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ABSTRACT 

The  filtering  problem  for piecewise linear  drift  and  observation 
functions is reduced  to  an  initial-boundary  value  problem.  The 
“corners”  give  rise  to local time  terms. A finite  number  of 
sufficient  statistics  appear,  in the  form of the values  and  one-sided 
derivatives of the  conditional  density  at  the  “corners”,  or  more 
generally  in  the  form of weights  in  a  representation of the 
conditional  density by potentials. Both kinds of statistics  propagate 
according  to  linear  Volterra  equations,  and  must be considered  as 
infinite-dimensional. 

The  theory  developed  here  for piecewise linear  dynamics 
enhances  the  study of the  general  nonlinear  filtering  problem  in  a 
natural way: Nonlinear  functions  can be approximated  over 
bounded  intervals by polygons, to  any  degree of accuracy; by 
constructing  or  calculating  the  optimal filter for  the  approximating 
piecewise linear  dynamics  as  indicated in this  paper, one can  
conceivably  obtain  very  good  sub-optimal filters for  general 
nonlinear  dynamics.  That  the  results  extend  to  many  dimensions is 
far  from  clear,  but likely whenever  the  necessary local times  can be 
defined. 

I .  INTRODUCTION 

For  several  years,  research in stochastic  filtering  theory has 
concentrated on discerning  those  cases  for which the conditional 
density is propagated by a  finite  number of sufficient  statistics, so 
that  the  optimal filter can  be  implemented by a  finite  dimensional 
dynamical  system.  Since  it is now understood  that  such  cases  are 
“exceptional”, it is natural  to  inquire  what  methods  can be used to 
analyze  the  structure of filters  in  an  infinite-dimensional  setting. 

This  paper  advances  such  a  study by considering  the  case of 
piecewise-linear  drift  and  observation  functions in the model. 
Roughly  speaking, the  infinite-dimensional  character of this 
problem is a  result of the  presence of a  finite  number n of 
“corners”, which now act  as elasric boundaries for  the  conditional 
density  process.  Solution  for the  latter  in  each  interval of linearity 
(between two such  corners),  through  either  the  Kallianpur-Striebel 
formula  or  the Zakai equation,  leads  to  a  linear  parabolic  PDE with 
linear  drift  and  quadratic  potential,  both  time-dependent via the 
observations.  The  fundamental  kernel  in  each  interval  is 
expressible in  terms of a pair of statistics  similar  to  those  appearing 
in the Kalman filter: a  covariance-like r (.) independent of the  data, 
and  a  mean-like m(,) driven by them.  The  unnormalized 
conditional  density can then be written by Green’s  theorem  in  each 
interval in terms of its  kernel by means of single-  and  double-layer 
potentials. The weights  in  these  potentials  are  the still unknown 

i- Research  supported by the National  Science  Foundation  under 
NSF  MCS-81-03435. 

values  and  one-sided  derivatives of the desired  density  at  the 
corners, 3n quantities  in all. Determination of these weights rests 
on continuity  across  the  corners,  and on the “elastic”  boundary 
conditions, which relate the  jump in the  gradient  at  a  corner  to  the 
value  there. A “jump  relation”  for  potentials is instrumental  here; 
by its  means  the  boundary  conditions  and  the  representation  are 
transformed  into  a  system of  3n linear  Volterra  equations  for  the 
weights. A simple  representation  leads  to 2n similar  equations with 
the  added  virtue  that  they  are of the  second  kind, so that  a classical 
theory is available. The  nonlinear  filtering  problem is thus  reduced 
to  solving  these  equations. 

A simple  example is discussed  in  detail to  further  illustrate  the 
methods  and  the  structure of the  solution. 

2. THE  FILTER 

We  consider  the  nonlinear  filtering  problem of characterizing 
the  conditional  distribution of E ,  given the observation  record 
u(yu : 0 5 u 5 r )  under  the  model 

( 1 )  d5, =f(S , )d  + dw, ; E o  I! ( w .  ,b. 1 

(2) d y ,  = h ( E r ) d r  +db,  ; yo = 0 

where w. and b. are  independent Brownian motion  processes  and 
f(.), h ( . )  are  continuous, piecewise linear  functions 

n n 

(3) f ’ ( z )  2 ailA,(z) , h ’ ( z )  = 2 hil.+(z) 
i=O i=O 

for  a  number n of “elbow”  or  “corner”  points x I  < x 2  < ... < x ,  
on the real line ( x o  = -co, = +w), and Ai = ( x i , x i + ] ) .  

It is known (c.f.  for  instance [31) that if F(.) is the  distribution 
function of t o ,  the  conditional  distribution we are  seeking has an 
(unnormalized)  density  given by 

p ( t , z )  = J q ( r , z ; o , x ) d F ( x )  
R 

in  terms of the  “fundamental  unnormalized  density” q ( t , z ; O , x ) ,  
expressible by the Kallianpur-Striebel  formula as 

.. 
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Here EW denotes  expectation with respect to  the w. process. In 
order  to  eliminate  the  stochastic  integration  against  the y. process 
- and  thus bring the  observation  path  parametrically  into  our 
expressions - we have to integrate by parts. I tas  rule  cannot  be 
applied  directly,  however,  because h (.) is only piecewise 
continuously  differentiable. As in  Mc  Kean 141 the  corners of h (.) 
give local time  contributions,  and we obtain the "generalized 
Tanaka  formula" 

and  the  "integration by parts  formula" 

where P;+",(t) is the local time  spent by the  process x + w  at 
z = x i  up  to  time t .  

Substitution of (6) into  the  K.4.  formula (4) and  some  simple 
algebra  provide  the  fundamental  density  in  the  form 

(7) q ( t , z ; o , x )  = eho)Y'u(t ,z;O,x)  , 

where <A(+.) 2 I* &dw, - - @:dc is the Girsanov  exponent. 1 '  
2 0  

The stochastic  representation (8) helps us read off the partial 
differential  equations  (in the  intervals A i )  and  the  boundary 
conditions  (at  the points x, )  satisfied by the  function u ( . , . ; O , x ) .  
The keys are  the Feynman-Kac  formula  and the  theory of the so- 
called elastic Brownian Motion [6 ,  p. 1611. The  former  discerns  a 
drift  term 

from  the  argument of the Girsanov  functional,  and  a  potential  term 
1 "  1~: ' hi21A,(z) -7 h 2 ( z )   - Y t f ( z )   h i l A i ( Z )  

i 4  i - 0  

n 1 

from  the killing rate. The latter  imposes  an "elastic condition" 

(9) (UAt,Xi+) - U A t J i - ) )   + y , ( h i - h i - l ) u ( t , x i )  =o  

at  each  "corner"  point x i ,  i = 1 ,..., n .  

Therefore  the Filtering problem  reduces to  the following: 

Initial-boundary  value  problem: 

To  construct  a  continuous  function u ( r , z )  = u ( t , z ; O , x )  on 
( O , T x R ] ,  which is C'*2 in each of the intervals A,; i = 0,1, ..., n ,  
and satisfies 

(a)  the  forward  equation 

+ (- hi?,* - - h2(z)  - y , f  ( z ) h , ) u  1  1 
2  2 

in ( 0 , T l ~ 4 ;  i = 0,1, ..., n ,  

(b)  the  boundary  conditions (9), and 

(c)  the initial condition: lim u ( t , z ; O , x )  = 6 ( z - x ) .  
'IO 

An alternative way to  amve  at  the  above characterization of 
u ( t , z ; O , x )  proceeds via the Zakai equation  for q ( t , r ; O , x )  Dl. In 
each of the 4 , ' s  q satisfies the stochastic  equation 

4 = ( i q 2 2 - f ( ~ ) q 2 - a i q ) d t   + h ( z ) q d y r  9 

1 

along with the initial condition lim q ( t , z ; O , x )  = 6 ( z - x ) .  The 

"Rozovsky  transformation" (7) trades  the  (stochastic) Zakai 
equations  for  the  nonstochastic  ones  in (10). as one can verify after 
a  bit of stochastic  calculus.  Continuity of q ( t , . , ; O , x )  and 
q 2 ( t , . ; 0 , x )  translate into continuity of u ( t , . ; O , x )  and  the  boundary 
conditions (9). respectively. 

'IO 

3. A JUMP RELATION FOR HEAT-LIKE  POTENTIALS 

In this  section we construct  the  fundamental  solution  for 
parabolic equations of the  form (10) and  examine  the  behavior of 
certain  potentials  based on it. 

To simplify derivation  and  notation, we consider  the parabolic 
equation 

(11) v I  =- v Z  + ( e [ t ) - u z ) v 2  - (- h 2 z 2 + g ( t ) z ) v  1 1 
2 2 

with a , h  real constants  and e(.), g(.) continuous  functions on 
t 1 0, and  seek its fundamental  solution in  the  form 

(12) r ( t , z ; s , x )  = A ( t , s , x ) .  c(r ( t -8)  , z - m ( t , s , x ) )  

with A ( s , s , x )  = 1, r{O) = O  and m ( s , s , x )   = x ,  where 

~ ( x , t )  = ( z ~ t ) - "  exp(-x2/2J) 

is the  fundamental  Gaussian  kernel.  Substitution of the  proposed 
form of r into  (1  1)  and  annihilation of the coefficients of powers of 
z up  to  order 2 yieids the  equations 

(13) i ( i )  = 1 + 2ar(t) - h 2 r 2 ( t )  ; r ( 0 )  = 0 (Riccati) 

- + ( h 2 . r ( f - s ) - a ) m  + ( e ( t ) + r ( t - s ) g ( t ) j  = 0 ,  am 

rn(S,S,X) = x  , 

- log A + - h2(m2+r( t - s ) )  - a f rng( t )  = O ; a 1 
at 2 

A ( s , s , x )  = 1 , 

and  therefore, with o ( t )  & exp 

at 
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A (f ,s ,x) = exp - - h 2  J, (rn2(0,s .x) [ :  
+r(e-s+g(e)m(e,s,x) 

+a (1-3) 

In the special case u = 0, g ( f )  = e ( r )  pa 0, we have 
1 
h  cosh  h ( f - s )  

A(f,s,x) =(cosh  h(t-s))-H  exp(--hx2tanh  h(f-s)) 

r ( t )  = - tanh(hr) , m ( f  , s , x )  = X 

1 
2 

Thus 

(16) r(t,z;s,x) 

= [F sinh h ( f - s ) ) - f i  exp - - { $ (z2+x2)cosh h(t-s)-2u 
sinh  h ( t - s )  

recovering  a classical result of Szybiak 151. 

Let us now establish  a  "jump  relation"  for  single-layer 
potentials of the  form 

r(t,z) = ~o'rft,z+~(f);u,~(u))p(u)du , 

where p ( t )  = 
1 - U(Z),  

r ( r )  

r(f,z) is decomposed  as rl(?,z) + r2(r,2), with 

and on the similar  expression I ,   I , ,  I 2  with p ( f )  = 1. Since 
i ( 0 )  = 1, we have rd  I r ( r )  5 r l f ,  for f sufficiently small, with 
ro  positive.  Letting C denote  a  constant  (not necessarily the  same 
throughout  the  paper), we have 1121 5 Cq", by virtue of the 
Lipschitz  continuity of s(,) .  On the  other  hand, we decompose I I  
as JI  + J 2 ,  with 

To estimate J 2  first, consider  the  ratio 

It can be checked  that I [ l  C(z+q), so by choosing z , ~  small we 
can  guarantee  that 5 1, lexp[-ll 5 e l t l .  On the  other  hand, 
for z small enough,  it is easy to establish  a  bound of the  form: 

by using the fact that xe-', x"e-x, e-x are bounded functions on 
R+. 

To estimate J I ,  we write it  in  the  form J , ,  + J12, with 
' s 1)-s u 

1 1 2  = J t - n  r ( I  -u ) F(t,z+s(t);u,s(f))du ( l J 1 2 /  5 CT ' )  , 

after  the  change of variable x = d!d (with  a well-defined inverse 

u(x;z) = r-I(xz2), provided q is sufficiently small)  and  where 
Z 2  
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m ( r , t - u ( x ; I ) , s ( r ) )  
22 11 .  

By 1'H;pital's rule we verify that l imf(x ; t , z )  = 1; then  dominated 

convergence  and  the  integral 
2 10 

-- som x-3/2e = 6 

take care of lim J l l  = 1. Therefore,  for v > 0 sufficiently small: 
2 10 

l i m  11-11 5 CvH . 
210 

Returning  to  the  quantity L ,  we have 11521 I CvH and 

for all 11 > 0 sufficiently small;  therefore, 

lim ( L - p ( r ) )  = 0 
210 

which establishes (18). 

We  shall also need  a jump relation  for  the  analog 
1 so r,(r,z+s(r);u,s(u)p(u)du 

of the classical double-layer  potential. 

(19) Proposition: For p ( . )  continuous  and s (.) Lipschitz 

+ u ( r - s )  
[z-m ( t  ,s ,x)] 

r ( t  -s) 1 
K , ( r , z ; s , x )  = - K ( t , z ; s , x )  z-m (I ,s,x) 

r ( r  -s) 

We  can  rewrite  the  left  hand  side of (19)  in  terms of -K, and 
additional  integrands of the  form K . O ( r - s ) ;  the  latter will 
contribute O ( b )  in the critical range ( r - - b , r ) ;  by (17)  the -K, term 
will give  a jump k p ( t ) .  

we are  to  solve  in R+xAi the  equation 
Adapting  the  results of this  section  to our problem, we see  that 

+ [h(xi)-hrxrl2 + 2V(x i ) -~ ix i Ih iy t  - hi$? 

The identification h = h i ,  u = ui ,  e( t )  = hiyt - f ( x i )  + uixi ,  
g(t) = hi [h  (xi)-hixi+uiyf 1 in (11) leads to a  fundamental  solution 
of  (1Oi) in the  form 

( 2 0 )   K ( ' ) ( t , z ; s , x )  = r ( ' ) ( t , z ; s , x ) e x p  -1 j k i (u )du  

where k i ( u )  = coefficient of z o  in V i ( u , z ) .  Jump relations  for 
potentials  against the new kernel K(') follow readily from 
Propositions  (17)  and  (19). 

4. REPRESENTATION 

I l :  I 

Let us fix an  interval Ai = (xi,xi+J and use Green's  theorem  to 
find a  representation  there  for  the  solution u. With 

we have  the  forward  equation - = L.u, and  for K(') the 

backward - a K ( i )  + L i K ( ' )  = 0, with Li the  formal  adjoint of L. 
corresponding  to  a  drift yi and  a  potential 6 .  We find in the usual 
way that  on Ai 

- K ( ' ) ( t , Z ; s , x ) u ( s , x )  = - ( K ( i ) u x ) x  - - (K,C')u),  - ( y i K % ) ,  

Integrating dx over Ai = (xi,xi+l) and ds from e to f - c ,  one 
obtains 

at 

as 

a 
as 2 2 

1  1 

4 + 1  

J [K( ' ) ( t ,s; t - -c ,x)u(t -c ,x)  - ~ ( ~ ) ( t , z ; - c , x ) u ( c , x ) l d r  
4 

For zeAi let e + 0 to  get  a  representation of u in  terms of its 
values  and  one-sided  derivatives  at the  boundary  points xi and xi+,: 

(21) u = u( t , z ;O ,x )  

This  representation yields integral  equations  for  the  unknown 
values  and  one-sided  derivatives of u at  the boundary  points  upon 
application of the  jump relation  (19).  First  let z - xi from  above 
to  get 

with the  boundary  conditions  (9)  and  the  initial  condition 

lim u ( t  ,z;O,x) = b ( z - x )  , 
f 4  

ri(t ,z)  = hiyf - f ( x i )  - ai(z--xi) 

K ( t , z )  = h?z2 + 2hi(h(xi)-hix,+uiyf)z  - a i  
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( 2 2 )  

The elastic  condition  at xi is 

(9) u 2 ( t . x i + 0 )  - u2(t,xi+) + y f ( h i - h i - l ) u ( t , x i )  = O ,  

and we have 3n equations  for 3n quantities u 2 ( t  ,xi +O), u(f  .xi), 
i = 1, ..., n .  

It is easy to show by classical jump  relation  methods  that if one 
is given 3n quantities u2(r.xi  k O ) ,  u ( t , x i )  satisfying ( 2 2 ) ,   ( 2 3 ) ,  
and  (9)  then  the  representation ( 2 3 )  defines  a  solution of problem 
(IO). Thus we have  proved the following 

( 2 4 )  Structure  Theorem: For the "piecewise linear"  dynamics of 
( 1 ) - ( 3 ) ,  the  fundamental  unnormalized  conditional  density  has  the 
form 

with K(') as in ( 2 0 ) ,  and u,(s,xikO), u ( s , x i )  solutions of the 
integral  equations ( 2 2 ) ,   ( 2 3 ) ,  (9). 

5.  AN EXAMPLE 

As a  simple  example, we consider  the  case j ( z )  = 0, 
h ( z )  = Iz I, and  suppose  that  the  distribution of to  has  a  density 
p ( . )  which is an  even  function  on R. Taking  advantage of the 
symmetry  in  the  problem, we are  seeking  to  solve  the  initial- 
boundary  value  problem  for the a k a i  equation 

d l p ( t  , z )  = = - p y ( t  ,z)dt + z p ( t  ,z)dy, ; t > 0 ,  z > 0 
1 
2 

P 2 ( t , 0 )  = 0 ; r > O  

P ( O J  1 = P ( z )  ; z L O  

and  then  extend  evenly on z < 0. Equivalently, one can work with 
the Rozovsky  transformation: $ ( r  ,z) = p( t  ,z).exp(-zy,); z 2 0 
and  do  the  problem 

1 
( 2 5 )  $ d t , z )  = 7 $ 2 2 ( t ~ z )  

+ Y ~ $ ~ ( ~ , z )  + 7 CV? - z 2 ) $ ( t , z )  : t > 0, z > o 1 

$2(t ,0)  + n $ ( t , 0 )  = 0 ; t > o  

$(OJ) = P ( z  1 ; z L O .  

It is readily seen  that  the  fundamental  solution of the  transformed 
equation is 

where r(t ,z;s , x )  is the  function  in  (16) with h = 1, and  that  it 
satisfies the  jump relation  (Proposition  (19)).  Integrating  Green's 
identify 

- [K$Z(S,X) - K * $ ( s , x )  + 2YsK$(s ,x )1  - - ( 2 K I L ( s , x ) )  = 0 a a 
ax as 

$(O,x)  = P ( x ) .  W , O )  4 ( 0 ,  $2(t,O) = r 1 4 ( t ) ,  we get  the 

( 2 7 )   2 $ ( t , z )  = Jo iK,(t,z;s,O)-y,K(t,r;s,O))4(s)ds + 

over (o,r)xR+, subject  to  the initial and  boundary  conditions: 

integral  representation 
I 

Passing to  the limit as z l 0  yields, by virtue of the  jump relation, 
the Volterra  equation 

+ 2 jOm K ( r  , o ; o , x ) p ( x ) d ~  , 

which is of the  second  kind  and  thus  uniquely  solvable  for  a 
continuous  function @(.). Conversely,  starting with this 4(.) we 
can define $ ( t , z )  by ( 2 7 )  and  check  that  the  equation  and  the 
initial condition  are satisfied. To show  that the boundary  condition 
is also satisfied, we first let z 1 0 in ( 2 7 ) ,  to  obtain  from  the  jump 
relation  and  in  conjunction  with ( 2 8 )  that: $( r ,o )  = 4(t);  t > 0. 
Secondly, we get  a new integral  representation of $ ( r  . z )  in  terms of 
p ( . ) ,  +(.) and I L 2 ( r ; ) ,  which compared  with ( 2 7 )  yields 

J o l K ( r , z ; s , ~ ) X ( s ) d s  = O  : t > 0, z > 0 ,  

W )  = $2(t ,o) + yf 4 0 )  . 

We  differentiate  this  expression with respect to z and  then  let 
z 1 0, to receive by the  jump relation  (19): 

X(?)  = Jo K,(t,o;s,o)X(s)dr ; t > 0 ,  

which implies X ( r )  0; t > 0, in  accordance with Lemma 7 of 

I 

[ l l .  

Conclusion: the (unnormalized) conditwnal density for  this filtering 
problem is 
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= p ( t , - z )  ; t > O ; Z  < o  

with +(.) the  unique  solution of the integral  equation  (28). 

6. ANOTHER  APPROACH 

For n > 1, or asymmetric initial data the system of integral 
equations  (22),  (23)  for  the weights in the potentials  representing 
u ( t , z )  in the various  intervals Ai is "of the first kind" in  an 
unpleasant way that  is  not easily made  to be "of the  second  kind" 
by Abel's transformation. To find an  alternative  equivalent  set of 
equations  more  amenable  to  the classical method, we represent  the 
solution of equation (10) in R+xAj as a  superposition of two single 
layer  potentials  against the  fundamental  solution K(j3 and  the 
weight  functions +,?, +GI placed at  the two end-points of the 
interval A ~ ;  o I i 5 n (bo+(t) = b;+l(r)=~); 
(291 u( ' ) ( t , z )  = Jot K( ' ) ( r , z ; s ,x i )+?( s )ds  + 

I + f, K ( i ) ( r , ~ ; s , x i + l ) b i + l ( ~ ) d r + K ( i ) ( t , z ; O , x )  . 

The above  expression  satisfies  equation (10) and the requisite 
initial condition.  Matching  the values of u(')(r ;), uci-I)(r ;) across 
xi we obtain the Volterra  equation of the first kind: 

(30) so' ~ ( i ) ( r , x ~ ; s , x ~ ~ , . ) + + ( s ) d c  

+ Jof K ( ' ~ ( t s i ; s , x i + l ~ b i + l ~ s ) d r  + 
+ K ( ' ) ( t . X i , O , X )  = 

= J~~ K(i - l ) ( r ,x i ;s ,x i -1 )6 i - l (s )ds 

+ soL K(i - l ) ( t ,x i ; s .x i )+; (s )dc  + 
+ K(+I'(f Ji;O,x)  . 

This equation  can be reduced  to  one of the  second  kind via the 
Abel transformation. For convenience,  let us introduce  the 
notation: K?(t J )  = K( ' ) ( r  , q ; s , x i ) ,  Kj;, ( t  ,s) = ,~~;s,x~+~), 
K Z l ( f , s )  = K ( i - 1 ) ( f , q 2 p + - l ) ,  KF( t .8)  = K(i- l )Jr ,xi;s ,xi)  and 
denote  generically  any of the  integrals  in (30) by K( t , s )+ ( s )&.  
Now we Abel-transform, i.e. replace r by T ,  mulbply by (f-r)-', 
integrate T over (0,r)  and  interchange  the  order of s and r 
integrations to obtain the  expression 

0 

sof L ( r , s ) + ( s ) d s  

For the kernels  under  considerations, Q ( t , s )  and Pl(t,s) are 
bounded  functions,  and  therefore so are L ( r , s )  and L I ( t  J). 
Consequently,  one  can  formally  differentiate: 

helps us integrate by parts: 
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The  system of Volterra  equations (31).  (32) of the  second kind is 
then  uniquely  solvable  for 2n continuous  functions (bi’(t), 
1 5 i 5 n ) .  Thus we have  proved the following 

Second Structure Theorem: The  fundamental  unnormalized 
conditional  density  for the “piecewise-linear” filter in (1)-(3) is 
given by 

q(t,z;O,x) = e h “ ) ’ ‘ i  lAi(z)  K(‘)(f ,z;s,xi)b+(s)ds t 
i-0 

where  the 2n continuous  weight  functions ( b t ( r ) ;  1 5 i 5 n )  are 
obtained  as the  unique  solution  to  the  system of integral  equations 
(31), (321, and & ( r )  = b;+,(t) = 0. 
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