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The nonlinear filtering problem of estimating the state of a linear stochastic system from noisy 

observations is solved for a broad class of probability distributions of the initial state. It is shown 

that the conditional density of the present state, given the past observations, is a mixture of 

Gaussian distributions, and is parametrically determined by two sets of sufficient statistics which 

satisfy stochastic DES; this result leads to a generalization of the Kalman-Bucy filter to a structure 

with a conditional mean vector, and additional sufficient statistics that obey nonlinear equations, 

and determine a generalized (random) Kalman gain. The theory is used to solve explicitly a 

control problem with quadratic running and terminal costs, and bounded controls. 

1. Introduction 

The celebrated Kalman-Bucy filter provides the solution of a state estimation 

problem with linear dynamics, linear observations and a Gaussian prior distribution 

for the initial state. The conditional distribution of the present state, given past 

and present observations is Gaussian with nonrandom covariance and a mean vector 

satisfying (as a random function of time) linear DES, the ‘Kalman filter’ (see [9,11]). 

This estimation problem becomes substantially harder if any one of the assump- 

tions in the Kalman-Bucy scheme is generalized. In the general case of arbitrary 

system dynamics, observation model and initial distribution it is known that the 

density of the conditional distribution, whenever it exists, satisfies a stochastic 
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partial differential equation that is due to Stratonovich [14], Kushner [lo] and 

Zakai [17]. However, it was only very recently that even an instance of this equation 

was explicitly solved for a class of genuinely nonlinear drifts and linear observations 

PI. 
The present paper considers and solves the problem with linear dynamics and 

observations for a broad class of prior distributions. It is shown that the conditional 

distribution is a mixture of Gaussians, and is propagated by two sets of ‘sufficient 

statistics’, i.e., random processes that parametrically characterize the distribution 

completely. These statistics obey usually nonlinear stochastic DES implementable 

in the form of a ‘filter’. The controlled version of the model is also considered and 

a particular control problem is solved explicitly. We also check that for a Gaussian 

initial distribution there is only one random sufficient statistic propagating the 

conditional density, in accordance with the classical theory. All these results are 

illustrated in a block diagram for the controlled case in Fig. 1. 

2. Formulation 

We start with a probability space (0,.9, PO; 9,) and a Wiener process (w,, y,)’ of 

dimension n + m defined on it, and construct on this space the solution (xt, 9,) of 

the linear stochastic differential equation 

dx,=A(r)x,dt+dw,, OcrsT, x(0)=x0 (2.1) 

according to the classical It8 theory, where A(r) is a continuous (n x n) matrix- 

valued function and x0 a random variable independent of the Wiener future 

c{wt, y,; t 3 0). x0 has a distribution function F( .) on R”, with finite first and second 

moments. Call P(P,, x E R”) the measure induced on (0,s) by the {x,; 0 s t c T} 
process (conditional on knowing the exact starting point x E R”); clearly, P(A) = 
jRnPx(A)dF(x) for any AELF. 
Now let U be a compact subset of R” and H(t) be a continuous (m X n) matrix. 

Consider a stochastic process {ut; 0 c t s T} with values in l_J and progressively 

measurable with respect to the family {Sy = a(~,; 0 s s s t); 0 s t c T}. The class 

d of all such processes is called the class of admissible controls. Corresponding to 

each u E& we now define a new measure P, on (L!,9) through the derivative 

(2.2) 

L,(u) =exp [ jo’{u: dw, +x:H’(s) dy,1-4 ~o’~lu,lz+~~(s)x.12~ds]. (2.3) 

According to Girsanov [6] (see also [l, Appendix]), P, is a probability measure, 

and the process 

(2.4) 
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is Wiener on (L&s, P,; 9,). In differential form (2.1) in conjunction with (2.4) now 

reads on the new probability space as 

dx,=A(t)x,dt+u,dt+dw;, x (0) = x0, (2.5) 

dy, = H(t)x, dt + db,, y(0) =o. (2.6) 

The two stochastic equations above constitute a classical model for a linear, partially 

observable system with an element of controf (u,), which is allowed to depend only 

on the past history of the observation process (yl). 
The estimation problem is to characterize the conditional distribution PU(x, E 

.4 IS:), A E Bore],. If the distribution of the initial state x0, which is ‘prior’ to any 

observations, is Gaussian, we are in the realm of Kalman filtering and it is well 

known (Kalman and Bucy [9], Davis and Varaiya [4]) that the conditional distribu- 

tion is again Gaussian, with nonstochastic covariance matrix R (t) satisfying a matrix 

Riccati equation and conditional mean 2, = E, (x, 19;) solving the stochastic equation 

dx^, = A(t);, dt + ut dt + R (t)H'(t) dv,, Zo= EuxO=Eoxo, 

in which the innovations process 

I 
, 

VI p yt - H(s)& ds, 0 c t c T, 
0 

(2.7) 

is Wiener on the space (0, 9, P,; Sr), i.e., on the past of the observations. In this 

case the components of the conditional mean are the only statistics required for 

the characterization of the conditional distribution. 

In this paper we prove that for any prior distribution on ~0 with finite first and 

second moments, the conditional distribution of the state, given the record of the 

past and present observations, is a mixture of Gaussians, and is propagated by two 

sets of sufficient statistics: one is the conditional mean vector and the second 

conveniently determines the now random conditional covariance. 

A version (2.9) of the Kallianpur-Striebel formula is instrumental in subsequent 

developments featuring the fundamental unnormalized version of the conditional 

density (see also [8]). First, since (L,(U), sl) is a PO-martingale, it is an exercise on 

conditional expectations to verify the Bayes’ formula, 

Eu[f(xr)1%‘1= 
Eo[f(x,WtW~~~l, r,(f) 

E LL (u)19yl 
0 t I r,(l)’ 

(2.8) 

for any bounded, measurable f: R” + Iw’. Since (x,), (yt) are independent under 

PO, {xs ; s c r} can be ‘integrated out’ to give 

rr,(f) = E[f(x,)L,(u)l= ~n~EJf(x,)L,(~)l dE(x). 

If we now define the density q,(z ; x) through 

(2.9) 
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it is readily seen from (2.8) with f = la, A E Borel,, that 

where 

(2.10) 

Therefore, the quantity defined in (2.9) is a version of the unnormalized conditional 
density, conditional on also knowing the starting place xo =x E R. 

3. Summary 

In Section 4 we employ the Kallianpur-Striebel formula (2.9) to solve the 
estimation problem in the one-dimensional case with A (1) = 0. The success of the 
approach depends on the possibility of carrying out the function space integration 
in (2.9)-a hard problem in all but a few cases (see, for instance, BeneS [2]). 

The general case is attacked in Section 5 via the Zakai stochastic partial differen- 
tial equation of nonlinear filtering. This approach is less direct and seems to impose 
some unnatural restrictions, e.g., existence of initial densities. The exact form of 
the conditional distribution is given parametrically, in terms of two ‘sufficient 
statistics’ ((4.17) and (5.17)). These satisfy a system of stochastic DES similar to 
Kalman’s filter ((4.15)-(4.16) and (5.15)-(5.16)). The special structure of this 
system is employed in Section 6 to solve a control problem in which control effort 
costs nothing but is bounded. 

4. The one-dimensional case, via Kallianpur-Striebel 

In this section we illustrate the usefulness of the Kallianpur-Striebel formula by 

performing the function space integration of (2.9) in the particular case n = m = 1, 

A(t) = 0, H(t) = 1. Under these assumptions (2.9) becomes 

+ J ’ (x + w,) dy, - f jot (x + ~5)~ ds)] . 
0 

(4.1) 

Notice that Ji (x + w,) dy, = ry, - JA y, dwS, and Ji (x + w,) dw, = $(z’ -x2 - t) on the 

indicated set. Therefore, with the convention 
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(4.1) becomes 
I 

q,(z;x)dz =exp zy,+&*-x2-f)-; J I uf ds 
0 

(x+w&dr) exp (I:(u,-y,)dw,+ib(x+w))]. 

.x + w. is the Wiener process started at x. Let 5. be the Ornstein-Uhlenbeck process 

started at x, 

d&=-&dt+dw,, ta0, 50=x; 

the measures induced by 6, and by x + w, are equivalent, and by Prokhorov’s formula 

[ll, Theorem 7.71 the derivative of the first with respect to the second is 

d/+. 
-(x+w.)=exp&(x+w.); 
dF X+W. 

thus (4.1) becomes 

xE, 1 
[ 

(bedz) exp (J: tys - u,)~s ds -Jo’ lys -us) dw,)l. (4.2) 

The auxiliary vector process 

h P (tt, Jo' (Y, -us) dws, Jo' (ys - us)ti ds) ’ 
is governed by the stochastic equation 

dh, = Gh, dt + 1 dwf, ho = (x, 0,O)’ 

where 

G= 
iy 

I = (1, yt-ut, 0)‘. 

The mean vector m(t) and covariance matrix R(t) = {Tij(t)}lGi,jcJ of the process (ht) 
satisfy the equations 

with 

h(t) = Gm(t), m (0) = (x, 0, O)‘, 

ti((t)=R(t)G’+GR(r)+D, 
(4.3) 

R(O)=0 

i 

1 yr-ut 0 

D= 

y,-ut 

(y,-uJ2 

0 . 
0 0 0 I 
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It is readily seen that 

J 
f m(t) = (x e-‘, 0, x&)’ with & +% e-‘(yS -u,) ds. 

0 

The expectation in (4.2) can be written in terms of the h, process, with v = (0, -1, l)‘, 
as 

EJl~h:~d~) exp{v’hJl= 

= (2n)-3’2(det R(t))-“’ 
00 

X II dh2 dh3 exp[-b(h -m)‘R-‘(t)(h -m)+u’h&,,=, dz. 

-cu 

Writing the exponent as 

-$(h -m -Rv)‘R-l(h -m -Rv)+v’m +$v’Rv 

we obtain 

(27rrii(t))-“2 exp 
[ 

v’m (t) +$v’R (t)v -&lz -(x e“+(R(r)v)i)Y] 

whence, after solving (4.3) and doing a lot of simple algebra and calculus 

ql(z;x)=ntexp - 
[ 

z2-22cL,(x) (I*Ax)-q(t)yJ2 x2-2x& 

2q(t) - 2q(t)(I+q(t)) - 2 1 (4.4) 

with 

q(t) = tanh t P r11(c) 
x e-’ + m(t) -r12(t) 

I- rll(r)’ I --rli(f) > 

and v1 a time function, not necessarily the same throughout this paper, adapted to 
9:foreachO~t~T. 

We pause for a moment to see that p,(x), tanh t are the Kalman filtering mean 
and variance, if the starting place x0=x is fixed; indeed, it is easily verified that 
rrl/(l -rll) satisfies the Riccati equation 

4(r) = 1 -q2(t), q(O)=09 

so rll/(l - rll) = tanh t, the Kalman variance. On the other hand, by applying ItB’s 
rule to the expression for pr(x) and taking the equation for R(t) into account, we 
obtain the familiar Kalman filter equation 

dGr(x) = u, dr + [tanh t](dy, -Pi dt), PO(X) =x. 

The last can be readily solved: 

r 

tanhs d$)+fo’exp( -[ tanh 8 dc9 {u, ds + tanh s dy,} ] 

= (x + a,)/cosh t (4.5) 
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with 

(Y,= ‘(coshsu,ds+sinhsdy,). 
I 0 

Substituting the expressions for p,(x), q(t) into (4.4) we finally obtain 

(4.6) 

2 tanh t 

where 

u, A 0, + (1 - tanh t)(at + y, cash t). 

By virtue of (2.10) the conditional density has the form 

(4.7) 

(4.8) 

1 
oo 

(27~ tanh t)- l/2 J L exp - 

(z-z)2+(x tanht-v,)2 dF(x) 

2 tanh t 
PAZ) = 

--oo co 
J [ (x tanh t - u,)2 

1 . (4.9) 
exp - 

2 tanh t 1 *(XI -co 
We conclude from (4.9) that (cY,, u,) is a pair of sufficient statistics for the conditional 

density. From (4.6), (4.8) and ItG’s rule, we see that they satisfy the equations 

da, = (cash t)u, dt + (sinh t) dy,, (Yg=o, (4.6)’ 

dv,=- ---&dlf--&dy,, uo=O. (4.10) 

We now introduce another pair of sufficient statistics for the conditional density 

pi(z), which turns out to be more convenient for purposes of implementation and 

control. In particular, we wish to bring the conditional mean x^, and the innovations 

IQ into the picture. It is observed that 

J 
ccl 

x*, P zp,(z) dz = 
at +ck Q) 

-c0 cash t 

where 

c(t 

9 

u)p J-Ix exp[JX ~~fn\~u)2] e(x) 
m 

J [ 

(x tanh t - IJ) 
exp - 

2 tanh t 2l 
W(x) ’ 

--a0 

and we notice that 

(4.11) 

(4.12) 

J 
m 

-I4 var x, = (z -x^,)2p,(z) dz = g(t, v,) 
--co 

(4.13) 



240 V.E. BeneS, I. Karanas / Linear, parfially observable sysfems 

where 

g (t, u) 4 tanh t + coshP2 t 

_(x tanh t - u)’ 

2 tanh r 1 dF( 
X 

(x tanh t - 0)’ 

2 tanh I 1 U(x) 
The conditional mean ,Gr satisfies the stochastic differential equation 

dx*,=u,dt+g(r,v,)dv,, OstsT, x0= 
I 

00 

x U(x), (4.15) 
--oo 

where V, is the innovations process yt - JA f, ds. Similarly, substituting the expression 
x^, cash t -c (f, u,) for LY! in (4.10) we get the equation 

dv, = 
ck vt) 
adt+-&dv,, OctsT, v,=O. (4.16) 

We sum these results up as follows. 

Theorem 4.1. Consider the one-dimensional linear system 

dx, = ut dr +dw;, x (0) = x0, 

dy, = x, dr + db,, y(O)=O, 

on a probability space (0, g, P, ; 9,) constructed as in Section 2, with the same 

notation and assumptions. If the p.d.f. F( * ) f o x0 admits finite first and second 

moments, then the conditional distribution P,, (x, E A 1%‘) has a density p,(z) gioen by 

pi(r) = (27~ tanh t)-“2 [_Iexp[ -[{z-(l,+x~~~~P’))]2 

+(x tanhl-v,)‘)/2tanht] dF(x) 

X (1-1 exp[ -(’ t~:~~~~f)2] w(x))-l. (4.17) 

The conditional distribution is fully characterized by the pair of sufficient statistics 

(Z, v,), obeying the filter equations (4.15)-(4.16). 

Special case. Suppose 

F(x) = p(x) = (27ld)-“* 
exp 

Then, 

c(t, v) = 
k +cAJ 

1 +c’ tanh t’ 
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and 

go, v) = 
a2 + tanh t 

l+a*tanht 
A,(t) 

is the Kalman-Bucy variance, solving the Riccati equation (d/dt)r(t) = 1 - (r(t))‘, 

r(0) = rr*. On the other hand, it can be shown using (4.7) and the particular form 

of the distribution function F( *) that 

P,(z) = (2dt))- 112 exp[ -_k$] 

with 

x^* = 
p +a, +a’@, +CY, tanh t) 

cash t +a* sinh t ’ 

and it is not hard to verify that & thus defined satisfies (4.15). 

5. The multivariate case 

The task of performing the function space integration in the Kallianpur-Striebel 

formula (2.9) is equally feasible in the general setting of Section 2. For variety, 

however, we concentrate on a different method of getting an explicit expression 

for the conditional density, which makes direct use of the stochastic (and nonstochas- 

tic) partial differential equations of filtering. To this end, it is assumed throughout 

this section that the a priori distribution F( .) has a density p ( a), and that the matrix 

function H(t) in (2.6) is continuously differentiable on [0, T]. 

If the starting place x0 = x E R” is known, the Kalman filtering ‘conditional mean’ 

am and ‘conditional covariance matrix’ R(t) satisfy the equations 

dp,(x) =A(t)p,(x) dt + UC dt +R(t)H’(t)(dyt -H(t)p,(x) dt), 0~ t s T, 

we(x) =x. 
(5.1) 

ri(t)=A(t)R(t)+R(t)A’(t)-R(t)H’(t)H(t)R(t)-I,, OstcT, 

R (0) = On, 
(5.2) 

respectively, and it can be checked that the Gaussian density 

k,(z ; x) = ((2n)” ldet R (t)l}-“* expi-$(z -pkx))‘R-‘(t)(z -~~(x))l 

satisfies the stochastic partial differential equation 

dk,(z; x) = I:k,(z; x) dt +k,(z; x)(H(t)(z -pr(x)))‘](dyt -H(t)pL,(x) dt) 

(5.3) 
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subject to the initial condition k&z; x) = S(z -x), where f: is the forward operator 

? A&l -(A(t)2 -tu,)‘V-tr(A(t)). 

Consider the likelihood process 

fl,(x)gexp (S,‘(H(s)&))‘dy, -3 [orlH(M~)12 ds) 

along with the random function 

P,(Z) 2 I Mz; x>Mx>p(x> dx. 
R” 

(5.4) 

(5.5) 

An application of It8’s rule to (5.5) yields, in conjunction with (5.3) and (5.4), the 
so-called Zakai equation (see [17]) for P,(Z), 

dp,(z) = r:pt(z) dr +p,(z)(H(t)z)’ dy,, 0~ t G T, PO(Z)=P(Z). (5.6) 

We propose to show that pi(z) as in (5.5) is a version of the unnormalized conditional 
density for P,, (x, E A 1 S:), i.e., that 

(5.7) 

in the notation of (2.8). Indeed, (5.Y’) above can be established for any solution 
pi(z) of the Zakai equation (5.6),’ so our claim would follow provided we showed 
that (5.6) admits a unique classical solution. To see the latter, we employ a device, 
first used by Rozovsky [13] (see Liptser and Shiryayev [ll, pp. 327-328-J, that 
has by now become standard in the study of the stochastic differential equations 
of filtering. The transformation 

&(z) =P&) exp{-(H(t)z)‘yJ (5.8) 

reduces the stochastic equation (5.6) on pi(z) to the nonstochastic partial differential 
equation 

~~‘(z)=“:“(z)+e(r,r)~,(z), O<tsT, ILo =p(z) (5.9) 

for &(z), with 

1”: = $A +{H’(t)y, -(A(t)2 +u,>}‘V-tr(A(t)), 

e(r, t)=~~H’(t)yl~*-y:H(t){A(t)z +u,}-~IH(r)zI’-y:~(r)z. 

The coefficients of (5.9) depend parametrically on the observation sample path 

{Ys;s c t} and, since they have the proper growth in z (constant diffusion, linear 
drift and quadratic potential terms), uniqueness of a solution follows from the 
maximum principle for parabolic operators (Friedman [5, Theorem 9, chapter 21). 

’ By an adaptation of the forward and backward PDE method used by Pardoux in [12]. 
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We now calculate the expression in (5.5). Introducing the fundamental matrix 

O(t) as a solution of the matrix equation 

~(t)={A(t)-R(t)H'(t)H(t)}~(t), Ost=zT, 

Q(O) = 1, = the identity matrix for n dimensions, 

we verify that (5.1) is solved by 

/.L~(x) = @(t)(x +cu!) with a, = 
I 

‘P’(s){u, ds +R(s)H’(s) dy,}, (5.10) 
0 

(5.11) 

and that .4,(x) = ql, exp{- f(x’S(t)x - ~x’v,)} with the conventions 

a, a 
I 

‘@‘(s)W’(s){dy, -H(s)@(s)a, ds}. 
0 

Therefore, 

PAZ I= 77r 
I 

exp{-$(z -@(t)(x +cu,))‘R-‘(t)(z -@(t)(x +cy,))}A,(x)p(x) dx. 
LQ” 

(5.12) 

From (5.12) it is seen that the conditional mean 

2, = q,(z) dr = y zP;(;)ddz 
n”Pr 2 2 

is given by 

2, = @ON&, td+el 

with 

A jwx exp{-$(x’S(t)x -2x’u)}p(x) dx 
C(f, v>= 

Inn exp{-$(x’S(t)x -2x’u)}p(x) dx ’ 

while the conditional covariance matrix is 

where 

(5.13) 

GO, u)%?(r)+@(t) jnnxx’exp{-$(x’S(t)x -2x’v)}p(x) dx 

JR” exp{-&'S(t)x -2x'v)}p(x)& -'(" ')"(" ') @I(')' 1 
(5.14) 



244 

It can 

(x^,, v,) 
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also be checked that, in analogy with (4.15) and (4.16), the two statistics 
satisfy the pair of stochastic differential equations 

dx*,=A(t)x^,dt+u,dt+G(t, v,)H’(t)du,, OgtsT, 
(5.15) 

x^0= 
I 

v(x) dx 
W” 

du, = (H(t)a,(t))‘(H(t)~(t))c(t, v,) dt + (H(t)@(t))’ dv,, O== t s T, 
(5.16) 

v,=o. 

We formulate these conclusions in the following theorem. 

Theorem 5.1. Consider the system (2.3, (2.6) under the assumptions of Section 2. 

Let the a priori state distribution F( .> have a density p( *) and let H(t) be continuously 
differentiable. The conditional distribution P, (x, E A 1 SY), A E Borel, then has a 
density 

p,(z) = 1.. ((2n)“)det R(t)j}-1’2 exp[-${z -(& + @(t)(x -c(f, v~)))}‘R-‘(t) 

x tz - (x^, + @0)(x --c (t, vA))Ll 

xexp{-t(x’S(t)x -2x’v,)}p(x) dx 
/I 

exp{-i(x’S(t)x -2x’v,)}p(x) dx, 
R” 

(5.17) 

propagated by the pair (2, v,) of sufficient statistics; the latter constitute the ‘filter’ 
(5.15)-(5.16) depicted in Fig. 1. 

Remarks. (1) The drift in (5.16) for the statistic vr is nonlinear, and is a gradient. 
(2) The form of (5.15) and (5.16), in particular the fact that the control process 

(u,) only appears in the former, suggests that, for purposes of control, the 
process (u,) could only depend on &. In other words, we guess that the statistic x*, 
may be ‘sufficient’ for control. 

In the next section we exhibit an instance where the above guess is true. Here 
we propose to show that the class Y of separated control processes of the form 
uI = u (t, x^,), u : [0, T] x R” + U measurable, is a subclass of the admissible controls: 
Y z d. In fact, the system of equations 

dx^,=[{A(t)-G(t,~,)H’(t)H(t))x^,+u(t,x^~)ldt+G(t,v,)H’(t)dy,, OafcT, 

(5.15)’ 

dv, = (H(t)@(t))‘H(t)[@(t)c(t, v,) -Cl dt +(H(t)@(t))’ dy,, 06 t s T, 

(5.16)’ 
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INNOVATIONS 
PROCESS 

jvt 

SUFFICIENT 
STATISTICS 

INTEGRATOR (VECTORS) 

+ / 

“t 

I * 

CONTROL LAW 

Fig. 1. Block diagram for filter based on equations (5.15) and (5.16). 

on the probability space (J&F, P,, ; Ft) is solvable in the strong sense that (x^,, u,) is 

Sr-measurable for all 0~ t G T (see [15] or [18] for the one-dimensional case). 

Therefore U, = u (t, 2,) is 9:-measurable, 0. f ( < T, and the resulting control process 

is admissible. 

6. A control problem 

Consider the system of one state dimension 

dx, = uI dt +dw:, x (0) = x09 

dyt = x, dt + dbt, yKO=o, 

treated in Section 2, with control set U = [-1, 11. As a sample control problem, 

let us minimize a cost functional of the form 

(I 

T 

J(u)=E, x: dt+& 
> 
. 

0 

We notice immediately that J(U) =j(~) where 

(6.1) 

(I 
T 

j(u) =E, gk h) dt + g U’, UT) + 
0 

joT (x^,)2 dt + (i,)2). (6.2) 
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On the basis of intuition, and of similar results in the case of a Gaussian initial 
distribution (BeneS and Karatzas [3]), it is natural to expect that the bang-bang law, 

u T = -sgn x*,, 

is optimal. However, an attempt to prove the optimality of this law by classical 
(dynamic programming) arguments would have to overcome the difficulty that the 
Bellman equation for this problem is degenerate, since (4.15)-(4.16) for the two 
sufficient statistics (x^,, u,) are driven by the same Wiener process (v,). We provide 
an optimality argument that avoids the use of partial differential equations. 

On a space (0, 9, P,; 9:), consider the processes (;F, UT) satisfying the pair of 
stochastic equations 

dx^f = -sgn x^T dt +g(t, 0:) dv:, x0* = x W(x), 

dv: = (cash-2 t)c(r, v:) dt + (cash-’ t) dz$, vo* =o. 

The process (UT), u? = -sgn x^T is admissible, as mentioned in Remark 2 at the 
end of Section 5. Consider also any admissible process (u,) E d, along with the pair 
of processes (xr, 0,“) on an appropriate probability space (a,% P, ; SY), 

dx^,” = UC dt +g(t, u,“) dv,“, 

dv,” = (cash-2 t)c(t, or) dt + (cash-’ t) dv,“, v;l = 0. 

Theorem 6.1. For any admissible control process (u,) E d 

J(u*)~J(u). (6.3) 

Proof. By a lemma of Ikeda and Watanabe [7] there exists a probability space 
(fi, @, j; @,) and a quintuple of real-valued, gt-adapted processes 
(c:, x’,“, 6:,x’,*, G,), such that (S,, gt;, P) is Wiener and 

(i) (X, x’,“, &) has the same law as (v,“, x^,“, v:). 

(ii) (ii?, ?:, V’F ) has the same law as (of, x^?, ~7 ). 

On this new probability space, 

du’,* = (cash-2 t)c(t, C:) dt + (cash-’ t) d&, $ = 0, 

du’,” = (cash-2 t)c(t, 6,“) dt + (cash-’ t) d:,, ;o” = 0, 



V.E. Benef, I. Karaizas / Linear, partially observable systems 247 

and for some %,-adapted process (~2,) with values in [-1, 11, 

dx’r = -sgn x’: dt +g(r, 5:) d& x’; = x C(x), J 
dx’: = fi, dt + g(t, 5;) du’,, x’;; = x C(x). J 

The processes (C,“, 6:) satisfy the same stochastic equation, with smooth coefficients, 

driven by the same Wiener process (Gt); consequently, 

F(t;=;T,oSrST)=l. 

Now, by a comparison theorem for solutions of stochastic differential equations 

(Ikeda and Watanabe [7, Theorem l.l]), 
. 

P(lx’,“I~I;TI,o~t~T)=l, 

and a fortiori 

[I 
T 

S(u)=z? g(t,C,“)dt+g(T,z?;)+ 
0 

j-ili:l’dr+lf;j2] 
0 

which proves (6.3) and the optimality of the law u*. 

Note. In this special case it is possible to verify the admissibility of the control process 

(UT), u;” = -sgn 2: directly. Indeed, it is a straightforward exercise to check 

pathwise uniqueness for the system of equations, 

J 
co 

dx*T = -[g(t, v:)?? +sgn x^?] dr+g(t, VT) dy,, x^o* = x S(x); 
-co 

dv* = , --&[c(f, v:)-cash (r)x^:]dt+--&dy,, v: =O. 

Strong existence is then guaranteed by the existence of a weak solution and pathwise 

uniqueness (see Yamada and Watanabe [16]). 
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