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Abstract

We consider Backward Stochastic Differential Equations with convex constraints on the
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state- and gains-processes, and convex in the gains-process. It is also shown that the
minimal solution can be characterized as the unique solution of a functional stochastic
control-type equation. This representation is related to the penalization method for
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1 Introduction
The standard theory for Stochastic Differential Equations (SDE) of the type
dX(t) = —f(t, X())dt+ o' (t, X(t))dB(t), 0<t<T (1.1)

with initial condition X (0) = z € R, driven by the d-dimensional Brownian motion B(-), was
developed by It6 (1942, 1946, 1951). It asserts that the equation (1.1) has a pathwise-unique
solution X (-), a measurable process on the given probability space (£2, F, P) that satisfies
E[sup |X(#)*] < o0 (1.2)
0<t<T
and is adapted to the filtration F generated by the driving Brownian motion B(-), provided
that the drift f : [0,7] x R — R and dispersion o : [0,7] x R — R? coefficients satisfy
appropriate Lipschitz and growth conditions; see, for instance, Karatzas & Shreve (1991),
section 5.2.
In a very interesting paper, Pardoux & Peng (1990) developed recently a similar theory
for equations analogous to (1.1), but in which one specifies a terminal rather than initial
condition. More precisely, with f(-,-) and o(-,-) as above and with £ a square-integrable

and F(7T)—measurabe random variable, they showed that there exists a unique pair of
F—adapted processes (X (-), Y (:)) that satisfy (1.2),

T
E/ 1V (8)|1dt < oo, (1.3)
0
as well as the Backwards Stochastic Differential Equation (BSDE)
T T
X(0) =&+ [ f(s.X(s)ds — [ [o(s,X(s)) + Y(s)/dB(s), 0<t<T.  (14)

In other words, one tries to “steer” the state-process X : [0,7] x  — R to the specified
terminal condition X (7T") = £ at time ¢ = T, while keeping it adapted to the filtration F
generated by the driving Brownian motion B(-). The abilility to accomplish this depends
crucially on the freedom to choose the “gains”, or intensity-of-noise, process Y : [0,7] x Q —
R?, again in a non-anticipative manner. Indeed, one could try to solve the SDE (1.1) using
a time-reversal, that is, for the process X(s) := X(T — s5),0 < s < T starting with the
condition X (0) = X (T) = &; but the resulting state-process X (-) would then be adapted to
the “reversed-time” filtration F(s) := o(W(u) — W(s),s <u <T), 0 < s < T, not to F.
The freedom to choose the “gains” process Y (-) as an element of control, is the crucial dif-
ference between the theory for BSDEs and the more classical Ito6 theory for SDEs. Suppose,

however, that the controller’s ability to choose this gains-process Y'(-) is limited, say by the



requirement that Y (-) take values in a given nonempty, closed convex set K of R?. Then it is,
generally, no longer possible to find a pair of F—adapted processes (X (-),Y(-)) that satisfy
this requirement, in addition (1.2)-(1.4). One needs to give the controller freedom to take
more swift “corrective action”, captured by an F—adapted processes C : [0, 7] x Q — [0, 00)

with increasing, right-continuous paths and
E(C(T))?* < oo; (1.5)

here C(t) represents the cumulative effect of his corrective actions up to time ¢ € [0,7].
More precisely, one seeks a triple of F—adapted processes (X(-),Y(-),C(-)) as above that

satisfies almost surely the analogue
X(t) = §+/tTf(s,X(s))ds—/tT[a(s,X(s))+Y(s)]'dB(s)+C’(T)—C(t), 0<t<T (1.6)
of the BSDE (1.4), the conditions (1.2), (1.3), (1.5), as well as the constraint
Y(t)e K, 0<t<T, (1.7)

and is the minimal solution of (1.6) with these properties (meaning that for any other such
triple (X (), Y(-), K(-)) that satisfies the system (1.2), (1.3), (1.5)-(1.7) we have X (-) < X (-),
a.s.). The Constrained Backwards Stochastic Differential Equation (CBSDE) of (1.6), (1.7)
is the focus of this paper. In order to simplify things and help focus attention on the con-
straint (1.7), we have taken o = 0 throughout. Using notions, tools and results from convex
analysis, and ideas from our earlier papers Cvitani¢ & Karatzas (1992, 1993) that dealt
with constrained optimization and hedging problems in the special context of mathematical
finance, we discuss first the case of Constrained Backwards Stochastic Equations (CBSE),
that is, with 0 = 0 and f(-,-) replaced by an F—adapted process g(-) in (1.6) (section 2).
Next, we develop in section 3 the solvability and properties of the “penalized” version

X (t) =§+/tTf(s,X(s))ds—/tTYn(s)’dB(s)+Cn(T)—Cn(t), 0<t<T (1.8

of (1.6) with o =0 and
T
Calt) = [ p(Ya(s)ds,  ply) = dist(y, K),

again with the help of tools from convex analysis. We put then together the theory of
section 2 and the properties of the penalization scheme (1.8), to study the CBSDE (1.6) in
the case of general Lipschitz-continuous drift function f(¢, w, -) via martingale and stochastic-
control methods. A crucial element of our approach, developed in section 4, is the functional
stochastic-control-type equation

X*(t) = esssup E¥ [«5 + /tT[f(u,X*(u)) —6(v(u))]du ‘ f(t)] , 0<t<T, (1.9)

veD
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which seems to be encountered and studied in this paper for the first time. Here §(2) =
sup,c(2'y) is the support function of the set K of (1.7), D is the class of bounded,
F—adapted processes v(-) with values in the effective domain K := {z € ®¢ / §(z) < oo}
of §(-), and E” denotes expectation with respect to the auxiliary probability measure
PY(A) == Elexp{Jy V'(s)dB(s) — % i ||v(s)||?ds} - 14], A € F(T) for every “adjoint vari-
able” process v(-) in D. We show in section 4 that the equation (1.9) admits a unique
solution X*(-) with the property (1.2); this process is dominated by the state-process of any
solution to the constrained BSDE of (1.6), (1.7) leading, as we demonstrate, to the minimal
solution of this equation. In sections 5 and 6 we show how to extend those results to the
case of a drift coefficient f(t,z,y) which depends also on the current value Y (¢) = y of the
gains process, but in a convex fashion, and to the case of a reflecting lower-barrier for the
state-process X (-); each of these cases necessitates the introduction of an additional “adjoint
variable” (a process p(-), or a stopping time 7, respectively). In subsequent work we expect
to be able to extend the methodology of this paper, to cover the case of general dispersion
o(t,x) and drift f(¢,z,y) coeflicients.

Related existence results are obtained by Buckdahn & Hu (1997) for the special, one-
dimensional case (d = 1), but in a more general context of BSDEs with a lower-barrier
process, driven by both a Brownian motion and a Poisson random measure. These authors

do not use a stochastic control approach, or representations of the type (1.9).

Backwards Stochastic Differential Equations were apparently first studied in the context
of the stochastic version of Pontryagin’s “maximum principle” for the optimal control of
diffusions (see Saksonov (1989), Arkin & Saksonov (1979), Peng (1990, 1993), Elliott (1990);
as well as Haussmann (1986), Bensoussan (1981), Bismut (1978), and the references therein,
for earlier work). They also arose in the context of “recursive utility” for mathematical
economics, in the work of Duffie & Epstein (1992). Since their formal and systematic
study by Pardoux & Peng (1990) in a general framework, they have found an enormous
range of applications in such diverse fields as partial differential equations (cf. Peng (1991),
Barles, Buckdahn & Pardoux (1997), Darling & Pardoux (1997)), variational inequalities
and obstacle problems (cf. Pardoux & Tang (1996), El Karoui, Kapoudjian, Pardoux, Peng &
Quenez (abbreviated [EKPPQ)]) (1997), Ma & Cvitani¢ (1997)), stochastic PDEs (Pardoux
& Peng (1994)), stochastic control (cf. Peng (1990, 1993), Hamadéne & Lepeltier (1995a)),
stochastic games (cf. Hamadéne & Lepeltier (1995b), Cvitani¢ & Karatzas (1996)), and
mathematical finance (cf. Cvitani¢ & Karatzas (1993), ElKaroui, Peng & Quenez (1997),
Buckdahn & Hu (1996, 1997)).



2 Backward Stochastic Equations with constraints

On a given, complete probability space (2, F, P), let B(-) = (By(-),...,By(-))’ be a stan-
dard d-dimensional Brownian motion over the finite interval [0,7], and denote by F =
{F(t) }o<i<r the augmentation of the natural filtration FZ generated by B(-), namely F52(t) =
0(B(s),0<s<t),0<t<T. Weshall need the following notation : For any given n € N,
let us introduce the spaces

L2 of F(T)-measurable random variables & : Q — R with E(||¢|]*) < oo;

H2 of F-predictable processes ¢ : [0, 7] x Q — R* with [T E||¢(t)|?dt < oo;

Sk of F-progressively measurable processes ¢ : [0,7] x 2 — R® with the property
E(supp<i<r [lp(0)|IF) < 00, k € N

A? of RCLL, F-adapted, predictable increasing processes A : [0,T] x Q — [0, 00) with
A(0) =0, E(A%(T)) < oc.

Finally, we shall denote by P the o—algebra of predictable sets in [0, 7] x .

Suppose now that we are given a random variable & : 2 — R in the space L2, as well as a
process g : [0,T] x  — R in the space H%. Suppose also that we are given a closed, convex
set K C R? which contains the origin, and whose support function

§(z) :=sup(y'z), z € B¢ (2.1)
yeK

is continuous on its effective domain
K :={z €Rr? / §(z) < oo}, (2.2)

the “barrier cone” of the set K. Here, 'z denotes the inner product of the vectors y and
z. Tt is shown in Rockafellar (1970) that 6(-) is indeed continuous on K, if this latter set is
locally simplicial.

We shall denote by H the class of F-progressively measurable processes v : [0, T]x Q) — K
with E [; ||v(t)||?dt < oo; for every v(-) € H, the exponential process

Z,(t) = exp{/ot V(s)dB(s) — %/Ot u(s)|2ds}y, 0<t<T (2.3)

is a local martingale and a supermartingale; it is a martingale if and only if £Z,(T) =1, in

which case
P(A):=E[Z,(T)14], A€ F(T) (2.4)

is a probability measure. In particular, this is the case for every process v(-) in the space

D= .D,, D,:={veH/|vtw) <n, forae. (t,w)e[0,T]xQ} (2.5)



of bounded processes in H. (For the unconstrained case K = R? we have trivially K= {0};
then D contains only the evanescent processes v(-) = 0, a.e. on [0,7] x , and P° = P.)
We first consider the problem of a Backward Stochastic Equation (BSE) with constraints
on the “gains”, or “intensity-of-noise”, process; the solution for this problem was provided,
in a slightly different context, by Cvitani¢ & Karatzas (1993), hereafter abbreviated [CK’93].

Problem 2.1: Find a triple of F-progressively measurable processes (X (-),Y(+),C(-)) with
X(-) € S% Y(:) € H3, C(-) € A2, such that the Backwards Stochastic Equation (BSE)

§+/ u)du — / Y'(u)dB(u) + C(T) = C(t), 0<t<T (2.6)
and the constraint
Yit)e K, 0<t<T (2.7)

hold almost surely, and such that for any other triple (X(-),Y(-),C(-)) € 82 x H2 x A? that
satisfies (2.6) and (2.7) we have

X(t)<X(t), 0<t<T

almost surely. O

In the interest of readability and completeness, we recall here the main results from
[CK’93] related to this problem, modified and adapted to our framework. First, we notice
that for any solution to the BSE of (2.6), we have

X(t) =B+ [, g(w)du+C(T) = C(t) | F(1)] = BJ; Y'(w)dB(u) | F()]  (2.8)
> B¢+ [T g(u)du | F(t)] =: Xo(t), 0<t<T.

This process X(-) is the solution of the unconstrained version
T
§+/ du—/ Y{(u)dB(u), 0<t<T
t

of (2.6), with Cy(-) = 0 and with a suitable process Yy(-) € H? that takes values in R?
(unconstrained); the existence and uniqueness of such a process Yy(-) follows from the in-
tegral representation property for square-integrable martingales of the Brownian filtration
(cf. Karatzas & Shreve (1991), pp. 182-184). Furthermore, let us notice that the process
X () + J; 9(s)ds dominates the square-integrable, P-martingale

t)-l—/otg(u)du = Ef—i—/Tgudu‘}"t (2.9)

- E[§+/ du]+/Y' )dB(u), 0<t<T.



Moreover, for every v(-) € D we know from Girsanov’s theorem (e.g. Karatzas & Shreve
(1991), section 3.5) that the process

t
B,(t) == B(t) —/ v(s)ds, 0<t<T (2.10)
0
is Brownian motion under the probability measure P” of (2.4).

Proposition 2.1 For any triple (X (-),Y(:),C(+)) that solves the constrained BSE of Prob-

lem 2.1, the process
t
1) +/ [g(u) — (v(u)du, 0<t<T (2.11)
0

15 a P”—supermartingale with RCLL paths.

Proof: It is easily seen from (2.6) and (2.10) that

X(0)+ [ lo(w) = Sw)ldu+[C0) + [ ()~ v/ @)Y (w)du] = X(O)+ [ ¥'(u
(2 12)
for all 0 <t < T. The stochastic integral on the right-hand side is a PY—martingale, since

we have

(| ||Y<u>||2du)% < (B2 B [ I Pan) <co

we are using here the boundedness of the process v(-), the assumption Y(-) € HZ and the
Cauchy-Schwarz inequality. Here and in the sequel, E¥ denotes the expectation operator
under the probability measure P” of (2.4). The statement of the proposition follows then
from (2.12), after noting that C(-) + [;[0(v(u)) — v/ (u)Y (u)]du is an increasing process. O

Proposition 2.2 For any triple (X(-),Y(-),C(-)) that solves the constrained BSE of Prob-

lem 2.1, we have

X(t) > X(t) := esssup E”[¢ + T[g(u) —d(v(u)]du ‘ F(@)], a.s. (2.13)

veD

for every t € [0,T].

Proof: From Proposition 2.1 we have

X(t) > E[ +/ ))]du‘ ()], a.s.

for every v(-) € D, and we are done, because X (T') = £. O
It is clear now that, in order to find the minimal solution to the constrained BSE of
Problem 2.1, it suffices to show that there exist processes Y(-) € H2 and C(-) € A? such
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that (X(-),Y(-),C(-)) is a solution. Then this triple has to be the minimal solution, and
the processes v(-) € D are seen (by comparing (2.13) with (2.9)) to play the role of “adjoint
variables” that enforce the constraint }A/() € K. We shall do this by imposing the following,

very mild assumption.

Assumption 2.1 There exists at least one solution (X(-),Y(-),C(-)) € 82 x H2 x A? to

the constrained BSE of Problem 2.1; or equivalently, we have

T
f-i—/o g(u)du <n, a.s. (2.14)

for some random wvariable n € L2(Q)) that can be represented in the form n = c +

I Y (u)dB(u) for suitable ¢ € R and Yy(-) € Hj (thus ¢ = En) such that P[Y;(t) €

KNO<t<T]=1.

Let us show that the two assumptions are indeed equivalent: If (X(-),Y(-),C(-)) is
a solution of Problem 2.1, then we can take 1 := X(0) + J; Y’(u)dB(u) and obtain the
inequality (2.14) from (2.6) with ¢ = 0. Conversely, given 7 as in the inequality (2.14), we
can define X(t) := En+ fotY"’(u)dB(u) — Jtg(u)du and C(t) := 0 for 0 < t < T, as well as
X(T) :=¢ and C(T) :== X(T—) — & > 0; it is easily seen that (X(-),Y,(-),C(-)) is then a
solution of Problem 2.1.

Assumption 2.1 is satisfied, in its form (2.14), for example if both £ and ¢(-) are bounded.
Many more examples can be found in [CK’93] and in Broadie, Cvitanié¢ & Soner (1996).

We state now a result which is analogous to Proposition 6.3 of [CK’93], and has a similar
proof (sketched in the Appendix).

Proposition 2.3 The process X(-) of (2.13) can be considered in its RCLL modification;
then, the process X(t) + Ji[g(u) — 6(v(u)]du, 0 < t < T is a P—supermartingale with
RCLL paths for every v(-) € D, and we have the stronger version

P[X(t)>X(t), VO<t<T]=1 (2.15)
of the result in Proposition 2.2.

Next, we have the following result.

Proposition 2.4 The process

. . t
Ot) == X(t) + / g(u)du, 0< ¢ <T (2.16)
0
belongs to the space S?, i.e., E[supOStST(Q(t))Q] < 0.

8



Proof: From (2.13) we have

@ﬂzEF+£%wwﬂmeogtgr

The process on the right-hand side is a martingale in the space S?, by Doob’s maximal
inequality. On the other hand, (2.13) and Assumption 2.1 imply

/ w)du, 0<t<T.
The process on the right-hand side is also in S%, and we are done. O

Corollary 2.1 For every given process v(-) € D, the P”—supermartingale
t ~
0+ [[lotw) — d(w()ldu = Q) — [ 8(w)du=: Qul), 0<t<T

is of class D([0,T]) under P; in other words, the family {Q,,(T)}TE‘SO,T is PY—uniformly
integrable, where Sy is the set of all F—stopping times T : Q — [0, T].

Proof: Since the support function d(-) is continuous on its effective domain K, and the
process v/(-) is bounded, it suffices to show E”[sup;<;<r |Q()]] < co. But this follows from
Proposition 2.4, the Cauchy-Schwarz inequality, and the boundedness of the process v(-).
O

From Corollary 2.1, we have the Doob-Meyer decomposition

X(t)+ /t(g(u) ~ S(w(w))du = O(t) — /té(l/(u))du = X(0)+ MW(#) — AW (), 0<t<T.
’ ’ (2.17)

Here A®)(-) is an F —predictable process with increasing, right-continuous paths and A®)(0) =

0, EYA")(T) < co. On the other hand, M®*)(.) is a uniformly integrable P-martingale of

the Brownian filtration F, and as such can be represented in the form

ue() = | ((YO(w)) dB,(w), 0<t<T (2.18)

for some process Y ) : [0,T] x Q — R which is F—progressively measurable and satisfies
JTNIY @ (2)]|2dt < oo, a.s.; cf. Karatzas & Shreve (1991), p. 375.

The proof of the following proposition proceeds along lines similar to those in the proof
of Theorem 6.4 in [CK’93]; we sketch its main arguments in the Appendix.

Proposition 2.5 The process
V() =Y =v®() (2.19)

9



does not depend on the process v(-) € D, and neither does the predictable increasing, right-

continuous process

O() == AO() = AV /{5 ()Y (u)]du. (2.20)
Furthermore, we have
5+/' m—/’W@mmm+éuv—é@,ogth (2.21)
and
Y(t)e K, 0<t<T (2.22)

almost surely.
Finally, we have the following identification of the minimal solution.

Theorem 2.1 Under Assumption 2.1, the triple (X(-),Y(-),C(")), as defined in (2.13),
(2.19) and (2.20) provides the minimal solution of the constrained BSE of Problem 2.1.

Proof: It remains to prove

E[OiltlgT(X(t))Q] < 00, (2.23)
E[C(T)]? < o, (2.24)

and
EAHW@W&<@. (2.25)

The inequality (2.23) follows from Proposition 2.4. The inequality (2.25) will follow from
(2.24), because (2.17) with v(-) = 0 implies then that M((-) is a square-integrable martin-
gale. Thus, it remains to show (2.24).

Let Q. := supy<i<r 1Q(t)], q(t) := E[Q.|F(t)]. Moreover, for every k € N, let pj, :=
inf{t € [0,T)/C(t) > k} A T. These are F—stopping times, and we have pj, 1 T as k — oo,
a.s. Clearly,

EIC(m)E = 2B [[C(p) = CW]AC (1)

=2E/“Eé )= C(t) | F)dC @)

= 2p /”’“ @ Qow) + M (o) = MO(t) | F(6)dC (1)
_ 9E / Qpx) | F()]dC(2)

< 4B /”’“ ) <48 | sup (a(0) - o)

IN

1 (ELsup (0] E[C*(pm?)% |

0<t<T

10



Therefore, we have

E[C(pr)]* < 16 - E[OiggT ¢ (t)],

for all £ € N. Furthermore, by Doob’s Maximal Inequality and Proposition 2.4,

E[Oi% ()] <4E@(T) = 4E[Q?] = 4E[0i1;£T(Q(t))2] < 0.

Thus, letting k£ 1 oo, we obtain

E[C(T-)]? < 64- E[ sup (Q(1))?] < oo.

0<t<T

On the other hand, since f; Y"(s)dB(s) is continuous, (2.21) implies

~ N A

O(T) — C(T—-) =Q(T-) — Q(T) € Li(®)

thus C(T) € L2(9) as well, and we are done. 0

3 Penalization and BSDEs with constraints

Suppose now that the process g(-) € H? is replaced by the random field f : [0, T|XQXR — R,
a given P ® B(R)—measurable mapping that satisfies

E/T f2(t,w,0)dt < oo, (3.1)
0

as well as
ft,w,z) — f(t,w,z")| < klz — 2| (3.2)

for all (t,w) € [0,T] x Q and (z,z') € R?, for some 0 < k < oco. Thus, instead of the
constrained BSE of Problem 2.1, our focus now is the following Constrained Backwards
Stochastic Differential Equation (CBSDE) problem.
Problem 3.1: Find a triple of F-progressively measurable processes (X(-),Y(+),C(-)) with
X(-)eS?, Y(-) e H3, C(-) € A2, such that the Backwards Stochastic Differential Equation
(BSDE)
T T
X(t)=¢ +/t F(u, X (u))du — /t Y'(w)dB(u) + C(T) = C(t), 0<t<T  (3.3)

and the constraint
Yit)e K, 0<t<T (3.4)

hold almost surely, and such that for any other solution (X(-),Y(-),C(-)) € 8% x HZ x A2
satisfying (3.3) and (3.4), we have

X(t)<X(), 0<t<T

11



almost surely. O
In order to solve Problem 3.1, we introduce the penalized BSDE

Xn(t) =&+ /tT[f(u, Xn(u)) + np(Yn(u))]du — /tT Yi(u)dB(u), 0<t<T (3.5)

for every n € N, where p(y) denotes the distance of the vector y € R? to the set K. Since
the function y — p(y) satisfies the Lipschitz condition

p(y) —p(2)] < |y —z|, V(y,z2) e (&)

the equation (3.5) has a unique solution (X, (-), ¥,(-)) € S? x H2, by the standard theory of
Pardoux & Peng (1990). We have the following characterization of this solution.

Proposition 3.1 The solution X,(-) of the penalized BSDE (3.5) satisfies the following

stochastic equation

Xn(t) = ess sup E” lf + /tT[f(u, Xn(u)) —6(v(u))du ‘ f(t)] ,0<t<T (3.6)

I/EDTL

almost surely.
In order to prove this result, we need a property of the support function J(-) in (2.1).

Lemma 3.1

sup[v'y — np(y)] = (3.7)

yERY

where B, := {v € R%; ||v|| < n}.

s(v) , veKNB,
o0, v¢é¢KNB, [’

Proof: For every v € K, we have

d(v) = sup(v'y) = sup(v'y — np(y)) < sup(V'y — np(y))-
yeK yeK yERY

If, moreover, ||v|| < n, and we denote by yx the projection of y on K (i.e., p(y) = ||y — yx||),
we get

Vy—nply) = Vyx + V' —yx) — nlly — yx||
< 0w) + lly —yxll(lvll = n) < 6(v)

for all y ¢ K. For y € K, we have clearly v'y —np(y) < §(v) again, and thus

6(v) = sup['y — np(y)], for v e KN B,.

yer?
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Next, for any v € R and k € N with ||[v|| > n + ¢ for some ¢ > 0, there exists y € R?, such

that ' > n + ¢ and lly|| > & . Thus,

/ _ A C)
vy—nely) = ”y”[ T ||y||]
>yl l””(“%) > ellyll > ek,

and letting k 1 co we obtain sup,cga['y — np(y)| = oo, for all v ¢ B,
Finally, for v ¢ K, we have SUP,epd[V'y — np(y)] > sup,c(V'y) = d(v) = oo. O

Proof of Proposition 3.1: Let v(:) € D, and ¢t € [0,T]. From the BSDE (3.5) and Lemma
3.1, we have

Xn(t)+/tT(5(u(s))ds - §+/tTf(s,Xn(s))ds—/tTY,:(s)dB,,(s) (3.8)
+ [ 1plvals)) = Yi(6)w(s) + 5(0(s) s

> ¢ [ 6. X (s - [ Vi()dBLs).

By analogy with the proof of Proposition 2.1, the stochastic integrand in the last expression

is a PY—martingale. Hence, after taking conditional expectations, we obtain

Xo(0)2 B [+ [ 1705, Xa(s)) - 6(0(s))Jds

f(t)]

almost surely. On the other hand, because the function np(-) is Lipschitz-continuous and
convex, we conclude as in p.36 of ElKaroui, Peng and Quenez (1997) (hereafter abbreviated
[EPQ)]), that there exists a process 0, () € D,, such that np(Y,) + Y0, + d(9,) =0, a.e. on
[0,T] x Q. Setting v(-) = 7, (-) in (3.8) we get equality there, and therefore also

X,0) = B [e+ [ 176X, (9) = Sa(os | (0]

almost surely. Thus we obtain the a.s. equality of (3.6), first for fixed ¢ € [0,7], and then
for all 0 < ¢ < T simultaneously, from the continuity of its left-hand-side X,,(-) and the
right-continuity of its right-hand-side (recall (3.5) and Proposition 2.3, respectively). a

We now embark on the problem of finding and characterizing the limit of the sequence
{Xn(*)},en- The standard comparison theorem for BSDEs (see [EPQ), p. 23) implies that

Xn(t) € Xpta(t), 0<t<T (3.9)

holds almost surely for all n € N, since np(-) < (n+ 1)p(-). We also impose the following

analogue of Assumption 2.1:

13



Assumption 3.1 There ezists at least one solution (X(-),Y(-),C(-)) to the constrained
BSDFE of Problem 3.1.

Lemma 3.2 Let Assumption 3.1 hold and (X(-),Y(-),C(-)) be any solution to the con-
strained BSDE of Problem 3.1. Then, we have

X,(t)<X(t), 0<t<T
almost surely, for every n € N.

Proof: Choose 7,(-) as in the proof of Proposition 3.1 so that, by (3.8), the process X,(-)
satisfies the BSDE

n=e+ [ I ~ 8(on(s))lds — [ Vi(s)dBa,(5), 0< 1< T.

We also observe from (3.3), (2.10) that f(() satisfies the BSDE
=&+ [ (s, X(5) = V($)in(s)lds + OT) = O@) = [ V(5B (s), 0< < T.

However, 0 < C(T) — C(-) and —8(9,(-)) < =Y'(-)(-), so that the comparison theorem for
BSDEs ([EPQ], p. 23) applies again, to give X,,(-) < X(-). (Note that, even though these
BSDEs are driven by B;, (-) rather than by B(-), the comparison theorem cited earlier is
still valid because the stochastic integrals [ Y!(s)dBy, (s), i Y"(s)dBy,(s), 0 <t < T are
P’ —martingales.)

We conclude from (3.9) and Lemma 3.2 that the limit

X*(t) :== lim X, (t), 0<t<T (3.10)

n—00

exists almost surely. In the next section we prove that the limit-process X*(-) leads to the

minimal solution of the constrained BSDE of Problem 3.1.

4 Constrained BSDE and a stochastic equation

We shall impose throughout this section the Assumption 3.1, and establish with its help the

following main result.

Theorem 4.1 The process X*(-) of (3.10) is the unique solution, in the space S%, of the

stochastic equation

veD

X*(t) = ess sup E” lg + /t " (X () = 6(v(w))du ‘ f(t)] L 0<t<T. (41
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Corollary 4.1 (Ezistence and Uniqueness for Problem 3.1): There exist processes Y*(-) €
H2 and C*(-) € A? such that the triple (X*(-),Y*(-),C*(-)) is the minimal solution to the
constrained BSDE of Problem 3.1.

Proof of Corollary 4.1: Since X,(-) < X*(-) < X(-), we have X*(-) € S2. From this,
and from Theorem 4.1, it is easily checked that the analogue of Proposition 2.4 holds, with
X (-) replaced by X*(-) and g(-) replaced by f(-, X*(-)). Then, using the theory developed

in section 2, one constructs processes Y*(-) € HZ and C*(-) € A? such that the triple
(X*(-),Y*(-),C*(-)) is a solution to the constralned BSDE of Problem 3.1. By Lemma 3.2
we also conclude that this solution is minimal. O

The following “change of variable” result will be needed in the proof of Theorem 4.1.

Proposition 4.1 For a given process g(-) € H? and random variable £ € L2, let

A

X(t) := esssup E¥

veD

T
e+ [ lotw - s0@)lan| 7o), v<e<T
as in (2.13). Then, for any A € R, we have

eMX(t) = esssup B [{fe’\T + /tT e [G(u) — 6(v(u))|du r f(t)] , 0<t<T (4.2)

veD
almost surely, where G(u) 1= g(u) — AX (u).

Proof: We recall from (2.21) that the equation

X(t) = §+/ du—/f?’(u)dB(u)-l—é(T)—C‘(t)

— 4 /t " lo(w) — 5(v(u))]du — / Y (w)dB, (u) + m(t, T; v)

t

holds almost surely for every process v(-) in D, where we have set
mit,r30) = C(r) = () + [ Bo(w) — V(@w(w)dy, 0<t<r<T.
t

Since Y(-) € K, the nonnegative random field (t,r) — m(t, r; v) is nonincreasing in the first
variable (t), and nondecreasing in the second variable (r). As in [CK 93], p. 677, there

exists a sequence of processes {v,(-)},cy € D such that

X()—hm E”"lf#—/[g d(vn(u ]du'}' ] 0<t<T

15



holds almost surely (in fact, one can take v,(-) = 7,,(-) as selected in the proof of Proposition
3.1). Recalling that f; Y’(u)dB,(u) is a P*—martingale, we have then

" [§+ /t "lo(u) —(5(yn(u))]du‘.7-"(t)] = X(t) = M(t), a.s. (4.3)

and
lim M,(t) =0, a.s.

n—oo

for every fixed ¢ € [0, 7], where

Myn(t) = E™[m(t,T;vn) | F(t)] (4.4)
= E™[m(0,T;v,) | F(t)] —m(0,t;v,), 0<t<T

is a nonnegative P"»—supermartingale with RCLL paths (recall Theorem 1.1.13 in Karatzas
& Shreve (1991)).

We deduce from (4.3) that the process X (t) — M,(t) + [i[g(u) — 6(vn(u))]du is a
P —martingale. Therefore, by It&’s rule on e X (), the process

MX (1) — / MM, (u) + / Nefg(u) — AX (u) = 8(v(w))|du, 0<t<T
is also a P¥*—martingale. This implies the equation
T .
Evn le”g + / MG (u) — 5(1/n(u))]du‘.7-'(t)] =eMX(t) + B l / e dM, (u ‘]-' ] (4.5)
t t

We want to show that the last term on the right-hand side of (4.5) tends to zero, as
n — oo. First, recall that M, (-) of (4.4) is an (F, P"»)—supermartingale, and integrate by
parts to obtain

0< —E¥ [ / " MM, (u) ‘]-"(t)] = MM, (1) + AE [ / " N () du { f(t)] (46

Suppose now that A < 0; since M, (+) is nonnegative, the right-hand side of (4.6) is bounded
from above by e* M, (t), which converges to zero as n — oco. If, on the other hand, A > 0,

then we have

)\EV X M, (u du‘]—'
t

< M,( / AMdu < (T — 1) - My (t).

In conjunction with (4.6), and letting n tend to infinity, we conclude that

n—oo

lim B [ / " M, () ‘ f(t)] ~0
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holds almost surely, for every t € [0, 7] fixed.
Returning to (4.5), we obtain from this representation

n—oo

lim B [ge” + /t LG () — 8(v (u))]du ‘ }'(t)] — MR (1)
and thus also

X (1) < esssup B lgeAT n /t LG ) = 8(v(u))]du { f(t)] ,
ve
almost surely. The reverse inequality follows as in the previous section (first part in the
proof of Proposition 3.1), after noting that the triple (eXX (1), J¢ e*dC (u), MY (t)) solves
the BSDE (3.3), with the terminal condition & replaced by £e*”, with f(t, X(t))) replaced
by eMG(t), and with the constraint Y (¢) € K replaced by eMY (t) € eMK, 0 <t < T.
We conclude that the representation (4.2) holds almost surely, first for ¢ € [0, T] fixed,
and then for all 0 <t < T simultaneously, thanks to the RCLL regularity of both sides in
(4.2) (recall Proposition (2.3)).

Proof of Theorem 4.1:
Existence: We have to show that the process X*(-) of (3.10) solves the stochastic equation
(4.1). Fix a process v(+) in D, and select an integer n sufficiently large, so that v(-) belongs

to D,. From Proposition 3.1 we get
X*(t) > Xu(t)>E" l§+/tT[f(u,Xn(u)) —6(v(u))]du ‘ f(t)] , 0<t<T.

The comparison theorem ([EPQ), p.23) implies X(9)(-) < X,,(-), for all n € N, where X (-) €

S? is the state-process in the solution (X(©(-),Y(©)(.),0) to the unconstrained version
T T
XO@) = ¢+ / £, XO(u))du — / (YOW)dB@u), 0<t<T
t t

of the BSDE (3.3). Since we also have X,,(-) < X*(-) < X(-) € S2, by the Lipschitz property
of f, we can use the dominated convergence theorem for conditional expectations to conclude

that
T

x> B e+ [ 170X (w) - 5wl | 7(0)

holds almost surely for all v(-) € D, thus

X*(t) > esssup E” lf—l—/tT[f(u,X*(u)) —d(v(u))du ‘ .7-"(15)] , 0<t<T.

veD
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In order to prove the reverse inequality, let us observe that the function
F(s,x) = =Av+e*f(s,e™™1), 0<s<T, 1 €R (4.7)

is nondecreasing in the variable z, provided we select A = —k, where x is the Lipschitz
constant of the function f as in (3.2). Then, using Proposition 3.1 and the analogue of

Proposition 4.1, we get

eMX,(t) = esssup E” [Se’\T + /tT[F(u, e X, (u)) — eM6(v(u))]du ‘ f(t)]

VEDn

veD

< esssup B [{fe)‘T + /tT[F(u, e X*(u)) — e6(v(u))]du ‘ f(t)]

T

= esssup B [«Se)‘T +/ e[ f(u, X*(u)) = AX*(u) — §(v(u))]du ‘ f(t)] =: XN (1).
veD t

Therefore, letting n — oo leads to X*(¢) < e MXW(¢), 0 <t < T, and another application

of Proposition 4.1, this time to the process e *XW(t), 0 < ¢ < T, implies

X*(t) < esssupE” [E + /tT[f(u,X*(u)) —6(v(u))]du + /tT Me XN (w) — X*(u)]du ‘ f(t)]

veD

< ess sup E” [{ + /tT[f(u,X*(u)) —6(v(u))]du ‘ .7-'(75)] , 0<t<T.
ve

O
Uniqueness: Let X(-) € S? be another solution to the stochastic equation (4.1). As in
Corollary 4.1, there exist processes C(-) and Y (+), such that (X (-), Y (-),C()) is a solution to
the BSDE (3.3). In particular then, X (-) has RCLL paths, and Lemma 3.2 implies X*(-) <
X(-) a.s. In order to prove the reverse inequality, let A = «, where again & is the Lipschitz
constant of f as in (3.2), and observe that the function z — F(s,z) = —Az + e f(s, e 1)

of (4.7) is then nonincreasing. Using Proposition 4.1, we obtain

eMX(t) > eMX*(t) =esssup E” [«Se’\T + /tT[F(u, e X*(u)) — e 6(v(u))]du ‘ f(t)]

veD

> esssup B [{fe’\T + /tT[F(u, X (u)) — e (v(u))]du ‘ f(t)]

veD

= MX(t), 0<t<T

almost surely, and uniqueness follows.
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5 The case of convex drift f(t,w,z,")

In this section we study the case of a drift random field f which is also a function of the
gains process Y (+). More precisely, we consider a random field f : [0,7] x Q x R x R¢ — R
which is P ® B(R) ® B(R?)/B(R)—measurable and satisfies

T
E/ F2(t,w,0,0)dt < oo, (5.1)
0

as well as

ft,w,z,y) — ft,w, 2 y)| < k(lz — 2|+ |y — o)) (5.2)
for all (t,w) € [0,T] x Q, (z,7') € B and (y,y’) € R%¢, for some 0 < k < co. Our aim is to
study the analogue of Problem 3.1, in which the equation (3.3) is replaced by

X(t) = ¢+ /tTf(u,X(u), Y (u))du — /T Y'(u)dB(u) + C(T) — C(t), 0<t<T. (5.3)

t

We shall refer to this modified problem as Problem 3.1'. We shall be able to study the

modified problem with minimal extra effort, but under the following assumption.

Assumption 5.1 The function y — f(t,w,z,y) is conver on R, for every (t,w,z) €
[0,7] x 2 x R.

Following [EPQ)], we introduce the dual function f (t,w,z,-) of the convex function
f(tawaxa ) by

flt,w, @, p) = sup[p'y — f(t,w, 2,y)], p € R (5.4)
YER

for every fixed (t,w,z) € [0,T] x Q X R, as well as its effective domain

O :={(t,w,z,p) € [0,T] x Ax R x R / f(t,w,x, 1) < oo} (5.5)

As in [EPQ)], one can show that each (¢, w, z)—section of O, denoted as O is included

in a bounded set R in R?, independent of (¢, w,z). Moreover, we have the following result.
Lemma 5.1 For any given (t,w) € [0,T] x Q, the set O** does not depend on .

Proof: Let u € 0% for some (t,w,z) € [0,T] x Q@ x R. Let 2’ € R be arbitrary. There
exists a sequence {y,}nex € R? attaining the (possibly infinite) supremum in the definition
of f(t,w,x',,u). We have

ftw, ', p) = ftw,z,p0) < limfp'y, — (¢ w, 2", y,)] + Hminf[f (¢, w, 2, ya) — 1'yn]

< klz — 1|
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and thus f(t,w,x’,u) < 00. a

Consequently, we may omit z in the notation O%* and write O* instead. Let us also
introduce the class A of F—progressively measurable processes p(-) : [0, 7] x © — R which
satisfy F [T f2(t, 0, u(t))dt < oo.

Lemma 5.2 For any pair of processes (X (), Y (-)) € S?xH3, there exists a process u(-) € A
such that
@, X(0),Y (1) =Y () = f(t,X(1),p), 0<t<T (5.6)

holds almost surely.
This result is proved in [FPQ]. We shall also need the following.

Lemma 5.3 The function f(t,w,-,u) 15 uniformly Lipschitz in x; more precisely, there
exists a constant C > 0 such that, for any given (t,w) € [0,T] x Q, (z,2') € R?, and
p € O, we have

|f(t’w=x’/~6) - f(t’waxluuﬂ < C|$ - $,|'

Proof: Fix (t,w,u) and (z,2') as above. There exists a sequence {y,}nen € R? such that

for any € > 0 and n large enough we have

f(tawax7/j’) - f(tvwa xlau) S [:U’Iyn - f(t,(x),ﬂ?, yn) + 8] - [:U’Iyn - f(t7w7 xlayn)]

< klrx — 2| +e.

The inequality with the roles of z, 2z’ interchanged is obtained in a similar fashion, and we
conclude. O
For any given pair of processes (v(-), u(-)) € D x A, let us introduce now the exponential

martingale

Zoalt) = exp { [ (1) + w(9)aB(s) = 5 [ () + n)Pds}, 007, (57)
as well as the probability measure
PYH(A) = B|Z,,(T)14], A € F(T), (5.8)
under which the process
Buult) =B - [ ‘W(s) + pls)]ds, 0<t<T (5.9)

is Brownian motion. We also denote by E"* the expectation with respect to the probability

measure of (5.8). Moreover, we introduce the penalized BSDEs
T T
Xn(t)=¢ +/ [f (u, X (u), Yn(u)) + np(Y,(u))]du — / Y (u)dB(u), 0<t<T, (5.10)
t t

for every n € N, by analogy with (3.5).
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Proposition 5.1 The solution X,(-) of the penalized BSDE (5.10) satisfies the stochastic
equation

Xo(t) —ess  sup B [s— /T[f(u,xn(u),u(u»+5(u(u>)]du\f-(t)],ogg
(v,1n)EDL XA t (5 11)

almost surely.

The proof is completely analogous to that of Proposition 3.1, and uses Lemma 5.2. In
particular, to show that the supremum of (5.11) is attained, we choose (v,,(-), pin(-)) € Dy x A
as to have np(Y,(-)) + Yo ()vn(-) +6(va(-)) = 0 and f(-, Xn(-), ua()) = —f(-, Xu (), Ya (")) +
wh () Yn(o), ae. on [0, 7] x €.

Assumption 5.2 There ezists at least one solution (X(-),Y(-),C(:)) to the constrained
BSDE (5.3) of Problem 3.1'.

Under this assumption, one shows as before that the limit

X*(t) == lim Xo(t), 0<t< T (5.12)

n—00

exists almost surely, and establishes the following analogues of Theorem 4.1 and Corollary
4.1.

Theorem 5.1 Under the Assumption 5.2, the process X*(-) of (5.12) is the unique solution,

in the space S%, of the stochastic equation

X*(t) =ess sup E"* lf — /T[f(u, X*(u), p(u)) + 6(v(u))]du ‘ f(t)] , 0<t<T.
(v,u)EDxA t (5 13)

Corollary 5.1 There ezist processes Y*(-) € H2 and C*(-) € A? such that the triple
(X*(-),Y*(-),C*(+)) is the minimal solution to the constrained BSDE (5.3) of Problem 3.1'.

The proofs of these results are parallel to those of Theorem 4.1 and Corollary 4.1, with
the help of Lemma 5.2. In particular, the proof of Theorem 5.1 uses the following analogue

of Proposition 4.1.

Proposition 5.2 For a given process W (-) € S? and a random variable variable £ € L2, let

A

X(t):=ess sup E"" [5 — /tT[f(u,W(u),,u(u)) + 5(V(u))]du{.7:(t)] , 0<t<T.

(v,u)EDxA
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Then, for any \ € R, we have

e)‘tX(t) =ess sup EYH [ge)‘T — /T e’\“[f(u, W(u), p(u)) + )\X(u) +0(v(u))]du r ]—'(t)]
(v,u)eDxA t (5 14)

for all 0 <t <T, almost surely.

We only sketch the beginning of the proof of this result, since the rest is similar to that
of Proposition 4.1. By analogy with the proof of Proposition 2.5 in the Appendix (and using
Lemma 5.2), one shows that the following analogue of (2.21)

X(t) = &+ /tTf(u, W(u), Y (u))du — /T V'(u)dB(u) + C(T) — C(t)

t

= &- /tT[JF(UaW(U)aN(U))+5(l/(u))]du— /T Y'(u)dB,,(u) + m(t, T;v,p), 0<t < T

t

holds almost surely, for some process Y(-) € H2 taking values in K, some C(-) € A2, and

for every pair of processes (v(-), u(-)) in D x A. Here we have set

m(t,riv,p) = O) = CO) + [ Bww) + Fu, W), p(w)) + £, W (w), ¥ (w)
—Y'( )(v(u) + p(u ))]du, 0<t<r<T.
By the definitions of the functions 6 in (2.1) and f in (5.4), the nonnegative random field

(t,r) — m(t, r; v, u) is nonincreasing in the first variable (¢), and nondecreasing in the second

variable (7). Moreover, there is a sequence {vy(+), n(+)}, . € D X A such that

neN —

n—oo

K() = lim B [s [0, W) ) + 8 f(t)] 0<t<T

holds almost surely. One can take v,(-) = (), as in the proof of Proposition 3.1, while
fin(+) is selected as in Lemma, 5.2, so that (-, X,(-), un(-)) = ', ()Y (-) = £ Xau(), Y (),
a.e. on [0,7] x Q. The rest of the proof is similar to that of Proposition 4.1.

6 The case of a lower-barrier

Let us suppose now that we are given a process L(-) € S? with continuous paths and

L(T) < & almost surely, and consider Problem 2.1 with the requirement
X()> L), 0<t<T (6.1)
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on its state-process, in addition to (2.6) and (2.7). Similarly, consider the analogue of
Problem 3.1 where, along with (3.3) and (3.4), we impose the lower-bound (6.1) on the
state-process.

In both these so-modified problems, denoted henceforth as Problem 2.1" and Problem
3.1", respectively, we treat L(-) as a lower-barrier that the state-process X (-) is not allowed
to cross on its way to the terminal condition X (7)) = £ > L(T). As before, we seek a
minimal solution to each of these problems (assuming, of course, that at least one solution
exists).

For the unconstrained case K = R?, these problems were discussed thoroughly by
[EKPPQ]. In our setting, it is not hard to modify the theory developed in sections 2-4
in order to take into account the imposition of the lower bound (6.1). For instance, the

minimal solution to Problem 2.1" is given as

A

X(t) =ess sup B [¢1izmy + L) ey + [ lo(u) — S(u()ldu | F() (213)"

for 0 <t < T, by analogy with Theorem 4.1, where S;r denotes the class of F—stopping
times T with values in the interval [¢,T].

Notice here the need to introduce a double optimization problem, of mixed stochastic
control /stopping type, in order to represent this minimal solution. The maximization over
control processes v(-) ensures that the constraint (2.7) on the gains-process is observed;
whereas the optimization over stopping times 7 guarantees that the state-process X (-) satis-
fies the constraint (6.1). In other words, v(-) and 7 play the roles of “dual (adjoint) variables”
that enforce the constraints (2.7) and (6.1), respectively.

By analogy with Theorem 4.1 and its Corollary, there is now a unique process X*(-) in
the space S? that solves the stochastic functional equation
X*(t) =ess sup E” |&1lyr—r) + L(T)1{rery + /tT[f(u, X*(u)) — d(v(u))]du ‘ .7:(15)] (4.1)"

vED
TESt,T

for 0 < ¢ < T, and this X*(-) is the state-process of the minimal solution to Problem 3.1".
As in section 3, it is constructed through a penalization scheme which now takes a more

complicated form due to the presence of the “reflecting lower-barrier” | namely:

Xu(t) = &+ f 1f (u, Xa(w) + np(Yo(u)ldu — ;" Y, (w)dB(u) + Cu(T) = Ca(?)
X,(t) > L(t), 0<t<T (3.5)"
C,(+) continuous, increasing and [ [X,,(t) — L(t)]dC(t) = 0

almost surely, for a suitable triple (X, (+), Y,+),Cy(+)) € S? x H2 x A?, n € N.
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The solvability of the system (3.5)", and the a.s. comparison X,,(-) < X,;1(:), n €N, are
consequences of Theorems 4.1, 5.2 in [EKPPQ)]. The state-process of the (unique) solution
to (3.5)" satisfies the equation
Xat) = ess sup B [€1eory + L) ey + [ 10, Xal)) = S ()ldu | 7] (36

vED
TESy T

for 0 < ¢t < T. This supremum is attained by the pair (v,7) = (vn(-), 7 (+)), where v,(+)
satisfies p(Y,, (1)) + Y, (- )vn(:) +0(vn(-)) = 0 a.e. on [0, 7] as in the proof of Proposition (3.1),
and

To(t) :=inf{u € [t,T) / X,,(u) = L(u)} AT, (6.2)

namely

X,0) = B €y + L) Loen + [ 100X (0) - Sl | 700

One can also show that the limit-process X*(¢) := lim 1 X,,(¢), 0 < ¢ < T is the minimal
solution of Problem 3.1".
The details of these derivations are more-or-less straightforward, with the possible ex-

ception of the proof of the change-of-variable formula

A

MX(t) = ess sup E” Elfr—ry + L(7)1ircry + / eMg(u) — AX (u) — §(v(u))]du ‘ f(t)] ,(4.2)"
t
valid for every A € R, for the process X(-) of (2.13)" (analogue of Proposition (4.1)). This
formula plays again a crucial role in establishing the existence and uniqueness of solution
to the stochastic functional equation (4.1)"”. We shall leave these details to the care of the

diligent reader.
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7 Appendix

In this section, we sketch the proofs of Propositions 2.3 and 2.5, by adapting to our current
situation the techniques developed in [CK 93] and ElKaroui & Quenez (1995).

Proof of Proposition 2.3: With the notation g,(-) := ¢(-) — 6(v(-)), let us start by
establishing the equation

A~

X(t) = ess sup E" lX(H) + /ta g, (u)du ‘ f(t)] , a.S. (7.1)

I/EDt,g

of Dynamic Programming, for every 0 <¢ < 6 <T. We have denoted by D,y the restriction
of D to the set [¢,6] x Q; note that (7.1) with @ = T becomes just the definition of X (¢) in
(2.13), since X(T) = &. Let us observe also that, for any v(-) € D and with the notation
Z,(t,0) = Z,0)/7,(t) as in (2.3), the random variable

7,(0) = E” lg + ' g,,(u)du‘]—‘(&)] _E lzy(e,T) {g + ' g,,(u)du} ‘.7—“(9)] (7.2)

depends only on the restriction of the process v(-) to [@,T] x §2. In particular, we obtain
from (2.13) written in the form

A

X (0) = esssup J,(0), (7.3)

veD
that

A

X(t) = esssup E” [Jy(ﬁ) + /te gv(u)du ‘ F(t)

veD

< ess sup E” lf((e) + /t9 gy(u)du{f(t)] ,

l/E'Dt,g

holds almost surely. In order to prove the reverse inequality, it suffices to fix an arbitrary

process ji(+) in D and show that

X(t) > B lf((e) + [ ’ gu(u)du{f(t)] (7.4)

holds almost surely, for any 0 < ¢ < @ < T. To this end, notice that the family {.J, ()}, .5
as in (7.2), is directed upwards: for any two processes p(-) and v(-) in D, there exists a
third process A(-) € D, such that J,(0) > max(J,(6), J,(8)) holds almost surely. Thus (e.g.

Neveu (1975)) we can write the essential supremum of (7.3) in the form
X(9) = klg{)lo 1 J,.(0), as. (7.5)

of an increasing limit, for some sequence {vj(-)}, .y of processes in Dy r; and without loss
of generality, this sequence can be selected from the class M;y := {v(:) € D/v() =
wu(+) on [t,0] x Q}. Now we have

7,(6) + /t ’ gu(u)du'}"(t)] _ g lJ,,(O)—i— /t ’ gu(u)dur}‘(t)], 0.,

A

X(t) > E
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for every process v(-) in Myy; thus, by (7.5) and the monotone convergence theorem, we
obtain

X(t) > lim1t B [Jyk(9)+ /tagu(u)du‘}"(t)]

_ e Jim 1 J,(6) + /t ’ g“(u)du{}'(t)]

— E :X(9)+ /tagu(u)du{]:(t)], a.s.

This proves (7.4), and thus also the P¥—supermartingale property of the process X (t) +
JEgu(u)du, 0 <t < T. The RCLL regularity of the process X(-) is then argued as in
[CK "93], pp. 679-680.

Proof of Proposition 2.5: For any process u(-) in the class D of (2.5), we have from
(2.16)-(2.18) and (2.10):

QW = X+ ' g(u)du
= X(0) +/0t5(1/(U))du+/OtYu'(u)[dBu(u) + (u(u) — v(u))du] — AW (¢)

= X(O)+ [ Vi)aBu(w) + [ B0(w) + (u(u) - () Yy w))du— A1)

for 0 <t < T. But again from (2.17), now read with v(-) replaced by x(-), the process Q(-)
has the P*— supermartingale representation

A

Ot) = X(0) +/Oty,;(u)d3 / Vdu— AW(), 0<t<T.

The equality of these two decompositions leads to the identities of (2.19) and (2.20), whereas
(2.21) follows from the P°-decomposition of Q(-).

Consider now the product set F, := {(t,w)/6(v(t,w) < V'(t,w)Y (t,w)}, and suppose
that, for some process v(-) in D, we have (A ® P)(F,) > 0. Then, for any real constant
k > 0, the process

p() =v() - Lrg +kv() - 1g,

belongs to D, and we have

EA®(T) +// — JY)dtdP + k// —JY)dtdP < 0,
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for k > 0 sufficiently large. This contradicts the fact that A% (T) > 0 holds with probability
one. Therefore, (A ® P)(F,) = 0 holds for every v(-) € D. In particular, for all (¢,w) in a

set of full product-measure, we have
2V (tw) < d(z), VrekK

(observe that both sides are continuous on K, as functions of z); but this leads to (2.22),
since the set K is closed, as in Theorem 13.1 of Rockafellar (1971).
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