) <1, [ 1) < oo. (62

We shall denote by F = {f(t)}(KKT the P—augmentation of the filtration

generated by W(-), and by G = {g(t)}OStST the P—augmentation of the enlarged filtration
FEWH)=0(B,W(s);0<s<t), 0<t<T
generated by both W (-) and B. Then the process
M(t) = exp(B'W(t) — ||B|[*t/2), 0<t<T (6.3)
is a (G, P)—martingale, and the measure
Po(A) :=E[M(T) - 1,] (6.4)
is a probability on G(T). Under this new probability measure Py, the process

Wo(t) := W (t) — Bt, G(t); 0<t<T (6.5)
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is Brownian motion, independent of the random vector B, and Py[B € E] = P[B € E]| =
w(E), Y E € B(R?).

6.1 The Model: With these ingredients, and with the simplifications of (6.1), the model

M for the financial market takes the new form

dSy(t) = Si(t)[Bidt + dWi(t)] = Si(£)dWi(t), Si(0)=s; >0 fori=1,---,d  (6.6)

on the filtered probability space (2, F,Py), F. Notice that F coincides with the augmenta-
tion of the filtration
Fi(t)=0c(S(u);0<u<t), 0<t<T

generated by the vector S(-) = (S1(-),- - -, S4(-))" of stock-prices, since S;(t) = s;-exp(W*(t)—
t2/2), 0 < ¢t < T from (6.6). Since these prices are directly observable, we call F the
observations filtration of the model.

With this interpretation of the filtration F, the rest of the model of Section 2 stays the
same as before, starting with the equation (2.6) for the wealth-process X (-) = X*"(-) now

in the simpler form

dX (t) = 7' (t)dW (1), X(0) = . (6.7)

As in Definition 2.1, the portfolio processes w(-) € A(x) are adapted to the observations-
filtration F (which contains information about W (), or equivalently about the stock-prices
S(+)), not to the enlarged filtration G (which contains information also about the unobserv-
able stock-appreciation-rates (B, ..., By)"). Our effort will focus again on computing the
least expected net loss

: X, +
Vo(z) = Vo(a;C) <= nf o (C-x=m(1))", (6.8)

as a measure of the risk associated with hedging the liability C' using ( F—adapted) portfolios
7(-) € A(z).

6.2 Results: In order to translate the results of Section 3 to our new setting, we have to
compute the (F, Py)—martingale

dP 1 . dP,

%0 = g5 = TR () :=E ld—P

}'(t)] (6.9)

as in (2.3). But the (F, P)—martingale M(-) in (6.9) is easy to compute, once we recall the
(G, P)—martingale property of M(-) in (6.3) and the independence of B, W(:) under P,
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namely

M(t) = E[M(T)|F()]=EEMT)|G()|F )] =EM@)|F @)

_ Ekymwym% f@]
B 1 ; t=0
O\ FW(@®) o, o<t<T]/’
Therefore
1 : t=0
70 - perer)
FGW@) <

where we have set
F(s,y) = /Rd eb'y’%”b”%u(db) : 5>0, yeR.
The functions of (3.5), (3.6) can thus be written in the form
Go(¢) =B [F(T,W(1))(C = A) Lipawry<qg| » 0<¢ < oo

Hy(¢) == E[(C = A) Lpmwary<q] 5 0 < ¢ < oo,

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

With z € [A(0),C(0)) fixed, the value function of (6.8) is given by Vy(z) = Go(do(z))

A

according to Theorem 3.1, where Yy(x) is the smallest ( € [0,00) that satisfies Hy(¢) >
C(0) — z. Furthermore, there exists then a portfolio 7(-) € A(z) that is optimal (i.e.,

attains the infimum) in (6.8); and the wealth-process X (-) = X%#(-) corresponding to this

optimal portfolio is

X)) = z+ /Otfr'(s)dW(s)

= E [C Lr@w(@)>yo(@)} + A Lr@,w(T)<yo(x)} ‘ ]—'(t)] C0<t<T

(6.15)

Example 6.3 Consider A =0, and C = ¢(S(T)) for some continuous g : (0,00) — [0, 00).

Then, from (6.6) we have also C = u(W (T)) for a suitable continuous function u : R? —

[0,00), and the expressions of (3.5)-(6.15) become

Hy(¢) = | u(z)gn(2)d

{zeRGF(T,2)<(}
Go(¢) = [ F(T, 2u(2)er(2)dz , 0< < oo
{2€rR4F(T,2)<C}

) = X(T —t, W (1)) : 0§t<T}'

{ u(W(T)) L raw@)>yo@)} t=T
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We have set

X(s,y)= [ @y =)z, puly) = (6.19)

{z€R4F(T,2)>Yo(2)}
(6.19) satisfy the

(
for s > 0, y € R%. Tt is checked easily that the functions F, X' of (6.12),
(6.18), this leads to

heat equation Q, + %AQ =0 on (0,00) X R%; and in conjunction with

the expression

, 0<t<T

#(t) = VAT —t, W (D) = [ )y - )iz

{2€R4GF(T,2)>Yo(z)} s v=W)

) (6.20)
for the optimal portfolio 7(-) of (6.15). Here VX(s,-) denotes the gradient of the function

X(s,-).

Example 6.4 Mazimizing the probability of perfect hedge. With A = 0, C' = k > 0 the
quantities of (6.16), (6.17) become

H(C) = k () = k [1 - @T(zmz]

/ YT
{Z;F(T,Z)SC} L {z;F(T,Z)>C}

Go(¢) =k F(T,2)pr(2)dz =k

1 —/ F(T,z z)dz
L {z;F(T,z)>¢} ( )(pT() ]

[{Z;F(T:Z)SC}
since fyu F (T, 2)pr(2)dz = BF(T,W(T)) = EM(T) = M(0) = 1. As in Karatzas (1997), it

can be shown that, for every 0 < x < k, there exists a unique é = Yo(z) > 0 which satisfies

z)dz = — , or equivalently H z)) =k — z. 6.21
S iy £7GN2 = 07 ea y Ho(Do(®)) (6.21)
The value function
Volx = inf E. (k — X&™(T +:G T
0( ) m(-)EA(T) 0 ( ( )) O(y()( ))
= k 1—/ F(T, = z)dz 6.22
[ {z;F(T,z)>Yo(x)} ( Jor(2) ] ( )

is thus related to the maximal probability of perfect hedge

v
sup Po[X""(T) > k] =1- @) /
() eA(z) k {#F(T,2)>Yo(x)}

F(T,2)pr(z)dz.

Furthermore, the optimal portfolio- and wealth-processes

z — y)
sy —2)dz
{z;F(T,2)>Yo(z)} ( S v (y )

#(t) = VX(T - t,W(t)) = k

, 0<t<T

y=W(t)
s=T—t
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A

Xt)=X""t)=X(T —-t,W(t) =k 0s(y — 2)dz , 0<t<T

y=W(t)
s=T—+t

/{z;F(Tyz)>J’o(w)}
are the same for both problems (ibid. p. 333, where the case £ = 1, d = 1 is treated in
detail).

Example 6.5 Margin Requirement, Arbitrary Contingent Claim. With arbitrary contingent
claim C, and A := C' —k for some k£ > 0 as in (2.19), we fix x € (C(0) — &, C(0)) and denote
£:=x+k—C(0) € (0,k). Reasoning as in Example 4.4, we conclude that the value of (6.8)
is given as

Volz) =k F(T,z z)dz
0@ =k [ rraremney - LT

by analogy with (6.22), where Yy(§) > 0 is defined as in (6.21), that is, via

3

2)dz = =.
/{z;F<T,z)>yo<s)} or(2) k

Reasoning again as in Example 4.4, we see that the optimal wealth- and portfolio processes

take now the form

X(t) =X () =C(t) — k sy — 2)dz
{2:F(T,2)<V0(£)}

0<t<T

y—=z

7(t) = mc(t) + k )gos(y—z)dz , 0<t<T

{2 F(T,2)<Vo(£)} ( s

respectively.
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