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For the closed-loop nomfinear filtering problem with control in separated form (a
functional of the conditional distribution measure), the Kallianpur-Striebel formula
vields a stochastic equation for the unnormalized conditional distribution, given the
past of the observations. Existence, uniqueness and measurability of soluticns to this
equation are discussed. The results give a partially positive answer to the question of
admissibility of separated control laws. However, “pathological” nonanticipative but
noncausal solutions appear, after the manner of Tsirelson’s example.

1. INTRODUCTION

In this paper we are concerned with the “closed-loop” nonlinear
filtering and control problem of studying the conditional distribution
v(A)=P{x,eA|y;s<t}, where {x} is an R'-diffusion process

tPresented at the 20th IEEE Conference on Decision and Control, San Diego,
California, December 1981 (invited paper).
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MCS-81-03435.
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satisfying the stochastic differential equation
dx,= f{t,x,,u) dt+dw, (L.1)

and {y,} is the observation process in R!
1
vi=h(s,x)ds+b;05t <1 (1.2)
)

The process {(w,,b,); 0<t<1} is Wiener in R"*! and independent of
the random variable x, which is assumed to have a known
distribution p,. Here {u,} is a process adapted to the family %] =
o(y,;0<s<1) of o-ficlds and takes values in a “control set” ' R™; it
provides feedback control, which closes the loop in Egs. (1.1}, {1.2).

The Kallianpur-Striebel formula (Eq. (2.4)) computes the
conditional distribution v(-), by considering an appropriate
. unnormalized version pf-} with v,(A}=pu,(A)/u(R"), AeBorel,, in the
form

1
,LLI(A) = R[' EI:I{z +thA]eXp {g f(S, z+ Ws: us) ! dws

t
-1 |f(s,z+ws,us)|2 ds + [ (s, z +w,) dy;
)

Oy ™

_%j‘ h*(s,z+w) ds}:lko(dz),
Q

for any #7-adapted process {y,}.t On the other hand, whenever y,
has a density po(x), then it is checked from the above formula that p,
also has a density, namely: p(x)= [ q,(x; 2)po(2) dz, With g(x;z) dx =
E[lg 4 wcanexp{...}] where the exponent is the same as on the
right-hand side of the Kailianpur—Striebel formula. The function p is
called an unnormalized conditional density and satisfies, under
proper conditions, the Zakai stochastic partial differential equation

[15]:

fluxtaposition denotes inner product in R"x-y=Y 7., x;y; while ¥, A stand for
gradient, Laplacian, respectively.
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dop(x) =38~ f(t, x,u) -V

- IF{Vf(t, X, ut)}]pl(x) dt
+h{t, x)px) dy,; >0

PoX)=po(x). (1.3)

It has been suggested ([9, 5,4]) that, for purposes of optimization,
the control u, at time t need depend on the past {y;s=t} of the
observation sample path only through the conditional density p,;
this is equivalent to saying that the latter should be thought of as a
“sufficient statistic” containing all the pertinent information. In [4]
the interested reader can find some first steps toward a rigorous
theory along these lines, originally proposed in a heuristic fashion by
Mortensen [9]. Such a program calls, ultimately, for the solution of
Eq. (1.3) where u, is replaced by Ult,p,) (a functional of the
conditional density), in the strong sense that p, is to be adapted to
F.

This program seems to be hard: the resulting equation is a
stochastic nonlinear partial differential equation with nonlecal drift
and potential terms. Our aim in this paper is to show that by
switching attention from the Zakai equation to the Kallianpur-
Striebel (K.8.) formula with u, replaced by u(t,u,), the interesting
questions can be formulated in their “natural” setting and attacked
successfuily. We call a control process {u,} of the form u,=v(s,u,),
0=t<1, for a suitable function v, a separated control process; for
such {u,}, (K.S.) becomes a stochastic equation for the measure-valued
process p=1{u;0=<t=<1}. We shall be concerned with questions of
existence, uniqueness, and #Y-measurability of the solution to this
equation.

2. FORMULATION AND SUMMARY

Let us start with a basic probability space (Q,% P;#) and an
associated increasing family of o-fields {#,;0=r=<1}, such that
F, =%, On this space is given an (r+ 1)-dimensional Wiener process
{(w,,».);0=t=1} and an R’-valued random variable x,, independent
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of the Wiener process and with a specified Lebesgue—Sticltjes
measure . The basic state process is given by

Ix}={x+w;0=r=1}.

We make the following assumptions on the drift functions f, h
appearing in Egs. (1.1), (1.2

Al fit,x,u): [0,1]xR"xI"»R" is a bounded, continuous function,
with T" a compact, convex subset of some Euclidean space R™.
A2 h(t,x):[0,1] x R"—R" and its partial derivatives

g, d o*
ot T 9x;  éx; Ox;

J

are bounded, continuous functions.

The symbol K is used henceforth as a generic upper bound for
any of these quantities.

DermitioNn 2.1 A process {u;} is called an admissible control
process if it takes values in the space I' and, for each 0<t=<1, u, is
an #-measurable random variable. The class of all such processes is
denoted by 7.

Similarly, {u,} is called a wide-sense control process if it is I'-valued
and adapted to %, =a(x,, w,, V;;s=<1). The resulting class is denoted

by %. 1

Finally, P(P) denotes the restriction of the probability measure P
to the o-ffield FV=0o(w;t=1) (F7=0lxy,+w;t=<1), respectively),
and E(E) the corresponding expectation.

For any wesd, a new measure can be defined by P, (E)=
[ exp {§(u; xo) dP, where

O z) = f[ (5,2 +wg,u,)-dw, —%j (s z+wou )P ds
o ) -

¥

t
+ [ his,z+w) dy,— 5[ B3(s,z+w,) ds; ze R". 2.1
a 0

According to Girsanov's theorem (e.g. [ 7], Ch. 6), P, is a probability
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measure under which the process

T
H jf(ss x0+ws>us] dS
EEH v

t
b Je [ (s, xo+wg) ds
b

is Wiener and independent of xg, with P,x; ' =p,. For any g: R"—»R!
bounded measurable, Bayes’ rule says that

E[g(xt)exp ol xo) | F1] 4 04g)
Elexp (us xo) [#7] a(1)

E[e(x) | F1]= (2.2)

But under P, the processes {x,} and {y,} are independent, so that the
x path can be integrated out to give

o) = E[g(xo +w,) exp (b(u; x0)]
= }! E[g(z +w)exp {6 (u; 2) Juo(dz). (2.3)

Therefore, the conditional distribution measure is given by

v,(A)=p,(A)/ 1, (R"); A € Borel,, where:
t
,U.,(A = Ii[’ E|:1{z+wre ASXpP {g f(S, z +Ws) 'dWs
t
~3[| £ (5,2 +w,, ug) ds
0

+ [ his,z+w,) dy,
1]

%j' B35,z +w,) dsH Holdz). (24)
1]

We have already referred to formula (2.4) as the Kallianpur—Striebel
formula, and to w(-) as the unnormalized conditional distribution
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measure at time ¢, given the observation record {y;;0=<s=t}. For a
fixed ¢, u, is an FY-measurable, .# -valued random variable, where
A", the space of positive, finite measures on Borel,, is a Polish space
in the weak topology that can be metrized by the Prokhorov metric:

o W’I_g])lg—”(_g)' mg)= [ g(m(d),

Here, {g;}®%, is a dense subset of the space of real-valued
functions on R" which are bounded and uniformly continucus (c.f.
[107, Chapter ). It can be shown (e.g [3]) that the g’s may be
chosen to be infinitely continuously differentiable, and that instead of
27% one can use a different sequence {¢;};%, of weights, in an
equivalent metric

p(m, n)= i i om0 8|

el

for the weak topology. We shall require that the ¢;’s have the
property

1Vs:|

& ( el

where [j]|=supe 203, V]| =sup, < V().

The process p={u,;0=t=<1} takes values in the space C=
C([0,1]; .#") of continuous functions from [0, 1] into .#"; under the
metric

A, 1) =d (1, f); ity ) = D plis, )

5=

the space (C, d) is complete metric.

An integration by parts with respect to {y,} in (2.4) has the effect
of defining g, for all ye Cyg, ), not just on a subset of full Wiener
measure. In fact, writing

t (8
ylh(tsz+wt) =IJ’S{6 h(S,Z+WS)
o t
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t
+1Ahis,z+ ws)} ds-+ | s,z +w,) dy,
0

t
+ | ¥, Vhis, z-+-w,) - dw,
0

by virtue of the 1t formula, we have

1
ut(A) :],!‘r E[l(erth A}BXP {g f(S= z+ Ws, us) ‘dW.-;

1
2

|f(S,Z+WS, us)|2 dS+€{)(—yVh)

o—y

+yht,z4+w)+ j I(s,2+w) ds}} toldz), 2.4y

with the notation &4(¢)= [} ¢, dw,— 3[4 |¢,|* ds and

8
i(t,2) =%y | Vi(t, 2)|* — y, {é;h(r, z) +3AMt, z)}—%hz(t, z).

The expression in {2.4) is parametrized in a simple way by the
observation process sample path {y,}.

We now consider a  Borel measurable  function
o(t,m):[0,1] x 47—, and address the question of solving the
resulting “separated” version of (2.4), i.e. with u, replaced by u(t, s1,):

nu't(A) =f£r E[l{z +w e A]exp {i f(S’ z+ We, U(Ss Hs)) : dws

it
—%g | £ (s, 2+ ws, vls, u)|* ds

+E5(— YV + it z+w,) -+ j Is,z+w,) ds}:| foldz) (2.5)
0
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for some element p of C. Equivalently, one can fix py.#" and
yeCyy, 1y, define the operator T: C—C by Tu(A4)=right-hand side of
(2.5), and search for fixed points of T. We shall write T(y, ) when
dependence on the path y is of import,

In Section 3 we discuss the case of u(t,-) Lipschitz continuous on
A" and obtain existence, uniqueness and continuous dependence (on
to and y) results for the solution of u=Tu. In Section 4 the case of
continuous o(-,") is addressed, for which existence and measurable
selection results are established. Some counterexamples appear in
Section 5.

3. THE LIPSCHITZ CASE

Throughout this section, and in addition to the assumptions of
Section 2, it is assumed that the functions f, v satisfy a Lipschitz
condition:

|f(l',Z, ul)ﬁf(tszs uZ)J §K|u1*”2 ;V(t: Z) EIO: 1] X Rr;uls H; el (31)

|ofz, m) — (e, m)| < Kp(m, n); Vi e[0,1];m,ne 4" (3.2)

It is proved in this section that, under the above assumptions, Eq.
(2.5) has a unique solution in C such that, for each ¢, u is a
measure-valued, #7-measurable random variable. By composition of
maps, {u, =uv(z, 1;}} is then in .&7.

Prorosition 3.1 Under the assumptions of this section and for any
po€ M,y Cro, 1y, there exists a constant q depending on K and
a=5UPp<, = {ytf such that, for any two elements y, ji in C:

t
(T i, T?u)éqtg Pl 1) ds; 0 e 1 (3.3)
Proof With the notation

u, =ut, Jur)s 4, =o(t, fI,)

fi=fltz+wou), =tz +w, &)
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L=&( T =8(])
=T, 1, (34)

we have for any bounded, continuous function g: R"—»R":

(Tiag)—(Twg)|= ”g”}!, (Eexp {205(w; 2 ) V2.

(Elexp.J, — 1) uq(d2).

It is easily checked from (2.1), (2.4) that
i
Lolu; 2) = Eo(f —yVR) + p.hlt, 2+ w) +- [ els, z+wiu)ds  (3.5)
0

with e(t, z; u) =1(t, 2) + y, f(t. 2z, 4} - Vh{Z, 2).

We denote henceforth by g any constant depending on K and a,
not necessarily the same throughout this paper. Evidently from (3.5},
205w, 2) SEL{2(f—yVRh)} +4q and since, by the Girsanov theorem [7;
chapter 6] Eexp &(p)=1 for bounded ¢, we conclude that

(Eexp {20h(w;2)})12<q, forall zeR"
On the other hand, by the Cauchy inequality;
ElexpJ,—1*=E[lexpJ, — 1] " 1y5 2y +lexp J,— 1] 1y <]
<(Elexp J,— 1[* P(|J| 2 1)V* +4E(J?) (3.6)
where we have used the estimate: |e¥— 1| £2|x], for |x| 1. Estimation

of the various terms on the right-hand side of (3.6) is rather
straightforward; for instance, a.s. P;

t 2 t
Jng[I(fs—)‘s)-dws] +2K%t{|f.— f|* ds, and so
Q 0

t t 1/2
EJ? 21 +K*)E| |];—J2|2dsgqr”2(§ P*(fs 1) ds) SNEY)
0 o
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Similarly, as. P;J% <ALf(Ji— £)-dw,]* +4K*6 {5 fi— fif*ds, and by
[12; Thm. 4, p. 23]:

4
P |zD=EIH = 144-ziE]ﬁ—ﬁ|4ds+4K3z3jE|f;_Jg|4 ds
Q Q

H
Zqt- g oM, 1) ds.
Finally, an application of It5’s formula yields
1 t
exp{J,)—1= bfexp T T — 1) - dws+ geXp IN— 1) fids

whence, after some simple algebra and using the above-mentioned
theorem: E(exp{J,)—1)* < gt. Substitution into (3.6) gives

Elexp (1) — 12 St (Jo 0% ) ds} 7,
and
t 1/4
(0~ sl o is)

for every g;; i=1 in the definition of the metric p(-,-). Multiplying
both sides of the above inequality by ¢,||g;|| ™! and adding over i=1,
we obtain (3.3).

TueOREM 3.1  Under the assumptions of this section, Eq. (2.5) has a
unigue solution process p in C, for each given pg in A" and ye Cpq ).
Furthermore, p, is F¥-measurable for each te[0,1], and the process
w={o(t, u,};0=<t=1} is admissible: ue of.

Proof Uniqueness follows directly from inequality (3.3) by a
Gronwall-type argument. Existence is proved by the Picard iteration
procedure: one starts with p® such that yf9=p,, for all 0=r<1
and defines the sequence {i™}P.,<C recursively by p" "V =Tu";
n=0. If e, () 2d4p* D, 4t™); n20, then it follows from relation (3.3)
that:

(q)  0<1<1;n20.

enlt) = leo]| =
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Standard arguments now show that {u™ 3} , is a Cauchy sequence
in C, and it converges to some element p of C, by completeness of
this space. Note that, for each n=0, p™ is F’-measurable, and
therefore so is y. Admissibility of i follows by composition of maps.
It is easily checked that u is a fixed point of T

TrEOREM 3.2 Continuous dependence on g, y.

Suppose the assumptions of this section are satisfied. Then

i) For a fixed yeCpg, ), let {pf’}, be a sequence of probability
measures in 4" converging to the probability measure y, in the
weak topology of that space. If {u™}X.,, u are the correspond-
ing solutions of Eq. (2.5) according to Theorem 3.1, then:
d(u™, w)—0, as n— 0.

ii) For a fixed y, in ./iz” let y, ¥ be two elements of Cpg. 1y such
that: supg<,< 1])’: il are
the corresponding Solutlons of Eq (2.5), then d(,u, uy=ge, for
some constant g depending-only on «, K.

Proof To establish (i) we notice that for any function g; as in the
definition of the metric pf-,-), we have

G4, 8= (ks 8] <l § Elexp Lolas 2)|exp S~ 1[].
Rr

“p(dz) + (), 1) — (pro, D), (3.8)
where u;, I, are given as in (3.4), u™ 2 u(z, p™),
FI02 Sz wo ), IMSE(), JWEI -],
and
m{(z) = Elg(z + w;) exp {51 2)]
= El:gi(z +w,)exp {é:)(f —yVh)+yh(t. z+w,)

t
+ [ e(s,z+wgu,) ds}:l
0

=E|:gi(z +w)exp {yh(t, z+w,)} exp {f e(s, 24wy u, dsﬂ,
4]
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by virtue of (3.5). Above, £ denotes expectation with respect to the
probability measure P which is absolutely continuous with respect to
P, with Radon-Nikedym derivative &4(f — yVh). Standard arguments
yield now

[VraiPl| < qles] [+ |V

Let us consider the family of functions {k¥(-)} , deﬁncd by

o}

o

iz
[

I
\IAH

. mi(z)
k) 2 e
el + [V

which is uniformly bounded and equicontinuous at every point
zeR', since

=1, [V <q

hold for every i=1 and 0t 1. Therefore, By invoking Theorem IL
6.8 in [10], we conclude that

(n) = sup sup (187, k) — (b0, KP)|

iz1 0%

converges to zero, as m—oo. On the other hand, we have from
Proposition 3.1:

t 1/4
1!, E[exp {(u; z)|exp J™ — 1|Jub?{(dz) < qr”“{i AL dS} ,

and substituting back in (3.8) we obtain:

|(.uf"’,g’,l) ”(#u3)| (1+““V “”) |:t1,'4{j‘p4-('u(rt)’“s) ds}1/4'+3(n)]
Lf

as well as
4( 'u(n) W)= ql} I o™, 1) ds-l-e"'(n):‘.

By the Gronwall inequality, d(u'™, u) £ q-&(n)—0, as n—»co.
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In order to establish (i), we write: {50 2) =1, + L,(y), {h(& 2) =T, +

L.(}), with the same notation as in (3.4) and

¢
L) 2 &(—yVh) +y.hlt, 2+ w) +4 ] ¥2|Vhis,z +w)|? ds
. 4]

r o
— { e h(s.z +w)+iyAh(s, z+wg) +3h%(s,z +wy) } ds,
b

N, =L(y)—L(7). We have

(2, 2) — (11, 8)] < Hgll[llr  E{exp 205 (152)} o/ Elexp J — 1]* - po(dz)

+1£' \/E{exp 204(ix; z)\/E|eXp N, -1 -,uo(dz)].

1t is easily seen that

Elexp N, —1]></Elexp N,— 1|2E(N{) + 4E(N?) < g¢?

so that:

t 1/4
p(ﬁf,m)éq[{tgp“(ﬁs,us)%} +s}0§t§1.

Assertion (ii) follows again by a Gronwall-type argument.

4, THE CONTINUOUS CASE

In this section, we study Eq. (2.5) under appropriate continuity
assumptions on the function v(z,m). We obtain existence and measu-

rable selection results.

TueoreM 4.1  Suppose v(t,m) is a continuous function on [0, 1] x.4"

into T. Then, for any given yeCyyy and pge.d’, there exists an

rlement poof C satisfving Eq. (2.5): p=Tu.
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Proof For any continuous u: [0, 1]-T, we define

(Su)(8) = v(z, uw) (4.1)

where

pu)(A IE[lmwfeA;eXp {j J(s, 24w, uls)) dw

Rr

414w o) ds

t
8= YV yihle, 2 4w+ [ [ 2-4) ds}];u,n!:). (42)
0
We first prove that the closure K of the set
K= {,ut(u)|u: [0, 1]-T Borel measurable; 0=<t=<1} (4.3)

is compact in the weak topology of .#"; for that it is sufficient to
establish the nniform tightness of K (Prokhorov’s Theorem; cf. [10],
Thm. II. 6.7). In fact, by the Cauchy inequality,

N A) <q | P{z+w, e A}poldz)

R

for any A eBorel,. Taking A={x:|x|>N}, we have the estimate:

HHW(R/By) < Q[#O(Rr/B%) + .f P{ 'Z + W:‘ > N}ﬂo(dz)jl,

{a:]s| < NAr+ 1)

where we denote by B, the closed sphere of radius «>0 in R".
Moreover, on {z:|z| £ NAr+1)} we have

P{lz+w|>N}= Z P{|z +wi{t)] > }g Z {b >~—|z |}
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<2r|:1 _cp(N ﬂ
= H(r 4+ 1)el2

with {4} a one-dimensional Brownian motion. Standard estimates
{e.g. [§], p. 4) now yield

yf(u)(Rr/BN)gq[po(R'/B%)+"2(IT+’)}

for any u: [0, 1]—-T" Borel measurable and any t<[0, 1].
Because any probability measure on R" is tight [10; Thm. IL. 3.2],
N = N{g) can be chosen in such a way that

, g? 2r(1+7)
Ho(R /B._—;N—])éfa N§£—2=

for any given &> 0. Thus

sup  sup ufu)(R'/By) S ge.
wi(Q, 1T 05121

which proves uniform tightness of K in (4.3).
The restriction of the function o(t,m) to [0, 1] x K is continucus on
a compact set (Tychonoff), hence uniformly continuous on it.
Therefore, there exists a continuous (modulus) function &(#)]0 (as
h|0) such that, for any 0<t<t+h=<1; mnek:
ot + b, m) — vt m)| < elh -+ p(m, n)).

Now for any g; as in the definition of the metric p(-,'), we have

bt 400, 8) — ), £ < [Vill- [ Lol exp £ (1 2)oldl2)

+||g:||- J Elexp {y(u; 2)-|exp £ uw; 2) — 1| Tpo(d2)

.S_q[HVgeII B2 fgil| [ Elexp £ (52) — l!zuo(dZ)]-
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As in the proof of Proposition 3.1, we obtain

Elexp {i*Mu;2) — 1)* < /Elexp & *"(w; 2) — 1[*- E[(; *¥(us; 2)[*
+4EI M u; 7).
It is not hard to see from (3.5) that: E|**(u; z)* < qj2(), where

. A
iR=h2+  sup 1|y3+k—ytl

O=t<t+h=

converges to zero as h]0, and that E|(}*(u; 2)|* < g-j*(h). Therefore,

[Cat < (10), ) — (00), 5)] _ .h(l IIVg;-H)
Sq- | 1+
e TN el

holds for every i= 1, and

Pt 4 (1), (W) =g j(h)

follows upon multiplying by the weights ¢, and then summing up
over iz 1.

Consequently, ESu(t+h)—Su(t)| gs(h+q-j(h))éc5(h) holds for any
0<t<t+h=1. Now we consider the subset of C([0,1];R™) defined
by

. t+h)—u(t
B={u: [0,1]—T continuous;  sup Mg 1}
O<r<tih<1 d(h)

which is convex and compact in the sup-norm topology. The
operator § defined by (4.1), (4.2) maps B into itself, and therefore has

a fixed point u*e B by the Schauder theorem. The measure-valued
process p*={u¥} given by

t
Ju;t*(A) =}'!r E|:1[2+WZEA]eXp {g f(s7 z+ Wss u*(s)) . dws

—%§|f(s,z+w,,u*(s))|ms+55(—yvm+yzh(r,z+w,)
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1

+{ ls,z+wy) dS}] " Holdz)
0

satisfies Eq. (2.5).

TueoreMm 4.2 Let us suppose that v(t,m):[0,1] x . #"—T is Borel
measurable, that o(t, ). #" I is continuous for every te[0,1], and
that the function f(t,z,4) satisfies Roxin's condition

f(t,z,I") is a convex subset of R', for any (t,2)e[0,1]x R". (4.5)

Then, for any yeCpyy y and poc 4", there exists an element y of C
satisfying Eq. (2.5).

Proof With the class % as in Definition 2.1, consider the subset of C
t
,5(/ = {Ju € C | H’I(A) = _f E|:1{z+w,s A}exp {j f(Ss z+ Ws: us) ) dws
R Q

t
7%," |f(S, zZ-+ Wss us)|2 dS-i- éi}( '—yVh) +yth(t= z +Wt)
0

t
+ [ s, z+wy) dsﬂ poldz); for all 0=¢<1, AcBorel ; some us# }
0

We claim & is a compact, convex subset of C. Convexity of &
amounts to convexity of the set of densities

H t
@:{expl:jf(s,z+ws,us)~dws—%f|f(s,z+ws,us)|2ds:|;ue%},
o D

which is proved as in [1; Theorem 3] under condition (4.5). Notice
that the latter does not guarantee convexity of the set of densities
D ={exp[- - LueAd =D

To prove compactness, we first notice that for each 0=t <1, the
family of measures

Ki={pspeLyc.u
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is uniformly tight, and so K, is compact; this is proved as in
Theorem 4.1. In the same fashion we check the equicontinuity of the
family .. By the Ascoli theorem [11; p. 155], & is then a compact
subset to C.

Now the continuous eperator T: C—C defined in Section 2 maps
the set & into itself. By the Tychonoff fixed point theorem [14], T
has a fixed pointin &. [J

It is natural to inquire whether a (not necessarily unique) measure-
valued process u, a solution of Eq. (2.5) under either Theorem 4.1 or
4.2, can be “selected” in a fashion that is measurable with respect to

the observation sample path y. Our next result addresses this
question in the framework of Theorem 4.1,

TueoreM 4.3 Measurable selection result.

“ Under the assumptions of Theorem 4.1, fix p,€.#" and a compact
set £=C. Then there exists a Borel-measurable function ¢:&—C,
such that

() =T(y, p(y)); Vye&.
Proof We notice first that the family of functions
A ={wu)e C|u:[0, 1J-T Borel measurable}
is compact in C, since it is equicontintous and for each te[0, 1],
oy ={p(w) € 4" |u:[0,1]-T Borel measurable}
is uniformly tight; see the proof of Theorem 4.1. The set
H={(yp,me&xA |u=T(y,1}
is Borel in & x ¢, and each section

H(y)={ue#

u=T(y, )} yeé

is compact. By Yankov's section Theorem ([6]; Corollary to
Theorem 17) there exists a section of H by a Borel graph. [
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Remark 1t should be apparent that in spite of the partial
measurability results given above, there are still major gaps in our
theoretical understanding of how solutions p arise from the observ-
ations y. Further indications of the bad state of affairs are given in
the final section, in which a pathological “lack of causality” appears.

5. COUNTEREXAMPLES

In conclusion, we present examples which show that pathwise
uniqueness may fail if the control is allowed to depend in a suitable
peculiar way on the past of the observations. The comstruction is
based on an idea [13] of B. S. Tsirelson, used by him to disprove the
existence of strong nonanticipative solutions to certain stochastic
DEs, and elaborated [2] by one of the present authors.

The simplest example consists of the state and observation
equations

dx,=u,dt +dw, {state, with x,=x given)

dy,=x,dt+db, (observation)

with b, w independent Wiener processes, and u, a certain functional
of the past of the conditional distribution of x,, given {y,,0=<s=¢}.
In this case the conditional distribution has the Gaussian density

1 (z—m)?
\/ﬂexp { . }
with m and r sufficient statistics satisfying
F=1—r%, r(0)=0, so r(t)=tanht
dm={u—mr)dt +rdy,, m{)=x.
These facts are either well-known or easily proved.

We can now obtain counterexamples by choosing « to depend in a
perverse way on m itself; this is permitted by our ground rules,
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because the only conditions 1 must satisfy are that it depend only on
past features of p and have its range in a specified set. The
counterexamples to be given will show that solutions posscssing
certain reasonable properties need not always exist. Two such
properties; often sought or expected for solutions of stochastic DEs,
are

i) causality
ii) nonanticipation.

A causal solution m of the equation dm=u(t,m)dt —rmdt+rdy, is
one expressible in terms of ¥ by a causal functional, ie.,

= 4z, ) with

yi=y, for sZt=¢(t,y,)=¢(L ;).

A nonanticipative solution m would be one whose past o{m,,s <t} is
independent of the future increments of the forcing process y, ie.,

G’{ms_,sgt}_i_a{yuw«y,,u>t}.

We shall assume that u#is restricted to lie in a bounded set. From
this follows a Girsanov transformation of the probability space,
which makes the observation process y, a Wiener process, and we
can assume without any further loss of generality that such a
transformation has been carried out. The problem then is to see
what kind of pathology can occur in solutions of

dm=u(t,m)dt—rmdt+rdy, y, Wiener. (5.1)

Note first that the “time-dependent low-pass filter” term rm can be
essentially eliminated by defining, for f & C[0, o)
t
'(Rf)r:‘.f:"' J;I‘stds.

The operator R is causally invertible; in terms of R, (5.1) can be
written as '

d(Rm), =u(t, m)dt +rdy,.
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We shall take u(t,m) to have the form o(t, Rm). The next step is to
perform a time change. It is well-known [7] that for

{
T(t)={rids
G}

the composition

T~z

[ordy,=W,
0
is a Wiener process, whenever y is a Wiener process. Thus putting

{=(Rm)p-1(y
our equation takes on the form, using

4Tt

—=r AT,

1)

{=(Rm)p_sy= | ofs,(Rm))ds+x+W, W Wiener
0

= [T 40, O~ H(T ™ L)) dut x+ W,

or in differential form
Al =T~ Y0), Or " HT Y1) dv +dW,.

Now we chose o so that the drift for the {-equation is Tsirelson’s.

Let {t} denote the fractional part of ¢, and let t,, k<0 be distinct
points in monoctone sequence condensing at 0, with t,=1. Tsirelson’s
drift 8 is defined for f& C[0,1] as

B@ﬁ=%w;£}on&pDM-

1=
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We choose

ot f)y=r? {m} on t,_, =T <t

fer1— b
so that

aT™% NrpZi=$(x, /).

The equation df,= f(t, {) dr +dW, which results is exactly Tsirelson’s,
and has no causal solution, although by Girsanov’s theorem it does have
a unique nonanticipating solution measure. Since the time-change T
and the filier R preserve both causality and the property of being
nonanticipating, it follows that the condifional mean Eq. (5.1) for m
has no causal solution for our choice of control law, while it does
have a nonanticipating one. Thus a seemingly innocuous choice of
control law can lead to loss of the kind of causal solution found in
the first part of this paper. This fact, not really surprising in view of
its arising for stochastic DEs, indicates the need for care in talking
about “solutions” of the filtering problem when there is feedback
from the conditional density.

Since dy—mdt in principle defines the associated innovations
process dv, one can similarly ask whether there are causal solutions
“for m in terms of v. Constructions like Tsirelson’s again show that in
general causal solutions do not exist.
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