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Abstract
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In view of the innovations form dY; = Zu.dt + diy, where 2 =
E(z|#) is the least-squares estimate of 2 and I is the innovations Brownian
motion process, we show that the control law uf = —sgn(%Y;) is optimal
in {. This law is also suggested by the separation (or certainty - equivalence)

principle.

Optimality is first established for a Bernoulli distribution of the type g =
pog + (1 — p)b_.s with § > 0, 0 < p < 1 for the unobserved random
variable 2. In the case § = 1, p = 1/2, i develops that the process Zy =
ta.nh_l(ét) satisfies dZ; = —sgn(Y;Z;)dY;. This stochastic equation leads
to a degenerate two-dimensional diffusion process, adapted to {3‘}}, whose prop-
erties are studied in detail. It is shown that Z cannot be adapted to {};Y},

that %* does not belong to U, and that no control law in Us can be optimal.

Finally, it is shown that thesamelaw u*€ U givenby u} = —sgn(£Y;) = .

—sgn(Zth) is optimal for more general, symmetric distributions g with
f5° 2P u(dz) < oo.

1. INTRODUCTION

We consider in this paper the following stochastic control problem
of the Bayesian adaptive type: to minimize the expected discounted
quadratic deviation from the origin

oo
(1.1) E /0 e~ V2 dt
for some o > 0, subject to the dynamics
(1.2) dY; = zu.dt + dW, ,
where

(i) z is an unobserved square-integrable random variable with
known distribution pu ;

(i) W is a standard, one-dimensional Brownian motion process, in-
dependent of z; and
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(iii) u is a control process with values in [~1,1], adapted to an “ob-
servation filtration” {#}. This filtration will be specified later;
it suffices to point out here that the process ¥ will be adapted
to {#}, and that the random variable z will be independent
of 7o 2 o( Uo<t<coo 2 ) -

This continuous-time problem is related to the class of adap-
tive control questions, studied by Astrém & Wittenmark (1973) in a
discrete-time setting; see also the survey paper by Kumar (1985).

The difficulty in the problem at hand comes from the fact that
z is an unobserved random variable. Indeed, if z is a specified real
constant, it has been shown by Bene¥ (1974} that the control law

(1.3) u) = —sgn(zY3)

of the “bang-bang” type minimizes the expected cost (1.1); see also
Ikeda & Watanabe (1977), Bene, Shepp & Witsenhausen (1980),
Karatzas & Shreve (1987), §6.5. In other words, according to (1.3)
the controller has to exert full push in the direction opposite to that
of sgn(zY:) - which becomes unknown, however, the moment z is
taken to be an unobservable random variable.

In this latter case (i.e., when z is a non-degenerate random vari-
able, independent of 7 ) it is tempting to guess that the separation
(or certainty-equivalence) principle of replacing z in (1.3) by its
least-squares estimate 2 = E(z]#) leads to a control law

(1.4) ugP = —sgn(5,1))

which is again optimal. This guess is further buttressed by the inno-
vations form dY; = Zudt+drf of the equation (1.2}, where v* is

the innovations Brownian motion process.

We shall treat the above problem as a question of stochastic con-

trol with partial observations, where z is the unobserved state and
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Y is the observation process. Following Fleming & Pardoux (1982),
we shall allow “wide-sense” control laws u , which are adapted to an
observation filtration {%; ¢ > 0} that contains the natural filtration
{#¥ ; t > 0} with #¥ = o(Ys; 0 < s <), as well as some
extra information. It is in such a class that Fleming & Pardoux prove
their basic existence result, and in such a class that we shall estab-
lish the optimality of the law (1.4) for non-degenerate but symmetric

distributions p with [ z2u{dz) < co on the random variable z.

In particular, we shall see that in the Bernoulli case p= %(59 +
6_g) for 8 > 0, the estimate 2; = E{2|#) is given as 3, = 6 tanh (§Z;) in

terms of a process Z that satisfies the stochastic differential equation

(1.5) dZy = —sgn(YiZ)dY: , Zo=0.

It is convenient to study this equation under an equivalent prob-
ability measure that makes Y a Brownian motion, and the two-
dimensional process (Y, Z) a degenerate diffusion. It shall be shown
in section 6 that the equation (1.5) admits then a weak solution which
is unique in the sense of the probability law, with an observation fil-
tration {%#} such that both processes Y and Z are adapted to it.
We shall see {Proposition 6.2) that Z cannot be adapted to {F¥},
so that the optimal law of (1.4) cannot be adapted to {#¥} either,
and that no “trict-sense” (i.e., {#¥} - adapted) control law can be
optimal (Proposition 7.5).

2. WIDE-SENSE CONTROLS VIA EQUIVALENT
CHANGE OF PROBABILITY MEASURE

Consider a standard, one-dimensional Brownian motion ¥ =
{Y:, #i; 0<t < oo} with ¥y =y e R\{0}, ona complete probability
space ({},7,P) equipped with a filtration {%} which satisfies the
usual conditions: Ry =%, Vt> 0 and % contains all the P-
negligible sets in 7. The precise nature of {7} will be specified later
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(cf. Remark 4.2). Let the probability space be rich enough to support
a random variable z independent of 7, , with distribution u that
satisfies [, z?u(dz) < co, and denote by {G:} the P-augmentation
of the filtration {o(z}V % ; 0 <t < oo}.

2.1 Definition: We shall denote by U the class of wide-sense
admissible controls, i.e. of {#} - progressively measurable processes
u = {u;; 0 <t < oo} with valuesin [-1,1].

2.2 Definition: The class U; of strict-sense admissible con-
trols consists of those processes u ¢ ¥ which are adapted to {#Y}, the

P-augmentation of the filtration generated by the Brownian motion
Y. a

For every u e U, introduce the exponential martingale
A t 1 t
(2.1) AY = exp{zj; u,dY, — Ezzfo ulds}; 0<t<oo

and the process

t
(2.2) Wfélﬁ—y—z/ tgds , 0<t<co.

0
From the Girsanov theorem (e.g. Karatzas & Shreve (1987}, section
3.5) we know that the process {Wg¥, §; ;0 <t < T} is a standard
Brownian motion on [0,7], independent of the random variable

z, under the probability measure

(2.3) PE(4) = /A 4P, AeGr

for every finite T > 0. In other words (0, Gr, P§), {5}, (W™, Y)
constitute a weak solution of the equation (1.2) on the finite horizon
[0,T].

|
|
]
|
\
|
|
|
|
|
|
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We are now in a position to introduce the control problem of this

paper.

2.3 PROBLEM: With the above notation and for a given finite
o > 0, minimize the performance criterion

A T o0
(24) J(w) 2 Jim /0 et Y2 gt = fo ot EX(Y2) dt
over all wide-sense controls u € U, o

In other words, one is called upon to minimize the discounted ex-
pected quadratic deviation from the origin for the process Y, subject
to the dynamics

(2.2) dY; = zuidt + dWE , Yo=y

with W* a standard, one-dimensional Brownian motion independent
of z (under Pg), |uy/ <1, and u adapted to {#}; cf (L.1),
(1.2).

Using the Fubini theorem and the independence of z and %, the -
performance criterion of {2.4) can be put in the equivalent, and very
useful, form

O [=.+]
J(w) = f et B[Y2AYdt = E f et V2 E[AY|%]dt
Q Q

oo ] 1
= Ef et Y2 F(/ ulds, f u,dY,)dt ,
0 0 0

where F is given by

(2.5)

28) F(no) & [ explea Lhuld) i (o) e Dol x 2.

2.4 Remark: It should Be stressed that the “observation” filtration
{#} is allowed to be strictly larger than {7Y}. At the same time,
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for every u e U and t e [0,00) we notice that u; is independent
of future increments {Y, —¥;; r € [t,00)}, under the probability
measure P. Both these qualitative properties are shared by the class
of wide-sense controls in Fleming & Pardoux (1982).

2.5 Remark: From (2.2) and elementary properties of Brownian
motion we obtain the bound

(2.7) Ef( sup Y3 <2[y® +T(4+ E2?)]
0<t<T

for every finite T > 0. Put back into (2.4), this leads to the estimate
(2.8) J(u) <c{l+4%); V uell

for some constant ¢ > 0 depending only on a and Ez2.

3. FILTERING FORMULATION

It is assumed in this section that the random variable 2z is
actually bounded. With this assumption, the function F(t,z) of
(2.6) satisfies

O pit,z) = [ ¢™ explsz — LeP}u(de)
axm ’ R 2 ?

af

(3.1) .
sF(ta) = [ (5 exploz - 67 hulas)

for every integers m > 1, r > 1, as well as the backward heat

equation % F+ % 'B(L:F F = 0; consequently, the function

(3.2) Glha) 2 2 F(t,5)/F(t,)
satisfies the equation

3 1 &2 3
. e Zg=0
(3:3) e T3 5% TE ¢



on (0,00) x R.

On the other hand, the Bayes rule (cf. Kallianpur (1980), p.282
or Karatzas & Shreve (1987), p.193) implies that the least-squares
estimate

(3.4) 2} = E(2|#)

of z, given the observations % up to time ¢, is given as

au E[ZA“!.?} / 9 /
3. .
(3.5) Bp = FIVIEAR =G([ uids, | u,dY,)

Applying 1td’s rule to (3.5) we obtain then, in conjunction with
(3.2), the equation

9 i i
(3.6) d2f = uy 32 G(/ u?ds,/_ u,dY,) dv .
0 0
Here
t
(3.7) vy th——y—/ us2ids, H; 0<t<oo
0

is the tnnovations process: for any given T € (0,c0), {v¥; 0<t <
T} is an {#} - Brownian motion under Pj.

3.1 Remark: By analogy with (3.4) - (3.7), for any u ¢ U, the
estimate Z} = E?(z|%Y) is given again by the right-hand side of
(3.5), and satisfies the analogue

t t
a5 = 2 / ulds, f ued¥y) dif
Oz 0 - Jo
of (3.6), where now

t
(3.8) Dt“é}iwy—fuaé;‘ds,ﬂ; 0<t< oo
0
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isan {#Y} - Brownian motion under P}, on any given finite horizon
[0,7T7] .

4. THE BERNOULLI CASE

We shall consider in this section the case of a Bernoulli random
variable z with

(4.1) Plz=48]l=p, Plz=—f]l=1-—p

for some 8 > 0 and p € (0,1). The case of a general, square-integrable
random variable with symmetric distribution g will be taken up again
in section 8.

For a Bernoulli random variable as in (4.1), the expressions of
(2.6), (3.2) become

o=87t/2 cosh{b + 9z)

(42) F{t,z)= , G(t,z) = 6.tanh(b + fz)

cosh b

where

a -1
(4.3) b=tanh™"(2p—-1).
Accordingly, for any given u € U, the expressions (3.5) and (2.5) take
the form
(4.4) 2} = 9. tanh(0¢})
and

[==]
J{u;8) = / e EF(Y2)dt
v}

(4.5) 1

" cosh(8€) E

respectively, where

co t 2
f e Jo et trulyds Y2 cosh(8£7) dt ,
0 .

e

g— =1 tanh™(2p 1) .

t
(46)  gr=¢+ [0 udYy & :
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Furthermore, we obtain from (3.7), (4.4) and (4.6) the useful dynam-
ical equations

(4.7) dY; = w8 tanh(06)dt + duf, Yo =1y

(4.8) d¢y = ulbtanh(fE8)dt + wedvl,  EE=¢

for the pair (Y,¢*), driven by the innovations process r¥.

Now the Separation (or Certainty-Equivalence) Principle of the
Introduction suggests considering

>

(4.9) u; = —sgn(£Y:) = —sgn(Z: Y1)

as a candidate optimal law in U, with the process Z = £*  required

to satisfy the stochastic equation
t
(4.10) Iy =€ — / sgn(Y,Z,)dY,, 0<t< o
0

in accordance with (4.6), and the process 2* = £*" given by
(4.11) z{ = 0.tanh{0Z,} , 0<t<oo

in accordance with (4.4). It should be noted that (4.10) is the same as
the equation (1.5), but for a possibly different initial condition; indeed,
from (4.3) and (4.6), £ =0 if and only if p = . One may also
note that the choice (4.9) has the desirable (from the point of view of
expected cost minimization} effect of “reinforcing® the discount factor

on the right-hand side of (4.5), since (u})? = 1.

a8

One is thus led to the following question in stochastic differential
equations:

4.1 PROBLEM: Find a complete probability space (1, ¥, P)

equipped with a filtration {#} which satisfies the usual conditions,
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as well as two {#} - adapted processes Y, Z with continuous sample

paths and (Yo, Zo) = (v, €) € R®\{0} , such that under P,

(i) Y is a standard, one-dimensional Brownian motion starting at
y,and

(ii) the equation (4.10) is satisfied almost surely.

In other words, Problem 4.1 seeks a weak solution for equation
(4.10). It shall be shown in section 6 that such a solution exists, and
is unique in the sense of the probability law. On the other hand, we
shall connect Problem 4.1 in section 5 with a two-parameter Time-
Change, and with a Martingale Problem in the sense of Stroock &
Varadhan (1979).

4.2 Remark: Once a solution to Problem 4.1 has been constructed,
one may take ({1, ¥,P) as the basic probability space, and {%} as
the “observation filtration” in the control problem of section 2 (in
particular, in the Definition 2.1 of wide-sense admissible controls).
With this setup the process u* of (4.9) is then a wide-sense admissible
control: u*e U.

Denoting by v* = v* the associated innovations process of
(3.7), we obtain the analogues

(4.12) dY; = —0.sgn(Y: Z;). tanh(0Z;}dt + duyf YYo=y

(4.13) dZ; = 8.tanh(02Z;)dt — sgn(Y:Z:)dv; , Zo =&

of the equations {4.7), (4.8) in this case.
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5. ASSOCIATED TIME-CHANGE AND MARTINGALE
PROBLEMS

Let us suppose that a solution of Problem 4.1 has been con-
structed. Then Z is necessarily a Brownian motion, because it is a
continuous local martingale with quadratic variation < Z >; =1¢ (the
P. Lévy Theorem 3.3.16 in Karatzas & Shreve (1987)). On the other
hand, the processes

(1) X)) 2 Z[n+z], X0 2 S (%-4)

are also continuous local martingales, and we have from (4.9)

, -1 ; if |[Xi{t Xalt
uy = —sgn(YiZ;) = { 1 if 11&8; z Ingt%I}

as well as < Xy,X3 > (¢) =0,

<Xi> () = %/:(1 +ut)?ds

= meas{0 <5 < 5 |X3(s)| < [alo)l} = T(e)
<Xy> ()= %/‘:(1 — u)%ds

= meas{0 < s < ¢ [Xy1(s)| > |[Xa(s)} =: Ta(2),

where “meas” stands for “Lebesgue measure”. From a result of
F. Knight (Tkeda & Watanabe (1981), Ch. II, Theorems 7.3 and
7.3 or Karatzas & Shreve (1987), Theorem 3.4.13), the processes

Bi(s) & X;(Ti'(s) —2j; O<s<oo, j=12

with zy = Z(y +¢§), z2 = 3(y — £), are independent standard
Brownian motions, and we have

X;(t) ==z; + Bj(T;(t)), 0<t<oo, j=1,2.

It follows then that X,;,X: constitute a splution to the following
two-parameter time-change problem:
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- 5.1 PROBLEM: Find a complete probability space (12,7, P)

equipped with a filtration {%} which satisfies the usual conditions,
and on it

(i} two independent standard Brownian motions B;,B,, and

(i) two continuous, {#} - adapted processes X; and X,
such that
(5.2)

t
Xj(t)=z_.,-+B,-(/ lo,(X(s))ds) , 0<t<oo, j=1,2,
0

for any given z = (21,23) € R*\{0}, where X = (X;,X3) and
(5.3)

Q1 = {zeR% o] <zal}, Q2 £ {zeRY |z1] > |z2]} -

u]

It ¢an also be shown that any solution of Problem 5.1 induces
one for Problem 4.1 as well, so that the two problems are actually
equivalent.

Multi-parameter time-change problems, such as Problem 5.1,
were introduced by Kurtz (1980). From the theory of this article,
as well as that of Chapter 6 in Ethier & Kurtz (1986) (in particu-
lar, Problem 6.2}, it follows that Problem 5.1 is equivalent to solving
the following martingale problem associated with the second-order
differential operator '

al, @ &

(5'4) Ly 2 ( 1@, 5’;{ +1g, 5;%' ) :

5.2 PROBLEM: On the canonical space 02 = C{[0,00); R%) of
continuous functions w : [0,00) — R2, equipped with the o - field
B = g(w(s); 0 < s < oo} and the filtration B; = of{w(s); 0 < s <
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t), 0 <t < oo, find a probability measure P such that

(5.5) Pw(@)=2z|=1, and

() - [ Lo Bis 05t <o)

is 2 P — martingale for every f ¢ CZ(R?)

(5-6)

hold for arbitrary but fixed z e R%\{0}. 0

It is possible to show that the Martingale Problem 5.2 is well-
posed, i.e., admits exactly one solution. We shall not follow this tack;
instead, we shall prove in the next section, by elementary and direct
arguments, that the original Problem 4.1 admits a solution which is

unique in the sense of probability law.

5.3 Remark: It is instructive to study the diffusion mechanism of
the two-dimensional process X = (X3, Xz) in Problem 5.1. We work

throughout with the convention y = z1 + z2, £ = 21 — z2.

In the *North” and “South” quadrangles

QF £ {(y,£)eR?; y> 0,6 <0},

(5.7)
QT 2 {(v,£)eR?; y< 0, >0},

respectively {cf. Figure), the process X diffuses in the horizontal
(East-West) direction according to the Brownian motion B;. On the
other hand, in the “East” and “West” quadrangles

QF £ {(1,8)eR?; y > 0,¢ >0},

(5.8) 2~ 2
Q2 ={(y15)€'2 ) y< 0!6 <0} 3
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respectively, the process ‘X diffuses in the vertical (North-South)
direction, according to the fndependent Brownian motion B,. All
this follows, quite obviously, from the representations (5.2).

What is not so obvious is the fact that, in addition to these
two modes of diffusion, there is also outward motion along the lines
{€ =0} and {y =0}, so that

(5.9) Y| +12:] = 2max(| X1 ()], |X2(t))

is a continuous, nondecreasing process. In order to see this, and the
fact that the process of (5.9) is governed by local times, start with the
Tanaka formulae

¢

%] = ly] + f sqn(Y).dY, + ¥ (t)
0

(5.10) .

1Z4) = €] + jo sgn(Za).dZ, + L7 (1)

for the local times L¥(-), LZ(-) at the origin of the two Brownian
motions ¥ and Z (Karatzas & Shreve (1987), p.205). Recalling
the equation (4.10), we obtain by adding up:

(5.11) Y2l + 12 = [y] + |€] + [LY () + LZ(#)] ,

justifying the claim that the process of (5.9) is indeed continuous and
nondecreasing.
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6. EXISTENCE AND UNIQUENESS

In this section we establish an existence and uniqueness result
(Theorem 6.1) for Problem 4.1. We also show that the solution to
Problem 4.1 cannot be strong, i.e., that the process Z cannot be
adapted to {#¥} (Proposition 6.2).

6.1 Theorem: For every (y,£¢) € R?\{0}, Problem 4.1 has a
solution which is unique in the sense of the probability law; i.e., the
law of (Y, Z) is uniquely determined.

Proof of existence: Take y £ 0, £ € R, and let B be a standard,
one-dimensional Brownian motion on a complete probability space
(0, 7, P}, with respect to a filiration {#} which satisfies the usual
conditions. Define the continuous, {#%} - adapted processes

Zi(t) £ ¢+ B(Y)

(6.1) Yi(t) &y — sgny. /; sqnZy (s).dB(s)

=y~ [ san(ti() () 21(6)

for 0<t<r, where 7, £ inf{t > 0; Y;(t) = 0} is an {7} -

stopping time with values in (0,00). By analogy with(5.11).we have
121 ()] = Ya(ra)} + | Z1(r)]
= (lyl +[£]) + [L7 (r) + L7 (r3)]) = [9]

whence also Zy(7;) # 0, almost surely. Continue now by defining

(6.2

Ya(t) £ B(t) - B(ry)

63) %02 Zm) - an(Zin). [ son(ta(s)dBE)

= Zy(ry) — / sgn(Ya(s) Z2(s)).4¥3(s)

1
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for 1 <t<ry, whee 7 = inf{t > 71; Zaft) = 0} is an
{#} - stopping time with P[r; < r2 < o] = 1. By analogy with
(5.11), (6.2) we have

Y2(72}] = [Ya(r2)l + | Z2(r2))
(6.4) = Z1(n)[ + [L¥*(72) — L¥*(r)]
+ (L% (1) ~ L2 (n)] > | Z1(m)]
almost surely. Notice also from (6.3), (6.4) that 7, is stochastically
larger than the first passage time of B to the level 2ly].

Continuing this way, we construct a strictly increasing sequence
of stopping times {r,}2_, such that, for every n > 1, we have
almost surely

(3) on [T2n572n+1) : Y2n(7'2n) # 0, Z2n.(f2n.) =0
(6.5) Zan+1(t) 2 B(t) — B(ran) , Ton S 1 < Tont1

(6.6)
¢
Yon+1{t) = Y2n(720) — sgn(an(Tzn))-/ sgn(Zan41(s)).dB(s)

Tan

sgn(Yan+1(5) Z2n+1(8)).dZsr11(s) ,

3

= Yant1(r20) — /

T2n

(6.7) . Tan+1 = 1nf{t 2 Ton3 an.g.]_(i) = 0}
(6.8) |Z2n+1(r2n+1)] > |Yan(r2n)]|
and

(tt) on [Tani1,Tan+2) @ Zant1{T2n+1) # 0, Yont1(rans1) =0

Fa¥
(6.9) Yan+2(t) = B(t) — B(r2n+1) » Tont+1 <& < Topyo
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(6.10)

A
Zant2(t) = Zant1(Tans1)—
t
— 8gn(Z2n+1(T2n+1))- sgn(Yzn+2(5)).dB(s)

Tan+1
t

= Zont2(T2n+1) — f 3gn(Yan42(8) Zant2(s)).d¥2n+2(s)

T2n41
(6.11) Tontz = I0f{t > Tant1 7 Zans2(t) =0}
(6.12) |Yant2(r2n+2)| > [Z2n+1(r2n+1)] -

It follows from (6.7), (6.8) and (6.11), (6.12) that r,,, is stochastically
larger than the first passage time of B to the level mjy|, for every

integer m > 1. Consequently, limy, .o Tm = 00, a.s.

We can define now, consistently and on all of [0,00), the pair
of continuous and {#} - adapted processes (Y,Z) by setting

(6.13)  (Y(2),Z() & (Yiu(t), Zm(t)) s fOr Tm—1 <t<Tpm.
From (6.6), (6.10) it follows readily that the equation (4.10) is satisfied

on [0,0c0).

Proof of uniqueness: Without loss of generality one may take
£ =0, y# 0 and consider a solution (Q,7,P) ,{#}, (¥,Z) of
Problem 4.1. The process

t
(6.14) Wté—j sgnZ,dY,, H ; 0<t< o
0

is then standard, one-dimensional Brownian motion, and (6.14),
(4.10) imply

. ¢ : -
(6.15) { Z = b sgn¥s.dWs } , 0<t<oo.
Y: y— fo sgniy.dW, -
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Clearly, in order to prove that the law of the pair (Y, Z) is uniquely
determined, it suffices to show that pathwise uniqueness holds for the
equation (6.15).

To this effect, let {¥',Z') be another solution of (6.15), on the
same probability space (11, ¥, P),{#%} and with respect to the same
Brownian motion W:

' t '
oy (% = G

, bt Ry }, 0<t< 00,
Y, = y—fosgnza.dwa

By analogy with (6.7), let py £ inf{t >0; =0 or ¥, = 0}.
This is an {#} - stopping time with values in (0,00), and we have
sgnY = sgnY’ on [0, p1]. On the other hand, by analogy with (6.2)
we obtain

12, | = Yo, [ + 125, | = ly| + (LY (p1) + L7 (p1)] > 9] -

Similarly, define the {#} - stopping time p» = inf{t > p1; Zs =
0 or Z; = 0} for which p; < ps < 00, a.s., and show as before that
(V,2)=(Y',Z) on [p1,p3], aswellas |V,,] > |Z,,| almost surely.
Continuing this procedure, one comes up with a strictly increasing
sequence of {%} - stopping times {pm}5o_,, such that (¥,Z) =
(¥',Z') on [0,pm], for every m > 1. Just as in the existence part
of the proof, each p,, is stochastically larger than the time it takes
W to hit the level m|y|. Consequently, lim,oe Pm = © a.s.,
which proves

Pl (Y Z)=(Y;,%); V 0<t<oo|=1.

6.2 Proposition: Let (0,7,P),{#},(Y,Z) be a solution to
Problem 4.1. Then :

(6.16) Z , sgnZ cannot be a.da.pted to {?tY} .
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Proof: For concreteness, assume y > 0, £ # 0, set 7o

fil

0, and define the strictly increasing sequence of {%} - stopping
times {r,}30_, asin (6.7), (6.11):

Tan+1 = lI].f{t Z T2n, Y(t) = 0}, Ton+2 — illf{t __>_ Tant+13 Z(t) = 0)}

for n > 0. On an interval [r3,,72n4+1) We have from {6.6) and the
Tanaka formula (5.10):

Y(t) —Y(ran) = —sgnY(’rgn).f sgnZ(s).dz(s)

T2n

= —sgn¥ (r2n)[| 2(9)] — (L%(t) = L% (ran))]

(6.17)

In other words, Y is determined by Y{r3,) and |Z|, during
any interval of the type [r2n,T2ny1); similarly, Z is determined by
Z(72n+1) and [Y|, during any interval of the type [7ant1,72n+2).

Suppose that Z were adapted to {%¥}; then {%%} C
{#Y}, and from (6.17) with » =0, 7 =7; we would have also

(6.18) Y(t)=— f t sqnZ(s).dZ(s) = LZ(t) — |Z(t)], o<t<r
o

and thus {F¥,} C {#Z]}. We would thus be led to the conclusion
{};‘?\r} c {};lflf}a an absurdity.

In fact, sgnZ(r) fs independent of 7¥. In order to see this,
notice that for any 8 ¢ R and any {#Y} - adapted process ¢ with
fo ¢3dt < co almost surely, we have from (6.18):

(6.19) E[sgnZ(r). exp{if /OT ¢: dY (£)}] =

= E[sgnZ(r).exp{—1f /01' ¢y sgnZ(t).dZ(t)}] =0,

because the change from Z to —Z leaves the exponent invariant.
From (6.19) we obtain easily

1

E(1{ognz(r)=+1}- exp{if for ¢: dY (2)}] = EE[GXP{M /: ¢: dY (2)}],
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and the independence of sgnZ(r), ¥ follows.

6.3 Corollary: The control process u* e ¥ of (4.9) does not belong
to the class U, of Definition 2.2.

7. SOLUTION OF THE CONTROL PROBLEM: THE
BERNOULLI CASE

Let us consider again the Bernoulli case Plz = 8] = p,
Plz = —8] = 1 — p of section 4 with 8 > 0, p € (0,1), and try
to study the performance of the law u* of (4.9) in this case. Accord-
ing to (2.4), (4.5), and with the notation P} = P% as in (2.3) for
any T e (0,00), this performance is given by

T co
&y, &;0) = lim E-_’F/ et Y?dt:/ e~ E} (YA)dt
(7.1) LI o
- m E-/; C—(a+a—2-)t Ytz cosh(BZt)dt .

This expression is uniquely determined for every @ > 0, § > 0 and
(v,€) # (0,0), by virtue of Theorem 6.1. The resulting function
®(-,)=98(-,-;08) (i) satisfies the symmetry properties

(7.2) O(y, &) = 8(y,— &) = @(-v, &) = B(—y,—¢) .

We expect @ to be of class CZ,in which case (7.2) leads to the
properties

(7.3) Be(w,0)=0,  8,(0,8)=0

(7'4) Qyﬁ(y’ E) = Qy-f(_ya "'5) = —‘I)yé(_ys 5) = "ny(yﬁ _E)

(f) We drop the dependence on @, whenever convenient.
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as well. We also expect @ tobeofclass € on R2\{(y,§); y& =0},
and to satisfy the resolvent equation
(7.5)

1
-Z-[ny+¢€€] —sgn{y€)[®ye+0 tanh(8¢).9,|+6 tanh(6£).9.+y* = a®
suggested by (4.12), (4.13), and the growth condition

(7.6) |2 (y, €)| < e(1+9?)
suggested by (2.8).

In this section, the function @ of (7.1) is studied in some detail.
We shall establish, in particular, its properties

(7.7) S8¢¢ + 0tanh(0€)@¢ < 0

(7.8) sgn[®,¢ + 0 tanh(0€)®,]| = sgn(yé) ,

which will allow us to cast the equation (7.5) in the form
(7.9)

1 1
5%y + min[u{®ye + 0 tanh(96).8,} +u* {5 B¢ + 0 tanh(0€). 2]

+y?=ab.

This is the formal Hamilton-Jacobi-Bellman (HJB) equation
for the stochastic control problem of section 4. Using it in conjunction
with the dynamical equations (4.7), (4.8), we shall show that the
control law u* of (4.9) is optimal for the control problem in question
and that & is the corresponding value function, i.e.,

(7.10) J(u*;0) = ®(y, £0) < J(u;9) , V vwel.

Let us continue this heuristic discussion by considering the func-
tion

(7.11) V(y,¢) £ cosh(0¢)-2(y, &)
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and noticing that, in terms of it, the equation (7.5) and the relations
(7.7), (7.8) take the equivalent forms

(7.12) %[Vyy + Vee] — sgn(y8).Vye + v? cosh(08) = AV
(7.13) %V > Vgg
(7.14) sgn(Vye) = sgn(yé)

where A2 a+62/2. Let us look at the equation (7.12) in the region
QY of (5.8), where it tekes the form

1 1 .
(7.15) §Vyy — Vye + Eer +y? cosh(8¢) = AV, in Q'z" ,

and differenfiate formally with respect to y and ¢; we arrive then
at the equation

_ 1 1 . .
(7.18) EUW —Uye + §Uf€ + 20y sinh(8€} = AU , in QF,

for the function
(7.17)
U(y,€) & Vye(y, €) = cosh(0€)[By¢ (v, £) + 6 tanh(8€).8, (y, £)]

which also satisfies the boundary conditions
(7.18) U(y,0+) =0, U{0+,&) =0
(recall (7.3), {7.4)).

It turns out that the equation (7.16) admits a unique solution in
Q3 , subject to the boundary conditions (7.18).

7.1 Proposition: There is a unique solution to (7.16), (7.18); it
is given in Q'{ by
2
% Uy, &) = % sinh(0€) — cosh(0¢)+
+ cosh(8(y + £)) sinh(£v/2X) + sinh(yv2})
sinh((y + £)v22) ’

(7.19)
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and satisfies

(7.20) 0<0U(y,€) <Uge(v,¢), in QF.

Proof. The same change of variables as in (5.1}, namely H{(z1,z2) =
U(zy+ 22,21 — z2), transforms (7.16) into the second-order ordinary
differential equation

(1.06) K" (22) — Mh{zs) = ~20(z1 + 22). sinh(8(z: — z2))

with z3 € (—%1,%1); for the function A(:) 2 H{z,, - ). This equation
has to be solved in the interval [—zy,z;] subject to the boundary
conditions

(7.18)’ h{xz,) =0,
for every z; € (0,00). The general solution of (7.16)’ is given by

H(zy,23) = C{z1).sinh(x2V2}) + D(z1). cosh(zav2A)+

(r.21) + 2 (o1 + 23) sinh(0(z — 22)
2

26
- Fcosh(ﬂ(:zl — Zg))

for appropriate functions C(-) , D(:). The latter are determined from.
(7.18) as

21— 2
o) = & Locohl@0a) ) 0 14 cosh(20z)

o? sinh(2v/2X) ' o? cosh (2v/2X) ’
and substitution of these expressions into (7.21) leads ultimately to
(7.19).

For any given z; > 0, if h{-) takes a negative value in
(—z1,z1), it must also achieve a negative minimum in this inter-
val; but by the maximum principle (cf. Friedman (1964), p.53) this is
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impossible because from (7.16)" we have %h" —AR <0 in (—z1,21).
The first inequality in (7.20) has been established.

For the second, extensive computation, starting with (7.19), leads

to the expressions

(7.22)
o2 _ e B sinh(£v/22)
557 Uy, €) = aycosh(8¢) — fsinh(0¢){1 (7 + E)vaN) H
sinh(yv/22)
+ msinhz((y IV [cosh{d(y + €)) — cosh((y + £)V2A)]
and

202 sinh(yv/22)

(7.23) Uge(,€) — U (v, ) = — sinh®((y + £)v/2))

Fly+¢),
where

F(z) £ 4) + (2) — 6%) sinh?(zv/2))
(7.24) —2v2) [ @. cosh((\/é—)\.— 6)=2)
+ (V2X — 6) cosh(82). cosh(2v22) | .
But this function is positive on (0,c0), as one can check easily from
F(0) =0 and from
(7. 25)
F (z) = 2\/_(2A 8?) smh(z\/_)[cosh(z\/-—) — cosh(6z)] >

which is valid for all z > 0. o

We extend now the definition of U on all of R? by the symmetry

property Uly, €) = —U(—y,£) = -Uly,—¢) =U(—y,—¢€), to wit:
(7.26)

2
57 59m(y€)-U(y, &) =

2 cosh(d{|y| + |£))). sinh(|¢[v22) + sinh(|y|v2X)
sinh((|y] +|¢])v2%)
+ =yl sinh(8]¢]) — cosh(4¢) .
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Our program for the remainder of this section will be as follows:
starting with the function U of (7.26), we shall construct a function
® related to U via U = cosh(0¢)[®y¢+0 tanh(4£).9,] asin (7.17); cf.
Proposition 7.2. We shall show that this function satisfies (7.5) - (7.9)
(Proposition 7.3), and provides the value function for the stochastic
control problem with partial observations (Theorem 7.4).

We start this program by introducing the function
(7.27)

O(y, &)

e

2 _ sgn(y€).U(y, §)

cosh(ﬂ&)

2
=+ 25— Dyl sann(o]e)
_ 26 cosh(8(|y| + |¢]))sinh(|£|v2X) + sinh(jy|v2})
a? cosh(6|&]) sinh((ly] + |£[)v2R) ’

which is continuous, of class C*° away from {{y, ¢); y¢ =0}, and
satisfies the growth condition

(7.28) 10(y,8)| < K(1+y?)

for some finite constant K > 0 depending only on « and 4.

Now consider a standard two-dimensional Brownian motion W =
(W1,W2) on a probability space {(1,7,P},{#}, as well as the one-
dimensional diffusion process X¥(-) given by

(7.29) dX*(t) = 0tanh(6XE(2))dt + dWa(t) , X&(0) =

for every given ¢ ¢ R.

7.2 Proposition: The function ®(-, -) = &(-, -;6) defined by
o0

(130)  B&n) 2 B[ e oy +Wie),X4(0) d
0

is of class C* on RZ%, of class C® on R*\{(y,¢); y¢ =0}, and
satisfies the resolvent equation (7.5), the symmetry properties (7.2) -
(7.4), and a growth condition of the type {7.6).
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Proof: The symmetry properties follow directly from those of the .
function © in (7.27), and from the stochastic differential equation
(7.29); the bound (7.6) is a direct consequence of (7.28).

On the other hand, it follows from Dynkin (1965), Chapter XIII
that ® has the requisite smoothness properties and satisfies the
resolvent equation

(7.31) 518yy + Bee] +0tanh(06) B¢ + O(y,€) = 0 .
In order to establish (7.5), we have thus to show
(7.32) Uly, €) = cosh(0€).[®ye(y, &) + Gtanh(6£).9,{y, &)] ;

in fact, it suffices to prove (7.32) in QF, where the resolvent equation
(7.31) becomes

1
=[Byy + Bze] + O tanh(0€).P, ~
CON U(y,8)
_ ) 2 _ s +
cosh{(0¢) +y“=a®, in Q7.
To this effect, we introduce the function
(7.34) V(y,€) £ cosh(0¢)-2(y, &)

as in {7.11), with ®(y,£) defined in (7.30), for which the equation
(7.33) and the condition (7.32) become

(7.35) %[Vyy +Vee] + y® cosh(08) ~ Uy, €) =2V, in QF

(7.36) Uy, &) = Vye(y,€), in  QF

respectively. In order to derive (7.36) from the equation (7.35), dif-
ferentiate in the latter successively with respect to y and &, to
obtain

(7.37)
1
5[(Vy€)yy + (Vyf.’)&é'] + 20y sinh(8¢) — Uy&(ya £) = AVye » in Q;_ .
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On the other hand, the symmetry properties (7.2) - (7.4) of & lead
to

(7.38) Vye(y,0+) =0,  Vye(0+,€) =0.

The equality U = Vy; follows now from (7.37), (7.38) and from
Proposition 7.1.

7.3 Proposition: The function @ of (7.30) satisfies the properties
(7.7) and (7.8), and thus also the HIB equation (7.9).

Proof: It suffices to establish (7.14), (7.13), for the function V of
(7.34). The former follows directly from (7.36), (7.26) and (7.20).

As for (7.13), it suffices to prove it in Q3; now from (7.35) and
the “boundary conditions”

(7.39) Ve(y,04) =0, V,(0+,¢)=0,

one can obtain the stochastic representation

(140) V@O =E [ e Glu+ Wi, [+ Wald) o

Here we are setting

(7.41) G(y, &) £ y*cosh(8¢) — U(y, £) ,

and we reflect the two-dimensional Brownian motion W = (W;, Ws)
on the faces of QF (generator —;-3%25- + %aa—;; in (7.35), “reflecting”
boundary conditions (7.39)). Recalling the transition probability den-

sity function

(7.42)  g(t;zy) 2 plt,r—y) +p(tbz+y); z>0,y>0
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for reflecting one-dimensional Brownian motion (e.g. Karatzas &
Shreve (1987), p.97) where p(t,2) = (27t)~% exp(—2%/2t), we can
recast (7.40) as

(7.43) V(y,¢) = / / /R . e *q(t; y, u)q(t; £,7)G(u, n)dudndt .

If we integrate by parts twice, and use the identity ¢., = qyy for the
function of (7.42), we arrive at the expression

(7.44) 0%V (y, €) ~ Vee(w,6) =

=11/,

- 2././); e'”q(t;y,u)p(t, )Gy (u,0)dudt .

2
+

e Mq(5y,u)e(t; &, 0% G(u,1) — G (4, n)]dudnd

The first integrand on the right-hand side of (7.44) is positive,
thanks to the consequence 862G > Gge, in QF of (7.20) and (7.41).
As for the second integral, we have from (7.22)

(7.45) —Gely, 0_) = U¢(y,0) =
207 \2)
T a? [sinh(y\/ﬁ)
a demonstrably positive quantity for y € (0, c0). It develops that the
right-hand side of (7.44} is positive, and (7.13) is established.

{cosh(8y) — cosh(yv2\)} + ay] ,

Finally, the HIB equation {7.9) follows directly from the resolvent
equation (7.5), and the properties (7.7), (7.8). o

It remains now to show that the function & of (7.30) satisfies
the comparison (7.10) - thus agreeing with the right-hand side of the
expression (7.1).

7.4 Theorem. For any wide-sense control u ¢ U, we have

(7.10) J{u;0) > ®ly, &6) = J(u*;0) .
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In particular, the function ® of (7.30) agrees with the right-

hand side of (7.1), and is the value function for the control problem
of section 4.

Proof: For any u € U we consider the continuous, {#} - adapted
process
t

(7.46) e *®(Y:, &) + f

oe_‘"’ Y2ds, G:; 0<t<T.

Applying It&’s rule to {7.46), in conjunction with (4.7}, (4.8) and (7.5),
we obtain the semimartingale decomposition

(7.47) D(y, &) + My + BY 0<t< oo

for the process of (7.46), where
(7.48)

t i
e [0 e rust, e ar, B2 [ i
1]

and
u B _]_'_ (Y Eu Y2__ (Y, £2
t = 3%yTs £)+ Y — al(Yy, &)+
(7.49) + ut{ye(Ye, &) + 0 tanh(0£;).2, (Y, £) 1+

1
+ul{5Bee(Vi, €7) + 0 tanh(967). 3¢ (¥s, €1}

It follows from (7.9) that §* isa nonnegative, {%} - progressively
measurable process, and from (7.5) that

(7.50)
x D *
B = BY = -0y (YVe, 1) + Y — a®(Ye, Z)~
— Sgn(YtZt){@yg(Y;g, Zt) + 4 tanh(BZt).Qy(Yt, Zt)}-l-

1
+ 52¢¢(Ye, Zt) + 0 tanh(02,).0¢(Y2, Z2)

bS] -

is evanescent. On the other hand, {My, 0<t< T} isa (P§,{%:})
- local martingale, for any finite T > 0.
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Let us fix such a T, and introduce the stopping times .
(1.51) 7, 2 inf{t € [0,00); |Vi|>n or €[>0}, V n>1
for any given u ¢ U. We have then E%(M%,, ) =0, and from (7.47),

(7.46):

TATn

TATy
75 oo+ [ otgra=Br [ v
Q e}

+E;"‘ [e—a(Tl\Tu) Q(YTI\T" s E;Afn)] .
From (7.6) it follows that

¢~ *(TA™) 1@ (YT Ars E7ar )| £ ce= (T A7) (1+ Y’Iz‘f\fn)

<e(1+ sup V),
0<t<T

(7.53)

a.s., where the last random variable is P - integrable, by virtue of
(2.7). From the Dominated Convergence Theorem and (7.53) we have
then

lim Efle” >IN @(Yrnr,, Einr,)] = e T EF8(Yr, £5)

(7.54) n—ee
<e{l+T)e T

(¢ denotes here a generic constant in (0,c0) that depends only
on o and 0, mnot necessarily the same throughout). We can let
n — oo in (7.52), appeal to the Monotone Convergence Theorem and
(7.54) in order to obtain

(155 W O+Er /o

T T

e~ B¥dt = E¥ / e~ Y2 dt
[4)
+e *TE®(Yr, £7) ,

and then let T' — co in this expression to get, by similar arguments:

®(y, &) < ®(y, &) +fm e" EX(B)dt =
(7.56) 0

o0
- [ e EH(Y2)dt = J(u;0) .
0
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The inequality in (7.56) holds as an equality if » = «*, and (7.10)
follows.

7.5 Proposition: No strict-sense control can be optimal; i.e., for
any u € Uy (cf. Definition 2.2) we have

(7.57) J(u;8) > ®(y,¢;0) .

Proof: Let u ¢l beoptimal: J(u;8) = &(y, £). Then (7.56) implies
[o € ER{(BY)dt = 0, whence fF{w) =0 for meas® P - ae.
(2,w) € [0,00) x . But from (7.7) - (7.9), (7.49) and the fact that
Y, &% are Brownian motions,I this means

ui(w) = —sgn(¥i(w)éf(w)) , meas® P—a.e. (t,w) -

and (4.6) gives

t
(7.58)  gr—g— f sgn(Yoth)dY,, 0<t< oo
8]
almost surely.

Now suppose that u ¢ U,, iLe., u is adapted to {#¥}. From
(4.6) again, it follows that ¢* is also adapted to { F¥}; but this is
impossible, by virtue of (7.58) and Proposition 6.2. o

Nevertheless, the infimum of the left-hand side of (7.57) over
u € U, is equal to the right-hand side of this expression.

7.6 Proposition: &(y,&;0) =infuqy, J(u;6).

Proof. Forany uel,, recall the {#Y} - adapted Brownian motion

process U* of (3.8), as well as the analogues
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(7.60) d¢f = ulf tanh(0€2)dt + v dif , & =¢

of the dynamical equations (4.7) and (4.8), for the pair of {#¥}
- adapted processes (Y,£%). According to P.L. Lions (1983) the
function

b(y,;0) £ inf J(u;0)

coincides with the unique viscosity solution of the HIB equation (7.9)
associated with (7.59), (7.60) and (4.5). But we have shown in this

section that (7.9) admits a classical solution, namely the function
& of (7.30); thus, & = . o

8. SOLUTION OF THE CONTROL PROBLEM: THE
GENERAL CASE

Finally, let us return to the case of a general symmetric and
square-integrable distribution # on the random variable z, i.e.,

#(A) = u(—A), Y A eB(R). Then the function F of (2.6) takes the
form

co

(8.1) F(t,3) =2 f =02 cosh(Gz)u(df) ,
0

and the expected cost J{u} of (2.5} becomes

(8.2) () =2 '[o " 7 (03 6)u(d9)

in the notation of (4.5).

From Theorem 7.4 applied for each # > 0 to the Bernoulli
1 .
distribution g 2 :?'-(69 +6_g) - ie.,with p= % and £=0 - we
obtain then after integrating with respect to pu:

00 co

(8.3) J(u) > J(u*) =2 /0 T(u*;8)u(dd) = 2 [o V (4, 0;0)u(d8) .
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This establishes the optimality of u* in the general case as well.
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