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ADAPTIVE POISSON DISORDER PROBLEM

By Erhan Bayraktar ∗ Savas Dayanik† and Ioannis Karatzas ‡

University of Michigan, Princeton University, and Columbia University

We study the quickest detection problem of a sudden change in the
arrival rate of a Poisson process from a known value to an unknown and
unobservable value at an unknown and unobservable disorder time. Our
objective is to design an alarm time which is adapted to the history of the
arrival process and detects the disorder time as soon as possible.

In previous solvable versions of the Poisson disorder problem, the arrival
rate after the disorder has been assumed a known constant. In reality, how-
ever, we may at most have some prior information about the likely values
of the new arrival rate before the disorder actually happens, and insuffi-
cient estimates of the new rate after the disorder happens. Consequently,
we assume in this paper that the new arrival rate after the disorder is a
random variable.

The detection problem is shown to admit a finite-dimensional Markovian
sufficient statistic, if the new rate has a discrete distribution with finitely
many atoms. Furthermore, the detection problem is cast as a discounted op-
timal stopping problem with running cost for a finite-dimensional piecewise-
deterministic Markov process.

This optimal stopping problem is studied in detail in the special case
where the new arrival rate has Bernoulli distribution. This is a non-trivial
optimal stopping problem for a two-dimensional piecewise-deterministic
Markov process driven by the same point process. Using a suitable single-
jump operator, we solve it fully, describe the analytic properties of the value
function and the stopping region, and present methods for their numerical
calculation. We provide a concrete example where the value function does
not satisfy the smooth-fit principle on a proper subset of the connected,
continuously differentiable optimal stopping boundary, whereas it does on
the complement of this set.

1. Introduction and Synopsis. Suppose that arrivals of certain events con-
stitute a Poisson process N = {Nt; t ≥ 0} with a known rate µ > 0. At some time
θ, the arrival rate suddenly changes from µ to Λ. Both the disorder time θ and the
post-disorder arrival rate Λ of the Poisson process are unknown and unobservable
quantities. Our problem is to find an alarm time τ which depends only on the past
and the present observations of the process N , and detects the disorder time θ as
soon as possible.

More precisely, we shall assume that θ and Λ are random variables on some
probability space (Ω,H, P), on which the process N is also defined; the variables θ,
Λ are independent of each other and of the process N . An alarm time is a stopping
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time τ of the history of the process N . We shall try to choose such a stopping time
so as to minimize the Bayes risk

P {τ < θ}+ c E(τ − θ)+, (1.1)

namely, the sum of the frequency P{τ < θ} of the false alarms and the expected
cost c E(τ − θ)+ of the detection delay.

We shall assume that the post-disorder arrival rate Λ has some general prior dis-
tribution ν(·). Similarly, the disorder time θ will be assumed to have an exponential
distribution of the form

P{θ = 0} = π and P{θ > t | θ > 0} = e−λt, t ≥ 0 (1.2)

for some π ∈ [0, 1) and λ > 0. The Poisson disorder problem with a known post-
disorder rate (namely, Λ equals a known constant with probability one) was stud-
ied first by Galchuk and Rozovskii [10] and was solved completely by Peskir and
Shiryaev [15]. In the meantime, Davis [8] noticed that several forms of Bayes risks,
including (1.1), admit similar solutions. He called this class of problems standard
Poisson disorder problems, and found a partial solution. Recently, Bayraktar and
Dayanik [1] solved the Poisson disorder problem when the detection delay is pe-
nalized exponentially. Bayraktar, Dayanik and Karatzas [3] showed that the expo-
nential detection delay penalty in fact leads to another variant of standard Poisson
disorder problems if the “standards” suggested by M. Davis are restated under a
suitable reference probability measure. It was also shown [3] that use of a suitable
reference probability measure reduces the dimension of the Markovian sufficient
statistic for the detection problem, and the solution of the standard Poisson disor-
der problem was described fully.

We believe that unknown and unobservable post-disorder arrival rate Λ captures
quite well real-life applications of change-point detection theory. Before the onset of
the new regime, past experience may help us at most to fit an a-priori distribution
ν(·) on the likely values of the new arrival rate of N after the disorder. Even after the
disorder happens, we may not have enough observations to get a reliable statistical
estimate of the post-disorder rate. Indeed, since a good alarm is expected to sound
as soon as the disorder happens, we may have very few observations of N sampled
from the new regime since the disorder. The quickest detection of an unknown and
unobservable shift in the drift of a Wiener process has been tackled by Beibel [4]
and Beibel and Lerche [5]. However, we are unaware of any work pertaining to
Poisson processes.

Let us highlight our approach to the problem and our main results. We show
that the most general such detection problem is equivalent, under a reference prob-
ability measure, to a discounted optimal stopping problem with a running cost for
an infinite-dimensional Markovian sufficient statistic. However, the dimension be-
comes finite as soon as the prior probability distribution ν(·) of the post-disorder
arrival rate Λ charges only a finite number of atoms. This class of problems is of
considerable interest since, in many applications, we have typically an empirical
distribution of the post-disorder arrival rate, constructed either from finite past
data or from expert opinions on the most significant likely values.
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We then study in detail the case where the new arrival rate after the disorder
is expected either to increase or to decrease by the same amount. The detection
problem turns in this case into an optimal stopping problem for a two-dimensional
piecewise-deterministic Markov process, driven by the same point process. We solve
this optimal stopping problem fully by describing ε-optimal and optimal stopping
times and identifing explicitly the non-trivial shape of the optimal continuation
region.

The common approach to an optimal stopping problem for a continuous-time
Markov process is to reformulate it as a free-boundary problem in terms of the
infinitesimal generator of the process. The free-boundary problems sometimes turn
out to be quite hard, even in one dimension; see, for example, Galchuk and Ro-
zovskii [10], Peskir and Shiryaev [15], Bayraktar and Dayanik [1]. Here, the infinites-
imal operator gets complicated further, and becomes a singular partial differential-
delay operator. Moreover, it is a non-trivial task, even in two dimensions, to guess
the location, shape, and smoothness of the free-boundary separating the continua-
tion and stopping regions, as well as the behavior of the value function along the
boundary.

Instead, we follow a direct approach and work with integral operators rather than
differential operators. As in Gugerli [11] and Davis [9], we use a suitable single-jump
operator to strip the jumps off the original two-dimensional piecewise-deterministic
Markov process and turn the original optimal stopping problem into a sequence
of optimal stopping problems for a deterministic process with continuous paths.
Using direct arguments, we are able to infer from the properties of the single-jump
operator the location and shape of the optimal continuation region, as well as the
smoothness of the switching boundary and the value function.

The single-jump operator also suggests a straightforward numerical method for
calculating the value function and the optimal continuation region. The determin-
istic process obtained after removing the jumps from the original Markov process
has two fundamentally different types of behavior. We tailor the naive numerical
method to each case, by exploiting the behavior of the paths.

We also raise the question when the value function should be a classical solution
of the relevant free-boundary problem. For a large range of configurations of param-
eters, both the value function and the boundary of the continuation region turn out
to be continuously differentiable, and one may also choose to use finite-difference
methods for differential-difference equations to solve the problem numerically. For a
few other cases, we cannot qualify completely the degree of smoothness of the value
function. Viscosity approaches or some other techniques of non-smooth analysis are
very likely to fill the gap, but we do not pursue this direction here. We report one
concrete example on “partial” failure of the smooth-fit principle: in certain cases,
the value function is continuously differentiable everywhere on the state space ex-
cept on a proper subset of the connected and continuously differentiable optimal
stopping boundary.

This work is divided naturally in two parts. In Sections 2-6, we describe the
problem, formulate a model, and develop an important approximation. In Sections
7-11, we use that approximation to develop the solution and study its properties.
Section 12 is the home for long proofs.
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2. Problem description. Let N = {Nt; t ≥ 0} be a homogeneous Poisson
process with some rate µ > 0 on a fixed probability space (Ω,H, P0), which also
supports two random variables θ and Λ independent of each other and of the process
N . We shall denote by ν(·) the distribution of the random variable Λ, assume that

m(k) ,
∫

R
(v − µ)kν(dv), k ∈ N0 are well-defined and finite, (2.1)

and that

P0{θ = 0} = π and P0{θ > t} = (1− π)e−λt, t ≥ 0 (2.2)

hold for some constants λ > 0 and π ∈ [0, 1).
Let us denote by F = {Ft}t≥0 the right-continuous enlargement with P0-null sets

of the natural filtration σ(Ns; 0 ≤ s ≤ t) of N . We also define a larger filtration
G = {Gt}t≥0 by setting Gt , Ft ∨ σ{θ, Λ}, t ≥ 0. The G-adapted, right-continuous
(hence, G-progressively measurable) process

h(t) , µ1{t<θ} + Λ1{t≥θ}, t ≥ 0 (2.3)

induces the (P0, G)-martingale (see Brémaud [6, pp. 165-168])

Zt , exp
{∫ t

0

log
(

h(s−)
µ

)
dNs −

∫ t

0

(h(s)− µ)ds

}
, t ≥ 0. (2.4)

This martingale defines a new probability measure P on every (Ω,Gt) by

dP
dP0

∣∣∣∣
Gt

= Zt, t ≥ 0. (2.5)

Since P and P0 coincide on G0 = σ{θ, Λ}, the random variables θ and Λ are inde-
pendent and have the same distributions under both P and P0.

Under the new probability measure P the counting process N has G-progressively
measurable intensity given by h(·) of (2.3), namely Nt−

∫ t

0
h(s)ds, t ≥ 0 is a (P, G)-

martingale. In other words, the G-adapted process N is a Poisson process whose
rate changes at time θ from µ to Λ.

In the Poisson disorder problem, only the process N is observable, and our ob-
jective is to detect the disorder time θ as quickly as possible. More precisely, we
want to find an F-stopping time τ that minimizes the Bayes risk

Rτ (π) , P{τ < θ}+ c E(τ − θ)+, (2.6)

where c > 0 is a constant, and the expectation E is taken under the probability
measure P. Hence, we are interested in an alarm time τ which is adapted to the
history of the process N , and minimizes the tradeoff between the frequency of false
alarms P{τ < θ} and the expected time of delay E(τ − θ)+ between the alarm time
and the unobservable disorder time.

In the next section, we shall formulate the quickest detection problem as a prob-
lem of optimal stopping for a suitable Markov process.
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3. Sufficient statistics for the adaptive Poisson disorder problem. Let
S be the collection of all F-stopping times, and introduce the F-adapted processes

Πt , P{θ ≤ t|Ft}, and Φ(k)
t ,

E[(Λ− µ)k1{θ≤t}|Ft]
1−Πt

, k ∈ N0, t ≥ 0. (3.1)

Since Λ has the same distribution ν(·) under P and P0, each Φ(k), k ∈ N0 is well-
defined by (2.1). The process Π = {Πt, t ≥ 0} tracks the likelihood that a change
in the intensity of N has already occurred, given past and present observations of
the process. Each Φ(k) = {Φ(k)

t , t ≥ 0}, k ∈ N may be regarded as a (weighted)
odds-ratio process.

Our first lemma below shows that the minimum Bayes risk can be found by
solving a discounted optimal stopping problem, with discount rate λ and running
cost function f(x) = x − λ/c for the F-adapted process Φ(0). By Lemma 3.2, the
observation process X and the sufficient statistic

{
Φ(k)

}
k≥0

jump exactly at the
same times and evolve deterministically between jumps; therefore, their natural
filtrations and the collection of their stopping times are the same.

The calculations are considerably easier when the process Φ(0) has the Markov
property. Unfortunately, this is not true in general. However, the explicit dynamics
of Φ(0) in Lemma 3.2 reveal that the infinite-dimensional sequence {Φ(k)}k∈N0 of the
processes in (3.1) is always a Markovian sufficient statistic for the quickest detection
problem. The same result also suggests sufficient conditions for the existence of
a finite-dimensional Markovian sufficient statistic, a case amenable to concrete
analysis.

3.1 Lemma. The Bayes risk in (2.6) equals

Rτ (π) = 1− π + c(1− π) E0

[∫ τ

0

e−λt

(
Φ(0)

t − λ

c

)
dt

]
, τ ∈ S, (3.2)

where the expectation E0 is taken under the (reference) probability measure P0.

The proof is very similar to that of Proposition 2.1 in Bayraktar, Dayanik and
Karatzas [3]. Note that every Zt in (2.4) can be written as

Zt = 1{t<θ} +
Lt

Lθ
1{t≥θ} (3.3)

in terms of the likelihood ratio process

Lt ,

(
Λ
µ

)Nt

e−(Λ−µ)t, t ≥ 0. (3.4)

Then the generalized Bayes theorem (see, e.g., Liptser and Shiryaev [13, Section
7.9]) and (3.3) imply

1−Πt =
E0[Zt1{θ>t}|Ft]

E0[Zt|Ft]
=

P0{θ > t|Ft}
E0[Zt|Ft]

=
(1− π)e−λt

E0[Zt|Ft]
, (3.5)

since θ is independent of the process N under P0 and has the distribution (2.2).
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3.2 Lemma. Let m(k), k ∈ N0 be defined as in (2.1) Then every Φ(k), k ∈ N0 in
(3.1) satisfies the equation

dΦ(k)
t = λ

(
m(k) + Φ(k)

t

)
dt +

1
µ

Φ(k+1)
t− (dNt − µdt), t > 0, Φ(k)

0 =
π

1− π
m(k).

(3.6)

Proof. For every k ∈ N0, let us introduce the function

F (k)(t, x) ,
∫ (

v

µ

)x

(v − µ)ke−(v−µ)tν(dv), t ∈ R+, x ∈ R. (3.7)

The generalized Bayes theorem, (3.5), and the independence of the random variables
θ, Λ and the process N under P0 imply that we have

Φ(k)
t =

E0

[
(Λ− µ)kZt1{θ≤t}|Ft

]
(1−Πt)E0[Zt|Ft]

=
πeλt

1− π
F (k)(t, Nt) + λ

∫ t

0

eλ(t−s)F (k)(t− s,Nt −Ns)ds = U
(k)
t + V

(k)
t (3.8)

for every k ∈≥ 0 and t ∈ R+, where we have set

U
(k)
t ,

πeλt

1− π
F (k)(t, Nt) and V

(k)
t , λ

∫ t

0

eλ(t−s)F (k)(t− s,Nt −Ns)ds. (3.9)

Every F (k)(·, ·), k ∈ N0 in (3.7) is continuously differentiable, and

∂

∂t
F (k)(t, x) = −F (k+1)(t, x), t > 0, x ∈ R, k ∈ N0. (3.10)

The change of variable formula for jump processes gives

F (k)(t, Nt) = F (k)(0, 0) +
∫ t

0

∂F (k)

∂t
(s,Ns)ds +

∫ t

0

∂F (k)

∂x
(s,Ns−)dNs

+
∑

0<s≤t

[
F (k)(s,Ns)− F (k)(s,Ns−)− ∂F (k)

∂x
(s,Ns−)∆Ns

]

= m(k) −
∫ t

0

F (k+1)(s,Ns)ds +
∑

0<s≤t

[
F (k)(s,Ns)− F (k)(s,Ns−)

]
,

(3.11)

where ∆Ns , Ns−Ns− ∈ {0, 1} for s > 0, and the last equality follows from (3.10),

F (k)(0, 0) = m(k), and
∫ t

0

∂F (k)

∂x
(s,Ns−)dNs =

∑
0<s≤t

∂F (k)

∂x
(s,Ns−)∆Ns
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for every integer k ≥ 0. However, F (k)(s,Ns)− F (k)(s,Ns−) is equal to∫ (
v

µ

)Ns−+∆Ns

(v − µ)ke−(v−µ)sν(dv)−
∫ (

v

µ

)Ns−

(v − µ)ke−(v−µ)sν(dv)

=
∆Ns

µ

∫ (
v

µ

)Ns−

(v − µ)k+1e−(v−µ)tν(dv) =
1
µ

F (k+1)(s,Ns−) ∆Ns,

since [(v/µ)∆Ns − 1] = (∆Ns/µ)(v − µ). This equation and (3.11) imply

F (k)(t, Nt) = m(k) −
∫ t

0

F (k+1)(s,Ns)ds +
∑

0<s≤t

1
µ

F (k+1)(s,Ns−) ∆Ns

= m(k) +
∫ t

0

1
µ

F (k+1)(s,Ns−)(dNs − µds), t ∈ R+, k ∈ N0.

(3.12)

This identity will help us derive the dynamics of U (k) and V (k) in (3.9). Note that

d

(
1− π

π
U

(k)
t

)
= d

(
eλtF (k)(t, Nt)

)
= eλtF (k)(t, Nt)λdt + eλtdF (k)(t, Nt)

= λ
1− π

π
U

(k)
t dt +

eλt

µ
F (k+1)(t, Nt−)(dNt − µdt).

Therefore,

dU
(k)
t = λU

(k)
t +

1
µ

U
(k+1)
t (dNt − µdt), t > 0, U

(k)
0 =

π

1− π
m(k). (3.13)

The derivation of the dynamics of V (k) is trickier. For every fixed s ∈ [0, t), let
us define N

(s)
u , Ns+u − Ns, 0 ≤ u ≤ t − s. This is also a Poisson process under

P0. As in (3.12),

F (k)
(
t− s,N

(s)
t−s

)
= m(k) +

∫ t−s

0

1
µ

F (k+1)
(
u, N

(s)
u−

)(
dN (s)

u − µdu
)

.

Changing the variable of integration and substituting N
(s)
• = Ns+• −Ns into this

equality gives

F (k)(t− s,Nt −Ns) = m(k) +
1
µ

∫ t

s

F (k+1)(v − s,Nv− −Ns)(dNv − µdv).

Let us plug this identity into V
(k)
t in (3.9), multiply both sides by e−λt, and change

the order of integration. Then

e−λtV
(k)
t =

∫ t

0

λe−λs

(
m(k) +

1
µ

∫ t

0

F (k+1)(v − s,Nv− −Ns)(dNv − µdv)
)

ds

= m(k)

∫ t

0

λe−λsds +
λ

µ

∫ t

0

(∫ v

0

e−λsF (k+1)(v − s,Nv −Ns)ds

)
(dNv − µdv)

= m(k)

∫ t

0

λe−λsds +
1
µ

∫ t

0

e−λvV (k+1)
v (dNv − µdv).
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Differentiating both sides and rearranging terms, we obtain

dV
(k)
t = λ

(
m(k) + V

(k)
t

)
dt +

1
µ

V
(k+1)
t (dNt − µdt), t > 0, V

(k)
0 = 0. (3.14)

Adding (3.13) and (3.14) as in (3.8) gives the dynamics (3.6) of the process Φ(k).

Lemma 3.2 shows that the process Φ(0) does not have the Markov property in
general. This is because, as (3.6) shows, Φ(0) depends on Φ(1), then Φ(1) depends
on Φ(2), and so on ad infinitum. However, a finite-dimensional Markovian suffi-
cient statistic emerges if the system of stochastic differential equations in (3.6) is
closeable, namely, if the process Φ(k) can be expressed in terms of the processes
Φ(0), . . . ,Φ(k−1), for some k ∈ N0. Our next corollary shows that this is true if Λ
takes finitely many distinct values.

3.3 Corollary. Suppose that ν({λ1, · · · , λk}) = 1 for some positive numbers λ1, . . . , λk.
Consider the polynomial

p(v) ,
k∏

i=1

(v − λi + µ) ≡ vk +
k−1∑
i=0

ci vi, v ∈ R

for suitable real numbers c0, . . . , ck−1. Then {Φ(0),Φ(1), · · · ,Φ(k−1)} is a k-dimen-
sional sufficient Markov statistic, with Φ(k) = −

∑k−1
i=0 ci Φ(i).

Proof. Under the hypothesis, the random variable p(Λ−µ) = (Λ−µ)k+
∑k−1

i=0 ci(Λ−
µ)i is equal to zero almost surely. Therefore, (3.1) implies

Φ(k)
t +

k−1∑
i=0

ci Φ(i)
t =

E
[
p(Λ− µ)1{θ≤t}|Ft

]
1−Πt

= 0, P-a.s., for every t ≥ 0.

The process on the left-hand side has right-continuous sample paths, by (3.6).
Therefore, Φ(k)

t +
∑k−1

i=0 ci Φ(i)
t = 0 for all t ∈ R+ almost surely, i.e., the process

Φ(k) is a linear combination of the processes Φ(0), . . . ,Φ(k−1).

In the remainder of the paper we shall study the case where the arrival rate of
the observations after the disorder has a Bernoulli prior distribution.

4. Poisson disorder problem with a Bernoulli post-disorder arrival
rate. We shall assume henceforth µ > 1 and that the random variable Λ has
Bernoulli distribution

ν({µ− 1, µ + 1}) = 1. (4.1)

Namely, the rate of the Poisson process N is expected to increase or decrease by
one unit after the disorder. Corollary 3.3 implies that Φ(2) = Φ(0), and the sufficient
statistic (Φ(0),Φ(1)) is a Markov process. According to Lemma 3.2, the pair satisfies

dΦ(0)
t = λ

(
1 + Φ(0)

t

)
dt +

1
µ

Φ(1)
t− (dNt − µdt), Φ(0)

0 =
π

1− π
, (4.2)

dΦ(1)
t = λ

(
m + Φ(1)

t

)
dt +

1
µ

Φ(0)
t− (dNt − µdt), Φ(1)

0 =
π

1− π
m, (4.3)
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where, as in (2.1), we set

m ≡ m(1) = E0[Λ− µ] = P{Λ = µ + 1} − P{Λ = µ− 1}. (4.4)

The dynamics of the processes Φ(0) and Φ(1) in (4.2) and (4.3) are interdependent.
However, if we define a new process

Φ̃ ≡

[
Φ̃(0)

Φ̃(1)

]
,

1√
2

[
Φ(0) − Φ(1)

Φ(0) + Φ(1)

]
, (4.5)

then each of the new processes Φ̃(0) and Φ̃(1) is autonomous:

dΦ̃(0)
t =

[
(λ + 1)Φ̃(0)

t +
λ(1−m)√

2

]
dt− 1

µ
Φ̃(0)

t−dNt, Φ̃(0)
0 =

(1−m)π√
2(1− π)

,

dΦ̃(1)
t =

[
(λ− 1)Φ̃(1)

t +
λ(1 + m)√

2

]
dt +

1
µ

Φ̃(1)
t−dNt, Φ̃(1)

0 =
(1 + m)π√
2(1− π)

.

(4.6)

The new coordinates Φ̃(0) and Φ̃(1) are in fact the conditional odds-ratio processes
as in

Φ̃(0)
t =

√
2 · P{Λ = µ− 1, θ ≤ t|Ft}

P{θ > t|Ft}
and Φ̃(1)

t =
√

2 · P{Λ = µ + 1, θ ≤ t|Ft}
P{θ > t|Ft}

.

Therefore, both Φ̃(0) and Φ̃(1) are nonnegative processes.
Note that m ∈ [−1, 1] in (4.4). The cases m = ±1 degenerate to Poisson disorder

problems with known post-disorder rates, and were studied by Bayraktar, Dayanik,
and Karatzas [3]. Therefore, we will assume that m ∈ (−1, 1) in the remainder.

4.1 Remark. For every φ0 ∈ R and φ1 ∈ R, let us denote by x(t, φ0), t ∈ R and
y(t, φ1), t ∈ R the solutions of the differential equations

d

dt
x(t, φ0) = (λ + 1)x(t, φ0) +

λ(1−m)√
2

, x(0, φ0) = φ0,

d

dt
y(t, φ1) = (λ− 1)y(t, φ1) +

λ(1 + m)√
2

, y(0, φ1) = φ1,

(4.7)

respectively. These solutions are given by

x(t, φ0) = − λ(1−m)√
2(λ + 1)

+ e(λ+1)t

[
φ0 +

λ(1−m)√
2(λ + 1)

]
, t ∈ R,

y(t, φ1) =


− λ(1 + m)√

2(λ− 1)
+ e(λ−1)t

[
φ1 +

λ(1 + m)√
2(λ− 1)

]
, λ 6= 1

φ1 +
1 + m√

2
t, λ = 1

 , t ∈ R.

(4.8)

Both x(·, φ0) and y(·, φ1) have the semi-group property, i.e., for every t ∈ R and
s ∈ R

x(t + s, φ0) = x(s, x(t, φ0)) and y(t + s, φ1) = y(s, y(t, φ1)). (4.9)
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10 E. BAYRAKTAR, S. DAYANIK, I. KARATZAS

Note from (4.6) and (4.7) that

Φ̃(0)
t = x

(
t− σn, Φ̃(0)

σn

)
and Φ̃(1)

t = y
(
t− σn, Φ̃(1)

σn

)
, σn ≤ t < σn+1, n ∈ N0.

(4.10)

4.1. An optimal stopping problem for the quickest detection of the Poisson disor-
der. In terms of the new sufficient statistics Φ̃(1) and Φ̃(0) in (4.5, 4.6), the Bayes
risk of (2.6, 3.2) can be rewritten as

Rτ (π) = 1− π +
c(1− π)√

2
· E0

[∫ τ

0

e−λt

(
Φ̃(0)

t + Φ̃(1)
t − λ

c

√
2
)

dt

]
, τ ∈ S.

Therefore, the minimum Bayes risk U(π) , infτ∈S Rτ (π), π ∈ [0, 1) is given by

U(π) = 1− π +
c(1− π)√

2
· V
(

(1−m)π√
2(1− π)

,
(1 + m)π√
2(1− π)

)
, π ∈ [0, 1), (4.11)

where m is as in (4.4), the function V (·, ·) is the value function of the optimal
stopping problem

V (φ0, φ1) , inf
τ∈S

Eφ0,φ1
0

[∫ τ

0

e−λtg
(
Φ̃(0)

t , Φ̃(1)
t

)
dt

]
,

g(φ0, φ1) , φ0 + φ1 −
λ

c

√
2, (φ0, φ1) ∈ R2

+,

(4.12)

and Eφ0,φ1
0 is the conditional P0-expectation given that Φ̃(0)

0 = φ0 and Φ̃(1)
0 = φ1.

It is clear from (4.12) that it is never optimal to stop before the process Φ̃ leaves
the region

C0 ,

{
(φ0, φ1) ∈ R2

+ : φ0 + φ1 <
λ

c

√
2
}

. (4.13)

In the next subsection we shall discuss the pathwise behavior of the process Φ̃; this
will give insight into the solution of the optimal stopping problem in (4.12).

4.2. The sample-paths of the sufficient-statistic process Φ̃ = (Φ̃(0), Φ̃(1)). The
process Φ̃(0) jumps downwards and increases between jumps; see (4.6). On the other
hand, the process Φ̃(1) jumps upwards, and its behavior between jumps depends
on the sign of 1 − λ. If λ ≥ 1, then the process Φ̃(1) increases between jumps. If
0 < λ < 1, then Φ̃(1) reverts to the (positive) “mean-level”

φd ,
λ(1 + m)
(1− λ)

√
2

(4.14)

between jumps; it never visits φd unless it starts there; and in this latter case, it
stays at φd until the first jump and never returns to φd (i.e., φd > 0 is an entrance
boundary for Φ̃(1)). Finally, φd and 1− λ 6= 0 have the same signs.
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C0

Φ̃(1)

Φ̃t(ω)

α

αα = 90◦

α

Φ̃(0)0

Φ̃(1)

Φ̃(0)0 0

Φ̃t(ω)

φd

λ
c

√
2

λ
c

√
2

λ
c

√
2

λ
c

√
2

(a) Case I: λ ≥ 1 or 0 < (λ/c)
√

2 ≤ φd (b) Case II: 0 < φd < (λ/c)
√

2

C0

Fig 1. The sample-paths of eΦ
As for the solution of the optimal stopping problem in (4.12), it is worth waiting

if the process Φ̃ is in the region C0 of (4.13), or is likely to return to C0 shortly.
The sample-paths of the process Φ̃ are deterministic between jumps, and tend
towards, or away from, the region C0. These two cases are described separately
below. In both cases, however, the process Φ̃ jumps in the same direction relative
to its position before the jump. A jump at (φ0, φ1) is an instantaneous displacement
(1/µ)[−φ0 φ1]T in Φ̃. Therefore, the jump direction is away from (respectively,
towards) the region C0 if φ0 < φ1 (respectively, φ0 > φ1). Along a quarter of a
circle in Figure 1(a), the directions of jumps at an equal distance from the origin
are illustrated by the arrows. Note also that, along any fixed half-ray in R2

+, the
jump direction (namely, the angle α in Figure 1(a)) does not change, but the size
of the jump does.

4.3. Case I: A “large” disorder arrival rate. Suppose that λ ≥ 1 or 0 <
(λ/c)

√
2 ≤ φd. Equivalently, λ ≥ [1 − (1 + m)(c/2)]+ is “large”. Between jumps,

the process Φ̃ gets farther away from the region C0. It may return to C0 by jumps
only, and only if the jump originates in the region L , {(φ0, φ1) : φ0 > φ1}; see
Figure 1(a). But, if Φ̃(1) reaches at or above (λ/c)

√
2, then Φ̃ will never return to

C0.

4.4. Case II: A “small” disorder arrival rate. Now suppose that 0 < φd <
(λ/c)

√
2. Equivalently, 0 < λ < 1 − (1 + m)(c/2) is “small”. If the process Φ̃

finds itself in a very close neighborhood of the upper-left corner of the triangular
region C0, then it will drift into C0 before the next jump with positive probability.
Otherwise, the behavior of the sample-paths of Φ̃ relative to C0 is very similar to
that in Case I; see Figure 1(b).
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12 E. BAYRAKTAR, S. DAYANIK, I. KARATZAS

5. A family of related optimal stopping problems. Let us introduce for
every n ∈ N, the optimal stopping problem

Vn(φ0, φ1) , inf
τ∈S

Eφ0,φ1
0

[∫ τ∧σn

0

e−λtg
(
Φ̃(0)

t , Φ̃(1)
t

)
dt

]
, (φ0, φ1) ∈ R2

+, (5.1)

obtained from (4.12) by stopping the process Φ̃ at the nth jump time σn of the
process N . Since g(·, ·) in (4.12) is bounded from below by the constant −(λ/c)

√
2,

the expectation in (5.1) is well-defined for every stopping time τ ∈ S. In fact,
−
√

2/c ≤ Vn ≤ 0 for every n ∈ N. Since the sequence (σn)n≥1 of jump times
of the process N is increasing almost surely, the sequence (Vn)n≥1 is decreasing.
Therefore, limn→∞ Vn exists everywhere. It is also obvious that Vn ≥ V , n ∈ N.

5.1 Proposition. As n → ∞, the sequence Vn(φ0, φ1) converges to V (φ0, φ1)
uniformly in (φ0, φ1) ∈ R2

+. In fact, for every n ∈ N and (φ0, φ1) ∈ R2
+, we have

√
2

c
·
(

µ

λ + µ

)n

≥ Vn(φ0, φ1)− V (φ0, φ1) ≥ 0. (5.2)

Proof. Fix (φ0, φ1) ∈ R2
+. For τ ∈ S, n ∈ N, we express Eφ0,φ1

0

[∫ τ

0
e−λsg(Φ̃s)ds

]
as

Eφ0,φ1
0

[∫ τ∧σn

0

e−λsg(Φ̃s)ds

]
+ Eφ0,φ1

0

[
1{τ≥σn}

∫ τ

σn

e−λsg(Φ̃s)ds

]
≥ Eφ0,φ1

0

[∫ τ∧σn

0

e−λsg(Φ̃s)ds

]
− λ

c

√
2 · Eφ0,φ1

0

[
1{τ≥σn}

∫ τ

σn

e−λsds

]
≥ Vn(φ0, φ1)−

√
2

c
·
(

µ

λ + µ

)n

We have used the bound g(φ0, φ1) ≥ −(λ/c)
√

2 from (4.12), as well as the fact that
N is a Poisson process with rate µ under P0, and σn is the n-th jump time of N .
Taking the infimum over τ ∈ S gives the first inequality in (5.2).

We shall try to calculate now the functions Vn(·) of (5.1), following a method
of Gugerli [11] and Davis [9]. Let us start by defining on the collection of bounded
Borel functions w : R2

+ 7→ R the operators

Jw(t, φ0, φ1) ,

Eφ0,φ1
0

[∫ t∧σ1

0

e−λug
(
Φ̃(0)

u , Φ̃(1)
u

)
du + 1{t≥σ1}e

−λσ1w
(
Φ̃(0)

σ1
, Φ̃(1)

σ1

)]
, (5.3)

Jtw(φ0, φ1) , inf
u∈[t,∞]

Jw(u, φ0, φ1) for every t ∈ [0,∞]. (5.4)
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The special structure of the stopping times of jump processes (see Lemma 12.1
below) implies

J0w(φ0, φ1) =

inf
τ∈S

Eφ0,φ1
0

[∫ τ∧σ1

0

e−λtg
(
Φ̃(0)

t , Φ̃(1)
t

)
dt + 1{τ≥σ1}e

−λσ1w
(
Φ̃(0)

σ1
, Φ̃(1)

σ1

)]
. (5.5)

By relying on the strong Markov property of the process N at its first jump time
σ1, one expects that the value function V of (4.12) satisfies the equation V = J0V .
Below, we show that this is indeed the case. In fact, if we define vn : R2

+ 7→ R,
n ∈ N0 sequentially by

v0 ≡ 0, and vn , J0vn−1 ∀n ∈ N, (5.6)

then every vn is bounded and identical to Vn of (5.1), whereas limn→∞ vn exists
and is equal to the value function V in (4.12).

Under P0, the first jump time σ1 of the process N has exponential distribution
with rate µ. Using the Fubini theorem and (4.10), we can write (5.3) as

Jw(t, φ0, φ1) =
∫ t

0

e−(λ+µ)u
(
g + µ · w ◦ S

)(
x(u, φ0), y(u, φ1)

)
du (5.7)

for every t ∈ [0,∞], where x(·, φ0) and y(·, φ1) are the solutions (4.8) of the ordinary
differential equations in (4.7), and S : R2

+ 7→ R2
+ is the linear mapping

S(φ0, φ1) ,

((
1− 1

µ

)
φ0,

(
1 +

1
µ

)
φ1

)
. (5.8)

5.2 Remark. Using µ > 1 and the explicit forms of x(u, φ0) and y(u, φ1) in (4.8), it
is easy to check that the integrand in (5.7) is absolutely integrable on R+. Therefore,

lim
t→∞

Jw(t, φ0, φ1) = Jw(∞, φ0, φ1) < ∞,

and the mapping t 7→ Jw(t, φ0, φ1) : [0,∞] 7→ R is continuous. The infimum
Jtw(φ0, φ1) in (5.4) is attained for every t ∈ [0,∞].

5.3 Lemma. For every bounded Borel function w : R2
+ 7→ R, the mapping J0w is

bounded. If we define ||w|| , sup(φ0,φ1)∈R2
+
|w(φ0, φ1)| < ∞, then

−

(
λ

λ + µ
·
√

2
c

+
µ

λ + µ
· ||w||

)
≤ J0w(φ0, φ1) ≤ 0, (φ0, φ1) ∈ R2

+. (5.9)

If the function w(φ0, φ1) is concave, then so is J0w(φ0, φ1). If w1 ≤ w2 are real-
valued and bounded Borel functions defined on R2

+, then J0w1 ≤ J0w2.

5.4 Corollary. Every vn, n ∈ N0 in (5.6) is bounded and concave, and −
√

2/c ≤
. . . ≤ vn ≤ vn−1 ≤ v1 ≤ v0 ≡ 0. The limit

v(φ0, φ1) , lim
n→∞

vn(φ0, φ1), (φ0, φ1) ∈ R2
+ (5.10)

imsart-aap ver. 2005/10/19 file: bayes.tex date: December 12, 2005



14 E. BAYRAKTAR, S. DAYANIK, I. KARATZAS

exists, and is also bounded and concave.
Both vn : R2

+ 7→ R, n ∈ N and v : R2
+ 7→ R are continuous, increasing in each

of their arguments, and their left and right partial derivatives are bounded on every
compact subset of R2

+.

5.5 Proposition. For every n ∈ N, the functions vn of (5.6) and Vn of (5.1)
coincide. For every ε ≥ 0, let for every n = 0, 1, . . . , (φ0, φ1) ∈ R2

+,

rε
n(φ0, φ1) , inf

{
s ∈ (0,∞] : Jvn

(
s, φ0, φ1

)
≤ J0vn(φ0, φ1) + ε

}
,

Sε
1 , rε

0

(
Φ̃0

)
∧ σ1, and Sε

n+2 ,

{
r

ε/2
n+1

(
Φ̃0

)
, if σ1 > r

ε/2
n+1

(
Φ̃0

)
σ1 + S

ε/2
n+1 ◦ θσ1 , if σ1 ≤ r

ε/2
n+1

(
Φ̃0

)
}

,

where θs is the shift-operator on Ω: Nt ◦ θs = Ns+t. Then

Eφ0,φ1
0

[∫ Sε
n

0

e−λtg
(
Φ̃t

)
dt

]
≤ vn(φ0, φ1) + ε, n = 1, 2, . . . , ε ≥ 0. (5.11)

5.6 Proposition. We have v(φ0, φ1) = V (φ0, φ1) for every (φ0, φ1) ∈ R2
+. More-

over, V is the largest nonpositive solution U of the equation U = J0U .

5.7 Lemma. Let w : R2
+ 7→ R be a bounded function. For every t ∈ R+ and

(φ0, φ1) ∈ R2
+,

Jtw(φ0, φ1) = Jw(t, φ0, φ1) + e−(λ+µ)t J0w
(
x(t, φ0), y(t, φ1))

)
. (5.12)

5.8 Corollary. Let

rn(φ0, φ1) = inf
{
s ∈ (0,∞] : Jvn

(
s, (φ0, φ1)

)
= J0vn(φ0, φ1)

}
(5.13)

be the same as rε
n(φ0, φ1) in Proposition 5.5 with ε = 0. Then

rn(φ0, φ1) = inf
{
t > 0 : vn+1

(
x(t, φ0), y(t, φ1)

)
= 0
}

(inf ∅ ≡ ∞). (5.14)

Proof. Let us fix (φ0, φ1) ∈ R2
+, and denote rn(φ0, φ1) by rn. By Remark 5.2, we

have Jvn(rn, φ0, φ1) = J0vn(φ0, φ1) = Jrn
vn(φ0, φ1).

Suppose first that rn < ∞. Since J0vn = vn+1, taking t = rn and w = vn in
(5.12) implies that Jvn(rn, φ0, φ1) equals

Jrnvn(φ0, φ1) = Jvn(rn, φ0, φ1) + e−(λ+µ)rnvn+1(x(rn, φ0), y(rn, φ1)).

Therefore, vn+1(x(rn, φ0), y(rn, φ1)) = 0.
If 0 < t < rn, then Jvn(t, φ0, φ1) > J0vn(φ0, φ1) = Jrnvn(φ0, φ1) = Jtvn(φ0, φ1)

since u 7→ Juvn(φ0, φ1) is nondecreasing. Taking t ∈ (0, rn) and w = vn in (5.12)
imply

J0vn(φ0, φ1) = Jtvn(φ0, φ1) = Jvn(t, φ0, φ1) + e−(λ+µ)tvn+1(x(t, φ0), y(t, φ1)).

Therefore, vn+1(x(t, φ0), y(t, φ1)) < 0 for every t ∈ (0, rn), and (5.14) follows.
Suppose now that rn = ∞. Then we have vn+1(x(t, φ0), y(t, φ1)) < 0 for every

t ∈ (0,∞) by the same argument in the last paragraph above. Hence, {t > 0 :
vn+1(x(t, φ0), y(t, φ1)) = 0} = ∅, and (5.14) still holds.
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5.9 Remark. For every t ∈ [0, rn(φ0, φ1)], we have Jtvn(φ0, φ1) = J0vn(φ0, φ1) =
vn+1(φ0, φ1). Then substituting w(·, ·) = vn(·, ·) in (5.12) gives the dynamic pro-
gramming equation for the family {vk(·, ·)}k∈N0 : for every (φ0, φ1) ∈ R2

+ and n ∈ N0

vn+1(φ0, φ1) = Jvn(t, φ0, φ1) + e−(λ+µ)tvn+1(x(t, φ0), y(t, φ1)), t ∈ [0, rn(φ0, φ1)].
(5.15)

5.10 Remark (Dynamic Programming Equation). Since V (·, ·) is bounded, and
V = J0V by Proposition 5.6, Lemma 5.7 gives

JtV (φ0, φ1) = JV (t, φ0, φ1) + e−(λ+µ)t V
(
x(t, φ0), y(t, φ1))

)
, t ∈ R+ (5.16)

for every (φ0, φ1) ∈ R2
+; and if we define

r(φ0, φ1) , inf{t > 0 : JV (t, φ0, φ1) = J0V (φ0, φ1)}, (φ0, φ1) ∈ R2
+, (5.17)

then arguments similar to those in the proof of Corollary 5.8, and (5.16), give

r(φ0, φ1) = inf{t > 0 : V (x(t, φ0), y(t, φ1)) = 0}, (φ0, φ1) ∈ R2
+, (5.18)

as well as the Dynamic Programming equation

V (φ0, φ1) = JV (t, φ0, φ1) + e−(λ+µ)tV (x(t, φ0), y(t, φ1)), t ∈ [0, r(φ0, φ1)] (5.19)

for the function V (·, ·) of (4.12). Because t 7→ Jw(t, (φ0, φ1)) and t 7→ Jtw(φ0, φ1)
are continuous for every bounded w : R2

+ 7→ R (see, e.g., (5.7)), the identity (5.16)
implies that t 7→ V (x(t, φ0), y(t, φ1)) is continuous. Therefore, every realization of
t 7→ V (Φ̃t) is right-continuous and has left-limits.

Let us define the F-stopping times

Uε , inf{t ≥ 0 : V (Φ̃t) ≥ −ε}, ε ≥ 0. (5.20)

By Remark 5.10, we have

V
(
Φ̃Uε

)
≥ −ε on the event {Uε < ∞} . (5.21)

5.11 Proposition. Let Mt , e−λtV (Φ̃t)+
∫ t

0
e−λsg(Φ̃s)ds, t ≥ 0. For every n ∈ N,

ε ≥ 0, and (φ0, φ1) ∈ R2
+, we have Eφ0,φ1

0 [M0] = Eφ0,φ1
0 [MUε∧σn ], i.e.,

V (φ0, φ1) = Eφ0,φ1
0

[
e−λ(Uε∧σn)V (Φ̃Uε∧σn) +

∫ Uε∧σn

0

e−λsg(Φ̃s)ds

]
. (5.22)

5.12 Proposition. For every ε ≥ 0, the stopping time Uε in (5.20) is ε-optimal
for the problem (4.12), i.e.,

Eφ0,φ1
0

[∫ Uε

0

e−λsg(Φ̃s)ds

]
≤ V (φ0, φ1) + ε, for every (φ0, φ1) ∈ R2

+.
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6. A bound on the alarm time. We shall show that the optimal continua-
tion region C = {(φ0, φ1) ∈ R2

+ : V (φ0, φ1) < 0} is contained in some set

D = {(φ0, φ1) ∈ R2
+ : φ0 + φ1 < ξ∗} for a suitable ξ∗ ∈

[
λ + µ

c

√
2,∞

)
. (6.1)

Therefore, the region C has compact closure; this will be very useful in proving in
the next section that C has a boundary which is strictly decreasing and convex.

Recall from Section 4.1 that it is not optimal to stop before the process Φ̃ leaves
the region C0 in (4.13). Thus, the optimal stopping time U0 of Proposition 5.12 is
bounded from below and above as in

τC0 , inf
{

t ≥ 0 : Φ̃(0)
t + Φ̃(1)

t ≥ λ

c

√
2
}
≤ U0 ≤ τD , inf{t ≥ 0 : Φ̃(0)

t + Φ̃(1)
t ≥ ξ∗}

(6.2)

in terms of the exit times τC0 and τD of the process Φ̃ from the regions C0 and
D, respectively. The constant threshold ξ∗ in (6.1) is essentially determined by the
number (λ+µ)

√
2/c (see (6.5), (6.9) and (6.11)), and our calculations below suggest

that they are close. Therefore, the bounds in (6.2) may prove useful in practice.
The difference [(λ + µ)/c]

√
2 − (λ/c)

√
2 = (µ/c)

√
2 between the thresholds that

determine the latest and the earliest alarm times is also meaningful. It increases
as µ/c increases: waiting longer is encouraged if the new information arrives at a
rate higher than the cost for detection delay per unit time when the disorder has
already happened.

Finally, we prove in Lemma 6.1 that τD in (6.2) has finite expectation. Therefore,

Eφ0,φ1
0 [U0] ≤ Eφ0,φ1

0 [τD] < ∞ for every (φ0, φ1) ∈ R2
+.

Let τ ∈ S be any F-stopping time. By Lemma 12.1, there is a constant t ≥ 0
such that τ ∧ σ1 = t ∧ σ1 almost surely. Therefore

Eφ0,φ1
0

[∫ τ

0

e−λsg
(
Φ̃s

)
ds

]
= Eφ0,φ1

0

[∫ τ∧σ1

0

e−λsg
(
Φ̃s

)
ds

]
+ Eφ0,φ1

0

[
1{τ≥σ1}

∫ τ

σ1

e−λsg
(
Φ̃s

)
ds

]
≥ Eφ0,φ1

0

[∫ t

0

1{s≤σ1}e
−λsg

(
x(s, φ0), y(s, φ1)

)
ds

]
−
√

2
c
· Eφ0,φ1

0

[
1{t≥σ1}e

−λσ1
]

=
∫ t

0

e−(λ+µ)s
[
g
(
x(s, φ0), y(s, φ1)

)
− µ

c

√
2
]
ds.

(6.3)

The inequality follows from g(φ0, φ1) ≥ g(0, 0) = −(λ/c)
√

2, see (4.12). The func-
tions x(·, φ0) and y(·, φ1) are the solutions of (4.7) (see Remark 4.1), and σ1 has
exponential distribution with rate µ under P0. Clearly, if for 0 < s < ∞ we have

0 < g
(
x(s, φ0), y(s, φ1)

)
− µ

c

√
2 = x(s, φ0) + y(s, φ1)−

λ + µ

c

√
2, (6.4)
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ADAPTIVE POISSON DISORDER PROBLEM 17

λ+µ
c

√
2λ

c

√
2

λ
c

√
2 (x(t, φ0), y(t, φ1))

(φ0, φ1)

λ
c

√
2

λ
c

√
2

λ+µ
c

√
2 λ+µ

c

√
2λ

c

√
2

ξ∗

000

(φ∗0, φ
∗
1)

y

x

y y

x x

(x(−t∗, φ∗0), y(−t∗, φ∗1))

(c) 0 < λ
1−λ < λ+µ

c (λ < 1)(b) λ
1−λ ≥

λ+µ
c (λ < 1)(a) λ ≥ 1 (φd ≤ 0)

C0

`

C0C0

λ
c

√
2

φd

`

λ+µ
c

√
2

φd

λ
1−λ

√
2

(x(t, φ0), y(t, φ1))

(φ0, φ1)

λ+µ
c

√
2 λ+µ

c

√
2

λ
1−λ

√
2

R2
+\D1 R2

+\D1 R2
+\D2

ξ∗

Fig 2. Region D

then (6.3) implies that Eφ0,φ1
0

[ ∫ τ

0
e−λsg

(
Φ̃s

)
ds
]

> 0 for every F-stopping time
τ 6= 0 almost surely (since the filtration F is right-continuous, the probability of
{τ ≥ 0} ∈ F0 equals zero or one). Thus, “stopping immediately” is optimal at every
(φ0, φ1) for which (6.4) holds.

If λ ≥ 1, then s 7→ x(s, φ0) and s 7→ y(s, φ1) are increasing for every (φ0, φ1) ∈
R2

+, see (4.7) and Figure 2(a). Therefore, x(s, φ0) + y(s, φ1) > x(0, φ0) + y(0, φ1) =
φ0 +φ1 for every 0 < s < ∞. Hence, (6.4) holds, and therefore it is optimal to stop
immediately outside the region

D1 ,

{
(φ0, φ1) ∈ R2

+ : φ0 + φ1 <
λ + µ

c

√
2
}

if λ ≥ 1. (6.5)

Suppose now that 0 < λ < 1; equivalently, φd of (4.14) is positive. Then s 7→
x(s, φ0) is increasing for every φ0 ∈ R+. For φ1 = φd, the derivative dy(s, φd)/ds
in (4.7) vanishes for every 0 < s < ∞. The mapping s 7→ y(s, φ1) is increasing if
φ1 ∈ [0, φd), decreasing if φ1 ∈ (φd,∞), and φ(s, φd) = φd for every 0 ≤ s < ∞; see
(4.7) and Figures 2(b,c). The derivative

d

dt

[
x(t, φ0) + y(t, φ1)

]
= (λ + 1)x(t, φ0) + (λ− 1)y(t, φ1) + λ

√
2 (6.6)

of the right-hand side of (6.4) (see also (4.7)) vanishes if s 7→ (x(s, φ0), y(s, φ1))
meets at s = t the line

` : (λ + 1)x + (λ− 1)y + λ
√

2 = 0, or y =
1 + λ

1− λ
x +

λ

1− λ

√
2. (6.7)

Since m ∈ (−1, 1), the “mean-level” φd in (4.14) and the y-intercept of the line `
in (6.7) are related as in

φd =
λ

1− λ
· 1 + m√

2
<

λ

1− λ

√
2.
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18 E. BAYRAKTAR, S. DAYANIK, I. KARATZAS

Because ` is increasing, this relationship implies that the line ` in contained in
R+ × (φd,∞) (see Figures 2(b,c)). However, every curve t 7→ (x(t, φ0), y(t, φ1))
starting at some (φ0, φ1) in R+ × (φd,∞) is “decreasing”, and the derivative in
(6.6) is increasing. Therefore, any curve t 7→ (x(t, φ0), y(t, φ1)), (φ0, φ1) ∈ R2

+ may
meet ` at most once, and{

if t 7→ (x(t, φ0), y(t, φ1)) meets the line ` at t` = t`(φ0, φ1), then t 7→
x(t, φ0) + y(t, φ1) is decreasing (resp., increasing) on [0, t`] (resp., on
[t`,∞)). Otherwise, t 7→ x(t, φ0) + y(t, φ1) is increasing on [0,∞).

}
. (6.8)

� Consider now the first of two possible cases: the line ` does not meet D1 of (6.5);
i.e., λ/(1 − λ) ≥ (λ + µ)/c, as in Figure 2(b). Then φ0 + φ1 ≥ (λ + µ)

√
2/c for

every (φ0, φ1) ∈ `. Therefore, (6.8) implies that (6.4) holds, i.e., it is optimal to
stop immediately, outside

D1 =
{

(φ0, φ1) ∈ R2
+ : φ0 + φ1 <

λ + µ

c

√
2
}

if
λ

1− λ
≥ λ + µ

c
. (6.9)

� In the second case, the line ` of (6.7) meets the region D1, i.e., 0 < λ/(1− λ) <
(λ+µ)/c, see Figure 2(c). Let us denote by (φ∗0, φ

∗
1) the point at the intersection of

the line ` and the boundary x + y− (λ + µ)
√

2/c = 0 of the region D1. By running
the time “backwards”, we can find ξ∗ (and t∗) such that

(0, ξ∗) =
(
x(−t∗, φ∗0), y(−t∗, φ∗1)

)
. (6.10)

Indeed, using (4.8), we can obtain first t∗ ≥ 0 by solving 0 = x(−t∗, φ∗0), and then
ξ∗ , y(−t∗, φ∗1) . By the semi-group property (4.9), we have

x(t∗, 0) = x
(
t∗, x(−t∗, φ∗0)

)
= x(t∗ + (−t∗), φ∗0) = x(0, φ∗0) = φ∗0,

y(t∗, ξ∗) = y
(
t∗, y(−t∗, φ∗1)

)
= y(t∗ + (−t∗), φ∗1) = y(0, φ∗1) = φ∗1.

Hence, the curve t 7→
(
x(t, 0), y(t, ξ∗)

)
, t ≥ 0 meets ` at (φ∗0, φ

∗
1), and t` in (6.8)

equals t∗, see Figure 2(c). Therefore, (6.8) implies that

x(t, 0) + y(t, ξ∗) ≥ x(t∗, 0) + y(t∗, ξ∗) = φ∗0 + φ∗1 =
λ + µ

c

√
2, 0 ≤ t < ∞.

In particular, ξ∗ = 0 + ξ∗ = x(0, 0) + y(0, ξ∗) ≥ (λ + µ)
√

2/c. We are now ready to
show that it is optimal to stop immediately outside the region

D2 ,
{
(φ0, φ1) ∈ R2

+ : φ0 + φ1 < ξ∗
}

if 0 <
λ

1− λ
<

λ + µ

c
, (6.11)

where ξ∗ is as in (6.10). The curve t 7→
(
x(t, 0), y(t, ξ∗)

)
divides R2

+ into two
connected components each containing the region D1 of (6.5) and

M ,
(
R2

+\D2

)
∩
{

(x, y) ∈ R2
+ : (λ + 1)x + (λ− 1)y + λ

√
2 < 0

}
,
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ADAPTIVE POISSON DISORDER PROBLEM 19

respectively (see (6.7)). Every curve t 7→
(
x(t, φ0), y(t, φ1)

)
, t ≥ 0 starting at

(φ0, φ1) in M will stay in the same component as M . Therefore, the curve in-
tersects the line ` away from D1, and (6.8) implies that (6.4) is satisfied for every
(φ0, φ1) ∈ M .

For (φ0, φ1) ∈ (R2
+\D2) ∩

{
(x, y) ∈ R2

+ : (λ + 1)x + (λ− 1)y + λ
√

2 ≥ 0
}
, the

curve t 7→
(
x(t, φ0), y(t, φ1)

)
, t ≥ 0 does not meet `; therefore, t 7→ x(t, φ0)+y(t, φ1)

increases by (6.8) and

x(t, φ0) + y(t, φ1) > x(0, φ0) + y(0, φ1) = φ0 + φ1 ≥ ξ∗ ≥ λ + µ

c

√
2, 0 < s < ∞.

Thus, the sufficient condition (6.4) for the optimality of immediate stopping holds
for every (φ0, φ1) ∈ R2

+\D2.

6.1 Lemma. Let τD be the exit time of the process Φ̃ from the region D in (6.1).
Then Eφ0,φ1

0 [τD] is finite for every (φ0, φ1) ∈ R2
+.

Proof. Let f(φ0, φ1) , φ0 + φ1, (φ0, φ1) ∈ R2
+. Using the explicit form of the

infinitesimal generator Ã of the process Φ̃ in (12.4), we obtain

Ãf(φ0, φ1) = (λ + 1)φ0 +
λ(1−m)√

2
+ (λ− 1)φ1 +

λ(1 + m)√
2

+ µ

[(
1− 1

µ

)
φ0 +

(
1 +

1
µ

)
φ1 − (φ0 + φ1)

]
= λ(φ0 + φ1 +

√
2) ≥ λ

√
2 (6.12)

for every (φ0, φ1) ∈ R2
+. Since f(·, ·) is bounded on D of (6.1) and τD ∧ t, t ≥ 0 is

a bounded F-stopping time, (12.3) holds for τ = τD ∧ t. Then we have

ξ∗
(

1 +
1
µ

)
≥ Eφ0,φ1

0 [f
(
Φ̃τD∧t

)
]

= f(φ0, φ1) + Eφ0,φ1
0

[∫ τD∧t

0

Ãf
(
Φ̃t

)
dt

]
≥ λ

√
2 Eφ0,φ1

0 [τD ∧ t], t ≥ 0. (6.13)

The process Φ̃ may leave the region D in (6.1) continuously or by a jump. Since
f(S(φ0, φ1)) = (1+1/µ)φ0+(1−1/µ)φ1 ≤ (1+1/µ)(φ0+φ1) = (1+1/µ)f(φ0, φ1) ≤
(1+1/µ)ξ∗ for every (φ0, φ1) ∈ D, and this upper bound is larger than ξ∗, the first
inequality in (6.13) follows. The second inequality is due to (6.12). Finally, the
monotone convergence theorem and (6.13) imply that Eφ0,φ1

0 [τD] is finite.

7. The solution. In Proposition 5.1, we showed that the function V (φ0, φ1)
of our original optimal stopping problem in (4.12) is approximated uniformly in
(φ0, φ1) ∈ R2

+ by the decreasing sequence {Vn(φ0, φ1)}n∈N of the value functions
of the optimal stopping problems in (5.1). The value functions Vn(·, ·) = vn(·, ·),
n ∈ N can be calculated sequentially by setting v0 ≡ 0, and

vn+1(φ0, φ1) = J0vn(φ0, φ1) = inf
t∈[0,∞]

Jvn(t, φ0, φ1), (φ0, φ1) ∈ R2
+, (7.1)
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20 E. BAYRAKTAR, S. DAYANIK, I. KARATZAS

where the operator J is defined in (5.3); see Proposition 5.5.
Finding the infimum in (7.1) is not as formidable as it may appear. By Proposi-

tion 5.5, the infimum in (7.1) is always attained (i.e., the case ε = 0 in (5.11)). By
Corollary 5.8, it is attained at the time, rn(φ0, φ1), the deterministic continuous
curve t 7→ (x(t, φ0), y(t, φ1)) in (4.7) exits from the set{

(φ0, φ1) ∈ R2
+ : vn+1(φ0, φ1) < 0

}
⊆
{
(φ0, φ1) ∈ R2

+ : v(φ0, φ1) < 0
}
⊆ D;

here D is the triangular region in (6.1), and the last inclusion is proven in Section 6.
Therefore, the search for the infimum in (7.1) can be confined for every n ∈ N to

Jvn(t, φ0, φ1) =
∫ t

0

e−(λ+µ)u[g + µ · vn ◦ S](x(u, φ0), y(u, φ1))du, t ∈ [0, r(φ0, φ1)]

(7.2)

over the interval t ∈ [0, r(φ0, φ1)], where

r(φ0, φ1) , inf{t ≥ 0 : x(t, φ0) + y(t, φ1) ≥ ξ∗}, (φ0, φ1) ∈ R2
+

is the (bounded) exit time of the curve t 7→ (x(t, φ0), y(t, φ1)) from the region D of
(6.1).

Finally, the error in approximating V (·, ·) of (4.12) by {vn(·, ·)}n∈N in (7.1) can
be controlled. For every ε > 0,
√

2
c

(
µ

λ + µ

)n

< ε =⇒ −ε ≤ V (φ0, φ1)− vn(φ0, φ1) ≤ 0, (φ0, φ1) ∈ R2
+, (7.3)

by Propositions 5.1 and 5.5. The exponential rate of the uniform convergence of
{vn(·, ·)}n∈N to V (·, ·) on R2

+ in (7.3) may also reduce the computational burden
by allowing relatively small number of iterations in (7.1).

In the remainder, we draw attention to certain special cases where the value
function V (·, ·) can be calculated gradually at each iteration in (7.1); see Propo-
sition 8.3. In the meantime, we shall give a precise geometric description of the
stopping regions

Γn , {(φ0, φ1) ∈ R2
+ : vn(φ0, φ1) = 0}, Cn , R2

+\Γn, n ∈ N, (7.4)

Γ , {(φ0, φ1) ∈ R2
+ : v(φ0, φ1) = 0}, C , R2

+\Γ, (7.5)

and describe the optimal stopping strategies.

8. The structure of the stopping regions. By Proposition 5.12, the set Γ
is the optimal stopping region for the problem (4.12). Namely, stopping at the first
hitting time U0 = inf{t ∈ R+ : Φ̃t ∈ Γ} of the process Φ̃ = (Φ̃(0), Φ̃(1)) to the set
Γ is optimal for (4.12).

Similarly, we shall call each set Γn, n ∈ N a stopping region for the family of
optimal stopping problems in (5.1). However, unlike the case above, we need the
first n stopping regions, Γ1, . . . ,Γn, in order to describe an optimal stopping time
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γn(0)

γ(0)

ξ∗ξξnξn−10

ξ∗

C0

λ
c

√
2

γn−1(·)

γn(·)

γ(·)

λ
c

√
2

Γ

Γn

Γn−1

γn−1(0)

0

Φ̃(ω1)

Φ̃(ω2)

Γ1 Γ2 Γ

Φ̃(ω3)

Φ̃S2(ω)(ω)

Φ̃U0(ω)(ω)

(a) (b)

R2
+\D

Fig 3. (a) The stopping regions (each arrow at the boundary of a region points toward the interior
of that region), and (b) three sample paths and the optimal stopping times S2 and U0 for the
optimal stopping problems V2 in (5.1) and V in (4.12), respectively.

for the problem of (5.1). Using Corollary 5.8, the optimal stopping time Sn ≡ S0
n

in Proposition 5.5 for Vn of (5.1) may be described as follows: Stop if the process
Φ̃ hits Γn before N jumps. If N jumps before Φ̃ reaches Γn, then wait, and stop if
Φ̃ hits Γn−1 before the next jump of N , and so on. If the rule is not met before the
(n− 1)st jump of N , then stop at the earliest of the hitting time of Γ1 and the next
jump time of N . See Figure 3(b) for three realizations of the stopping time S2.

We shall call each Cn , R2
+\Γn, n ∈ N a continuation region for the family of

optimal stopping problems in (5.1), and C , R2
+\Γ the optimal continuation region

for (4.12). The stopping regions are related by

R2
+\D ⊂ Γ ⊂ · · · ⊂ Γn ⊂ Γn−1 ⊂ · · · ⊂ Γ1 ⊂ R2

+\C0, and Γ =
∞⋂

n=1

Γn, (8.1)

since the sequence of nonpositive functions {vn}n∈N is decreasing, and v = limn→∞ ↓
vn by Lemma 5.4. The sets D and C0 are defined in (6.1) and (4.13), respectively.
Since vn, n ∈ N and v are concave and continuous mappings from R2

+ into (−∞, 0]
by Lemma 5.4, the stopping regions Γn, n ∈ N and Γ are convex and closed. Let
us define the functions γn : R+ 7→ R+, n ∈ N and γ : R+ 7→ R+ by (see, also,
Figure 3(a))

γn(x) , inf{y ∈ R+ : (x, y) ∈ Γn}, x ∈ R+,

γ(x) , inf{y ∈ R+ : (x, y) ∈ Γ}, x ∈ R+,

and the numbers

ξn , inf{x ∈ R+ : γn(x) = 0}, n ∈ N and ξ , inf{x ∈ R+ : γ(x) = 0}.
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Then the stopping regions Γn, n ∈ N and Γ are the convex and closed epigraphs of
the functions γn(·), n ∈ N and γ(·), respectively. Therefore, γn(·), n ∈ N and γ(·)
are convex and continuous mappings from R+ into R+.

By the set-inclusions in (8.1), we have (λ/c)
√

2 ≤ ξn−1 ≤ ξn ≤ ξ ≤ ξ∗ for
the same ξ∗ ∈ R+ in the description (6.1) of the set D. Since vn, n ∈ N and v
vanish on R+\D = {(φ0, φ1) ∈ R2

+ : φ0 + φ1 ≥ ξ∗} by (8.1), the functions γn(·),
n ∈ N and γ(·) vanish on [ξ∗,∞). However, ξn and ξ are the smallest zeros of
the continuous functions γn(·), n ∈ N and γ(·), respectively. Since both functions
are also nonnegative and convex, the function γn(·), n ∈ N (resp. γ(·)) is zero on
[ξn,∞) (resp. on [ξ,∞)) and strictly decreasing on [0, ξn] (resp. on [0, ξ]). For future
reference, we now summarize our results.

8.1 Proposition. There are decreasing, convex and continuous mappings γn :
R+ 7→ R+, n ∈ N and γ : R+ 7→ R+ such that

Γn = {(φ0, φ1) ∈ R2
+ : φ1 ≥ γn(φ0)}, n ∈ N, Γ = {(φ0, φ1) ∈ R2

+ : φ1 ≥ γ(φ0)}.

The sequence {γn(φ0)}n∈N is increasing and γ(φ0) = lim ↑ γn(φ0) for every φ0 ∈
R+. There are numbers

λ

c

√
2 ≤ ξ1 ≤ · · · ≤ ξn−1 ≤ ξn ≤ · · · ≤ ξ < ξ∗ < ∞ (8.2)

such that γn(·), n ∈ N (resp., γ(·)) is strictly decreasing on [0, ξn], n ∈ N (resp.,
[0, ξ]) and vanishes on [ξn,∞), n ∈ N (resp., [ξ,∞)). Moreover,

λ

c

√
2 ≤ γ1(0) ≤ · · · ≤ γn−1(0) ≤ γn(0) ≤ · · · ≤ γ(0) < ξ∗ < ∞. (8.3)

The number ξ∗ is the same as in the definition of the set D in (6.1).

8.2 Notation. Let S : R2
+ 7→ R2

+ be the same linear map as in (5.8).

(N1) For any subset R ⊆ R2
+,

S−(n+1)(R) , S−1(S−n(R)), n ∈ N, S−1(R) , {(x, y) ∈ R2
+ : S(x, y) ∈ R},

Sn+1(R) , S(Sn(R)), n ∈ N, S(R) , {S(x, y) ∈ R2
+ : (x, y) ∈ R},

and S0(R) = S(S−1(R)) = S−1(S(R)) = R.
(N2) For every singleton {(x, y)} ⊆ R2

+, we write

Sm({x, y}) = Sm(x, y) =
((

1− 1
µ

)m

x,

(
1 +

1
µ

)m

y

)
, m ∈ Z.

(N3) For any function g : R+ 7→ R+, we define the function Sn[g] : R+ 7→ R+,
n ∈ Z by

Sn[g](x) , inf{y ∈ R+ : (x, y) ∈ Sn(epi(g))}, x ∈ R+.

That is, Sn[g] is the function whose epigraph is the set Sn(epi(g)). Note that
we use Sn(·) and Sn[·] to distinguish the sets and the functions.
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(N4) For every subset R of R2
+, we denote by cl(R) its closure in R2

+ and by int(R)
its interior. We shall denote the support of a function g : R+ 7→ R+ by

supp(g) = cl({x ∈ R+ : g(x) > 0}).

The process Φ̃ jumps into the region Γ (resp., S−n(Γ), n ∈ N) if the process
N jumps while Φ̃ is in the region S−1(Γ) (resp., S−(n+1)(Γ), n ∈ N). Clearly, if
the process Φ̃ can never leave the region S−1(Γ) before a jump, then the value
functions V (·, ·) and V1(·, ·) in (5.1) must coincide on the region S−1(Γ).

8.3 Proposition. Suppose that

∀n ∈ N : (φ0, φ1) ∈ S−n(Γ) =⇒ (x(t, φ0), y(t, φ1)) ∈ S−n(Γ), t ∈ [0,∞) (8.4)

holds. Then for every n ∈ N, we have
V (φ0, φ1) = Vn(φ0, φ1) = Vn+1(φ0, φ1) = · · · ∀ (φ0, φ1) ∈ S−n(Γ)

S−n(Γ) ∩ Γ = S−n(Γ) ∩ Γn = S−n(Γ) ∩ Γn+1 = · · ·
S−n(Γ) ∩C = S−n(Γ) ∩Cn = S−n(Γ) ∩Cn+1 = · · ·

 . (8.5)

Since Γ and Γn are convex and closed, and S(·, ·) is a linear mapping, the sets
S−n(Γ) and S−n(Γn), n ∈ N are convex and closed. The sets Γ and Γn, n ∈ N are
the epigraphs of the continuous functions γ(·) and γn(·), n ∈ N in Proposition 8.3,
respectively. Therefore,

S−n(Γ) = {(x, y) ∈ R2
+ : y ≥ S−n[γ](x)} and

S−n(Γn) = {(x, y) ∈ R2
+ : y ≥ S−n[γn](x)}

(8.6)

are the epigraphs of the functions S−n[γ](·) and S−n[γn](·) for every n ∈ N0. These
functions are decreasing, continuous and convex. In fact,

S−n[γ](x) =
(

µ

µ + 1

)n

γ

((
µ− 1

µ

)n

x

)
, x ∈ R+, n ∈ Z, (8.7)

and the function S−n[γn](·) is obtained by replacing γ with γn in (8.7). The support
of the functions S−n[γ](·) and S−n[γn](·) are

supp(S−n[γ]) =
[
0,

(
µ

µ− 1

)n

ξ

]
, supp(S−n[γn]) =

[
0,

(
µ

µ− 1

)n

ξn

]
(8.8)

respectively, for every n ∈ Z. By Proposition 8.1, the functions S−n[γ](·) and
S−n[γn](·) are strictly decreasing on their supports.

Since S−n[γ](0) = (µ/(µ + 1))nγ(0) < γ(0) and S−n[γ](ξ) > 0 = γ(ξ) for every
n ∈ N, the functions S−n[γ](·) and γ(·) intersect, and

xn(γ) , min{x ∈ R+ : S−n[γ](x) = γ(x)} ∈ (0,∞), n ∈ N. (8.9)
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8.4 Corollary. Suppose that (8.4) holds. Then for every n = 1, 2, . . . and k ≥ n,
we have xn ≡ xn(γ) = xn(γk), and

S−n(Γ) ∩C ∩ ([0, xn]× R+) = S−n(Γk) ∩Ck ∩ ([0, xn]× R+) . (8.10)

Particularly, we have γ(x) = γn(x) for every x ∈ [0, xn], and

V (x, y) = Vn(x, y) ∀ (x, y) ∈ S−n(Γn) ∩Cn ∩ ([0, xn]× R+), n ∈ N. (8.11)

Proof. Let us fix any k ≥ n ∈ N. Since the value functions V (·, ·) and Vk(·, ·) are
equal on the region S−n(Γ) by Proposition 8.3, the boundaries of the regions Γ and
Γk coincide in the region S−n(Γ). Particularly, we have

γ(x) = γk(x) for every x ∈ [0, xn(γ)] (8.12)

since S−n[γ](x) < γ(x) for every x ∈ [0, xn(γ)). Therefore,

S−n[γ](x) = S−n[γk](x) for every x ∈
[
0,

(
µ

µ− 1

)n

xn(γ)
]
⊃ [0, xn(γ)], (8.13)

Now, (8.12) and (8.13) imply that xn(γ) = xn(γk) , and (8.6) implies that

S−n(Γ) ∩C ∩ ([0, xn(γ)]× R+) = S−n(Γk) ∩Ck ∩ ([0, xn(γ)]× R+) .

The equality (8.11) follows immediately from Proposition 8.3.

The identity in (8.11) suggests that, in a finite number of iterations of (7.1), we
can find the restrictions of the value function V (·, ·) and the continuation region C
to the set R+ × [B,∞) for any B > 0, when the condition (8.4) holds:

Step A.1 Calculate the value function v1(0, y) for every y ∈ [0, ξ∗], and determine
γ(0) = γ1(0) = inf{y ∈ R+ : v1(x, y) = 0} ∈ (0, ξ∗); see (8.3), Corollary 8.4.

Step A.2 Given any B > 0, find the smallest n ∈ N such that

B >

(
µ

µ + 1

)n

γ1(0) =
(

µ

µ + 1

)n

γn(0) = S−n[γn](0). (8.14)

Because every S−m[γm](·), m ∈ N is decreasing, this implies R+ × [B,∞) ⊂
S−n(Γn); see (8.6). We also have n ≤ min{m ∈ N : B > (µ/(µ + 1))mξ∗}
since γ1(0) ∈ (0, ξ∗).

Step A.3 Calculate vn(φ0, φ1) for every (φ0, φ1) ∈ R+\D by (7.1), where D is as
in (6.1). By (8.1), D ⊆ Γn and vn ≡ 0 on D.

Then the value functions V (·, ·) and vn(·, ·) are equal on R+ × [B,∞) and (R+ ×
[B,∞)) ∩C = (R+ × [B,∞)) ∩Cn.

The next lemma implies that we can calculate the exact value function V (·, ·)
under condition (8.4) on the set R+ × (0,∞) along an increasing sequence of sets
R+ × [Bn,∞), and on R+ × {0} by the continuity of the function V (·, ·) on R2

+.
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8.5 Lemma. Suppose that (8.4) holds. Let ξ∗ be the same number as in the defi-
nition of the region D in (6.1). Then limn→∞ S−n(Γ) = R+ × (0,∞), and

R+ ×
[(

µ

1 + µ

)n

· ξ∗,+∞
)
⊆ S−n(Γ), n ∈ N. (8.15)

Proof. Recall from (8.1) that R+ × [ξ∗,∞) ⊂ R2
+\D ⊂ Γ. The rectangle on the

lefthand side in (8.15) is the same set as S−n
(
R+× [ξ∗,∞)

)
⊂ S−n(Γ). But, (8.15)

implies that R+ × (0,∞) ⊆ limn→∞ S−n(Γ).
On the other hand, for every x ∈ R+, there exists number N(x) such that

Sn(x, 0) = ((1 − 1/µ)nx, 0) /∈ Γ, n ≥ N(x). Then (x, 0) /∈ S−n(Γ) for every
n ≥ N(x). This implies that limn→∞ S−n(Γ) ⊆ R+ × (0,∞).

8.6 Remark. Every set S−n(Γ), n ∈ N is separated from its complement by the
strictly decreasing, convex and continuous function S−n[γ](x), x ∈ [0, (µ/(µ−1))nξ].
Therefore, the condition (8.4) will be satisfied, for example, if the mappings t 7→
x(t, φ0), t ∈ R+ and t 7→ y(t, φ1), t ∈ R+ are increasing for every (φ0, φ1) ∈ R2

+.
We have seen on page 11 that this is always the case when λ is “large”.

Thus, if λ is “large”, then there is a sequence of sets R+ × [Bn,∞), n ∈ N,
increasing to R+ × (0,∞) in the limit, such that V (·, ·) = vn(·, ·) on R+ × [Bn,∞)
for every n ∈ N. See also page 29 below.

9. The boundaries of the stopping regions. We shall show that the op-
timization in (7.1) can be avoided in principle, and v1, v2, . . . can be calculated by
integration.

Note that we obtain Jvn(t, φ0, φ1) in (7.1) by integrating the function [g+µ ·vn ◦
S](·, ·) along the curve u 7→ (x(u, φ0), y(u, φ1)) on u ∈ [0, t]; see (5.3). Therefore,
the infimum in (7.1) is determined by the the excursions of u 7→ (x(u, φ0), y(u, φ1)),
u ∈ R+ into the regions where the sign of the continuous mapping [g+µ ·vn ◦S](·, ·)
is negative and positive.

9.1 Lemma. For every n ∈ N, we have

An , {(x, y) ∈ R2
+ : [g + µ · vn ◦ S](x, y) < 0} ⊆ Cn+1. (9.1)

Proof. Let (φ0, φ1) ∈ An. Since the function u 7→ [g + µ · vn ◦ S](x(u, φ0), y(u, φ1))
is continuous, there exists some t = t(φ0, φ1) > 0 such that

Jvn(t, φ0, φ1) =
∫ t

0

e−(λ+µ)u[g + µ · vn ◦ S](x(u, φ0), y(u, φ1))du < 0.

Hence, vn+1(φ0, φ1) = J0vn(φ0, φ1) ≤ Jvn(t, φ0, φ1) < 0, and (φ0, φ1) ∈ Cn+1.

For certain cases, the regions An and Cn+1 coincide, that is, the continuation
region Cn+1 for vn+1(·, ·) can be found immediately when the value function vn(·, ·)
is available. Then vn+1 ≡ 0 on Γn+1 = R2

+\Cn+1, and we calculate vn+1(·, ·) on
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Cn+1 by the integration

vn+1(φ0, φ1) = Jvn(t, φ0, φ1)
∣∣∣
t=rn(φ0,φ1)

=
∫ rn(φ0,φ1)

0

e−(λ+µ)u[g + µ vn ◦ S](x(u, φ0), y(u, φ1))du, (φ0, φ1) ∈ Cn+1, (9.2)

of the function [g + µ · vn ◦ S](·, ·) over the curve (x(·, φ0), y(·, φ1)) until the exit
time rn(φ0, φ1), see (5.14), of the continuous curve u 7→ (x(u, φ0), y(u, φ1)), u ∈ R+

from the continuation region Cn+1.
The region An in (9.1) has properties very similar to those of the continuation

region Cn+1; compare Lemma 9.2 and Proposition 8.1. For example, both sets are
separated from their complements by a strictly decreasing, convex and continuous
function which stays flat on the x-axis for all large x values.

For every n ∈ N, let us define the function an : R+ 7→ R+ by

an(x) , inf{y ≥ 0 : (x, y) ∈ R2
+\An} = inf{y ≥ 0 : [g + µ vn ◦ S](x, y) ≥ 0}. (9.3)

The function an(·) is finite since, given any x ∈ R+, we have [g+µ ·vn ◦S](x, y) > 0
for every large y ∈ R+. Recall that the function vn(·, ·) vanishes outside the bounded
region Cn. The linear mapping S : R2

+ 7→ R2
+ in (5.8) is increasing in both x and y.

The affine mapping g : R2
+ 7→ R in (4.12) is also increasing and grows unboundedly

in both x and y.
Similarly, given for large x ∈ R+, we have [g + µ · vn ◦ S](x, y) ≥ 0, ∀y ∈ R+.

Therefore, an(x) = 0 for x ∈ [α,∞) for some α ≥ 0, and

αn , inf{x ≥ 0 : an(x) = 0} is finite. (9.4)

The set R2
+\An = {(x, y) ∈ R2

+ : [g + µ · vn ◦ S](x, y) ≥ 0} is convex and closed
since vn(·, ·) is concave and continuous, S(·, ·) is linear, and g(·, ·) is affine. Because
R2

+\An is the epigraph of an(·), this implies that an(·) is a convex and continuous
mapping from R+ into R+.

The function an(·) does not vanish identically on R+; in particular, an(0) > 0
since the continuous function [g+µ·vn◦S](x, y) is strictly negative at (x, y) = (0, 0):

[g + µ · vn ◦ S](0, 0) = g(0, 0) + µ · vn(0, 0) ≤ g(0, 0) = −λ

c

√
2 < 0.

Because an(·) is continuous, this implies that the number αn in (9.4) is strictly
positive. Since an(·) is convex and vanishes for every large x ∈ R+, it is strictly
decreasing on [0, αn), and equals zero on [αn,∞).

9.2 Lemma. For n ≥ 1, there exist a number αn ∈ (0,∞) and a strictly decreasing,
convex and continuous mapping an : [0, αn] 7→ R+ such that an(αn) = 0, and

{(x, an(x)); x ∈ [0, αn]} =
{
(x, y) ∈ R2

+; [g + µ · vn ◦ S](x, y) = 0
}

. (9.5)

Moreover, the continuous mapping (x, y) 7→ [g + µ · vn ◦ S](x, y), n ≥ 1 is strictly
increasing in each argument, and for every n ≥ 1

{(x, y) ∈ [0, αn)× R+; y < an(x)} =
{
(x, y) ∈ R2

+; [g + µ · vn ◦ S](x, y) < 0
}
≡ An.
(9.6)
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Next, we shall relate the regions An in (9.1) and Cn+1, and their boundaries
an(·) and γn+1(·), respectively, for every n ∈ N.

Using the characterization of the stopping regions Γn, n ∈ N in Proposition 8.1
in terms of the switching curves γn(·), the exit time rn(·, ·) in Corollary 5.8 can be
expressed as

rn(φ0, φ1) = inf
{
t > 0 : y(t, φ1) = γn+1

(
x(t, φ0)

)}
, (φ0, φ1) ∈ R2

+, (9.7)

since the functions x(·, φ0) and y(·, φ1) in (4.8) are continuous. Because every
γn+1(·), n ∈ N is bounded, the function rn(·, ·) is real-valued. Thus

0 < rn(φ0, φ1) < ∞ for every (φ0, φ1) ∈ Cn+1.

Therefore, the (smallest) minimizer rn(φ0, φ1) of the function t 7→ Jvn(t, φ0, φ1) as
in (5.13), is an interior point of (0,∞] for every (φ0, φ1) ∈ Cn+1, and the derivative
∂Jvn(t, φ0, φ1)/∂t vanishes at t = rn(φ0, φ1). Using (5.7) and (9.7) gives

0 =
[
g + µ · vn ◦ S

](
x(t, φ0), y(t, φ1)

)∣∣∣
t=rn(φ0,φ1)

=
[
g + µ · vn ◦ S

](
x(t, φ0), γn+1

(
x(t, φ0)

))∣∣∣
t=rn(φ0,φ1)

, (φ0, φ1) ∈ Cn+1. (9.8)

Let us denote the boundary of Γn+1 by

∂Γn+1 , {(x, γn+1(x)) : x ∈ [0, ξn+1]}, (9.9)

and define the entrance and exit boundaries of Γn+1 by

∂Γe
n+1 ,

{(
x(rn(φ0, φ1), φ0), γn+1(y(rn(φ0, φ1), φ1)

))
, for some (φ0, φ1) ∈ Cn+1

}
,

∂Γx
n+1 ,

{
(φ0, φ1) ∈ Γn+1 : (x(t, φ0), y(t, φ1)) ∈ Cn+1, t ∈ (0, δ] for some δ > 0

}
,

(9.10)

respectively. The path t 7→ (x(t, φ0), y(t, φ1)) starts at some (φ0, φ1) ∈ Cn+1 and
enters the region Γn+1 (for the first time) at the entrance boundary ∂Γe

n+1. Sim-
ilarly, for every (φ0, φ1) ∈ ∂Γx

n+1, the path t 7→
(
x(t, φ0), y(t, φ1))

)
exits Γn+1

immediately.

9.3 Remark. By Lemma 9.5 below, the entrance boundary ∂Γe
n+1 is a subset of the

boundary ∂An of the region An in (9.1). Clearly, the curve t 7→ (x(t, φ0), y(t, φ1))
starting at any (φ0, φ1) ∈ ∂Γe

n+1 ⊆ ∂An cannot return immediately into the region
An (otherwise Jvn(t, φ0, φ1) < 0 for some t > 0 and (φ0, φ1) ∈ Cn+1). In the theory
of Markov processes, every element of ∂Γe

n+1 (resp., ∂Γx
n+1) is a regular boundary

point of the domain An (resp., the interior of Γn+1) with respect to the process Φ̃.

9.4 Remark. Observe that for every (φ0, φ1) ∈ ∂Γx
n+1, the quantity rn(φ0, φ1) in

(5.14) is the return time of the curve t 7→ (x(t, φ0), y(t, φ1)) to the stopping region

imsart-aap ver. 2005/10/19 file: bayes.tex date: December 12, 2005



28 E. BAYRAKTAR, S. DAYANIK, I. KARATZAS

Γn+1 and is also strictly positive. Therefore, the first-order necessary optimality
condition in (9.8) also holds on the exit boundary ∂Γx

n+1. Thus,

0 =
[
g + µ · vn ◦ S

](
x(t, φ0), γn+1

(
x(t, φ0)

))∣∣∣
t=rn(φ0,φ1)

, (φ0, φ1) ∈ Cn+1 ∪ ∂Γx
n+1.

(9.11)

9.1. The entrance boundary ∂Γe
n+1. Since all of the functions in (9.11) are con-

tinuous, (9.11) and the definition of the entrance boundary ∂Γe
n+1 in (9.10) imply

[g + µ · vn ◦ S] (x, y) = 0, (x, y) ∈ ∂Γe
n+1. (9.12)

The next lemma follows from (9.12), Lemma 9.2 and the continuity of the function
[g + µ · vn ◦ S](·, ·).

9.5 Lemma. For every n ∈ N, let αn ∈ R+ and an : R+ 7→ R+ be the same as in
Lemma 9.2. Then cl(∂Γe

n+1) ⊆ {(x, an(x)) : x ∈ [0, αn]}, n ∈ N.

9.6 Corollary. For any n ∈ N, if the equality ∂Γn+1 = cl(∂Γe
n+1) holds, then

∂Γn+1 = {(x, an(x)) : x ∈ [0, αn]}. (9.13)

In other words, ξn+1 = αn, and γn+1(x) = an(x) for every x ∈ [0, ξn+1] ≡ [0, αn],
and

Cn+1 = {(x, y) : [g + µ · vn ◦ S](x, y) < 0}. (9.14)

Proof. By Lemma 9.5, {(x, γn+1(x)) : x ∈ [0, ξn+1]} = ∂Γn+1 ⊆ {(x, an(x)) : x ∈
[0, αn]}. Since γn+1(·) and an(·) are strictly decreasing, continuous functions which
equal zero at the righthand point of their domains, they must be identical. Finally,

Cn+1 = R2
+\Γn+1 = {(x, y) ∈ [0, ξn+1)× R+ : y < γn+1(x)}

= {(x, y) ∈ [0, αn)×R+ : y < an(x)} = {(x, y) ∈ R2
+ : [g + µ · vn ◦ S](x, y) < 0},

where the last equality follows from (9.6).

If the disorder arrival rate λ is large, then every point on the boundary ∂Γn+1 of
the stopping region Γn+1 belongs to the entrance boundary ∂Γe

n+1; see Section 10.
Therefore, the stopping boundary ∂Γn+1 for the value function vn+1(·, ·) is deter-
mined as in Corollary 9.6, as soon as the value function vn(·, ·) is calculated. Using
this observation, the main solution method described at the beginning of Section 7
can be tailored into a more efficient algorithm; see Section 10 and Figure 4.

The exit boundary ∂Γx
n+1 may not always be nonempty. If it is nonempty, it is

also determined by the entrance boundary ∂Γe
n+1, and the general solution method

can be similarly enhanced in this case, see Section 11.
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9.2. The exit boundary ∂Γx
n+1. Using the semigroup property in (4.9) of the

functions x(·, ·) and y(·, ·), along with a change of variable, we obtain

Jvn(t, φ0, φ1) = −e−(λ+µ)tJvn(−t, x(t, φ0), y(t, φ1)), t ≥ 0, (φ0, φ1) ∈ R2
+. (9.15)

Substituting in (5.12) w(·, ·) = vn(·, ·), and using the identity above, we obtain

Jtvn(φ0, φ1) = e−(λ+µ)t [vn+1(x(t, φ0), y(t, φ1))− Jvn(−t, x(t, φ0), y(t, φ1))] (9.16)

for t ≥ 0, (φ0, φ1) ∈ R2
+. Since vn+1(x(rn(φ0, φ1), φ0), y(rn(φ0, φ1), φ1)) = 0, and

Jrn(φ0,φ1)vn(φ0, φ1) = vn+1(φ0, φ1), the equality in (9.16) at t = rn(φ0, φ1) gives

vn+1(φ0, φ1) =
[
−e−(λ+µ)tJvn(−t, x(t, φ0), y(t, φ1))

] ∣∣∣
t=rn(φ0,φ1)

(9.17)

for (φ0, φ1) ∈ R2
+. Recall from Section 9.1 that (x(rn(φ0, φ1), φ0), y(rn(φ0, φ1), φ1)) ∈

∂Γe
n+1 for every (φ0, φ1) ∈ Cn+1 ∪ ∂Γx

n+1. Therefore, (9.17) implies that we can
both calculate the value function vn+1(·, ·) and find the continuation region Cn+1

by backtracking the curves t 7→ (x(−t, φ0), y(−t, φ1)) from every point (φ0, φ1) ∈
∂Γe

n+1 on the entrance boundary. Let us define for every (φ0, φ1) ∈ R2
+, n ≥ 0,{

r̂(φ0, φ1) , inf{t ≥ 0 : (x(−t, φ0), y(−t, φ1)) 6∈ R2
+}

r̂n(φ0, φ1) , inf{t ∈ (0, r̂(φ0, φ1)] : −Jvn(−t, φ0, φ1) ≥ 0}

}
, (9.18)

where the infimum of an empty set is infinity. Since the mapping t 7→ Jvn(t, φ0, φ1)
is continuous, we have Jvn(−r̂n(φ0, φ1), φ0, φ1) = 0 if 0 < r̂n(φ0, φ1) < ∞.

9.7 Lemma. The entrance boundary ∂Γe
n+1 determines the exit boundary ∂Γx

n+1,
the continuation region Cn+1, and the value function vn+1(·, ·) on Cn+1:

∂Γx
n+1 =

{
(x(−t, φ0), y(−t, φ1))

∣∣∣
t=brn(φ0,φ1)

: (φ0, φ1) ∈ ∂Γe
n+1, r̂n(φ0, φ1) ≤ r̂(φ0, φ1)

}
,

Cn+1 =
{
(x(−t, φ0), y(−t, φ1)) : (φ0, φ1) ∈ ∂Γe

n+1, t ∈ (0, řn(φ0, φ1)]
}
\∂Γx

n+1,

where řn(φ0, φ1) = r̂n(φ0, φ1) ∧ r̂(φ0, φ1). For every (φ0, φ1) ∈ ∂Γe
n+1

vn+1(x(−t, φ0), y(−t, φ1)) = −e−(λ+µ)tJvn(−t, φ0, φ1), t ∈ (0, řn(φ0, φ1)].

10. Case I revisited: efficient methods for “large” post-disorder arrival
rates. This is Case I on page 11 where λ ≥ [1− (1+m)(c/2)]+ is “large”, and the
sample-paths of both components of the process Φ̃ = [Φ̃(0), Φ̃(1)]T increase between
the jumps; see also Figure 1(a). By the relation (4.10), the deterministic functions
t 7→ x(t, φ0), t ∈ R+ and t 7→ y(t, φ1), t ∈ R+ are strictly increasing for every
(φ0, φ1) ∈ R2

+.
By Remark 8.6, the identity in (8.11) between the value functions V (·, ·) and

Vn(·, ·) on the set S−n(Γn) ∩ Cn ∩ ([0, xn]× R+) holds for every n ∈ N. Thus,
we can find the value function V (·, ·) by calculating Vn(·, ·), n ∈ N using steps
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1-3 on page 24. This method can be improved further. We shall show that the
optimization in each iteration of (7.1) can be avoided, and the value function V (·, ·)
may be calculated in one pass over the continuation region C; see Figure 4.

Since the boundary ∂Γn+1 of the stopping region Γn+1 is a (strictly) decreasing
continuous curve, every point in the set ∂Γn+1 ∩ int(R2

+) is accessible from some
point in the continuation region Cn+1. Therefore, we have ∂Γn+1 = cl(∂Γe

n+1) for
every n ∈ N0. By Corollary 9.6, the set An in (9.1) and the continuation region
Cn+1 (and their boundaries) coincide for every n ∈ N0.

If the value function vn(·, ·) ≡ Vn(·, ·) for some n ∈ N0 is already calculated, then
the boundary of the continuation region Cn+1 becomes immediately available as in
(9.13). In fact, (9.5) and (9.14) imply

S(Cn+1) =
{

(x, y) ∈ R2
+ : vn(x, y) <

[
− 1

µ
· g ◦ S−1

]
(x, y)

}
, (10.1)

S(∂Γn+1) =
{

(x, y) ∈ R2
+ : vn(x, y) =

[
− 1

µ
· g ◦ S−1

]
(x, y)

}
. (10.2)

The set on the righthand side in (10.2) is a strictly decreasing, convex and contin-
uous curve in R2

+, and it is the same as

S(∂Γn+1) = S(the boundary of the set epi(γn+1) ∩ ([0, ξn+1]× R+))

= the boundary of the set epi(S[γn+1]) ∩
([

0,
µ− 1

µ
ξn+1

]
× R+

)
=
{

(x, S[γn+1](x));x ∈
[
0,

µ− 1
µ

ξn+1

]}
.

(10.3)

If we know vn(·, ·), then we can determine the set in (10.2) of all points (x, y) ∈ R2
+

satisfying

vn(x, y) =
[
− 1

µ
· g ◦ S−1

]
(x, y) ≡ − x

µ− 1
− y

µ + 1
+

λ

cµ

√
2, (10.4)

and obtain the boundary function γn+1(·) after the transformation of this set by
S−1. Then we can calculate the (smallest) minimizer rn(·, ·) of (7.1) by the relation
(9.7), and the value function vn+1(·, ·) by (9.2). We can continue in this manner
to find the value functions vn+2(·, ·), vn+3(·, ·), · · · . This method saves us from an
explicit search for the solution rn(φ0, φ1) of the minimization problem in (7.1) for
every (φ0, φ1) ∈ Cn+1:

Step B.0 Initialize n = 0, v0(·, ·) ≡ 0.
Step B.1 Find the region

Bn ,

{
(x, y) ∈ R2

+ : vn(x, y) < − x

µ− 1
− y

µ + 1
+

λ

cµ

√
2
}

, n ≥ 1. (10.5)

Step B.2 Determine the continuation region Cn+1 = S−1(Bn) by the transforma-
tion of Bn under S−1.
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Step B.3 Calculate the value function vn+1(·, ·) on Cn+1 by using (9.2) and (9.7).
Step B.4 Set n to n + 1 and go to Step B.1.

In fact, we can do much better than this. After n ∈ N iterations, we find both
vn(·, ·) and V (·, ·), vn+1(·, ·), vn+2(·, ·), · · · on the subset

Qn , S−n(Γn) ∩Cn ∩ ([0, xn]× R+) (10.6)

=
{
(x, y) ∈ [0, xn]× R+ : S−n[γn](x) ≤ y < γn(x)

}
, n ∈ N (10.7)

of Cn+1 by Corollary 8.4. Therefore, we need to determine only the set

Rn+1 , Qn+1\Qn, n ∈ N (R1 ≡ Q1) (10.8)

in Step B.2, and calculate the value function vn+1(·, ·) only on this set in Step
B.3. By Lemma 8.5, this modified method calculates V (·, ·) (and all Vn(·, ·), n ∈ N
simultaneously) on any given set R+ × (0, B), B > 0 in finite number of iterations.
We shall describe this modified method on page 33 after establishing a few facts
below. Several steps of the method are also illustrated in Figure 4.

Since v0 ≡ 0, setting n = 0 in (10.4) gives a straight line; substituting (x, y) =
(x, S[γ1](x)) and comparing this with S(∂Γ1) in (10.3) give

S[γ1](x) = −µ + 1
µ− 1

x +
µ + 1

µ
· λ

c

√
2, x ∈ supp(S[γ1]) =

[
0,

µ− 1
µ

· λ

c

√
2
]

, (10.9)

and ξ1 = (λ/c)
√

2. Using (8.7), we find

γ1(x) = S−1[S[γ1]](x) = −x +
λ

c

√
2, x ∈ [0, ξ1] =

[
0,

λ

c

√
2
]

. (10.10)

The function S−1[γ1](·) is affine, and intersects with γ1(·) at x1 ≡ x1(γ1) =
(λ/c)(

√
2/2), see (8.9). By Corollary 8.4 and Remark 8.6, the boundary of the

stopping region on [0, x1] is

γ(x) = γ1(x) = −x +
λ

c

√
2, x ∈ [0, x1] ≡

[
0,

λ
√

2
c

· 1
2

]
; (10.11)

see the inset in Figure 4(a). Hence, the boundaries of the optimal stopping region
Γ and the stopping regions Γn, n ∈ N stick on the upper half of the hypotenuse of
the rectangular triangle {(x, y) ∈ R2

+ : g(x, y) ≤ 0} ≡ cl(C0).

10.1 Proposition. Fix any n ∈ N. The functions in Sn ,
(
S−k[γk]

)n
k=1

do not
intersect inside the continuation region Cn = {(x, y) ∈ R2

+ : y < γn(x)}. The
function S[γn+1](·) intersects with each function in Sn∪{γn} pairwise exactly once.

The same conclusions hold when every γk, k = 1, . . . , n in the proposition is
replaced with γ; this can be verified using the elementary properties of convex
functions and the affine structure of the boundary function γ(·) in (10.11); see
Bayraktar, Dayanik and Karatzas [2] for the details. Then the proof of Propo-
sition 10.1 follows easily from Corollary 8.4. We are now ready to give a better
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(x1, γ1(x1))

S−2[γ2](·)C1

Γ1 = R2
+\C1

[
− 1

µg ◦ S−1
]
(·, ·) = v1(·, ·)

S−1

0 x1 ξ1 ( µ
µ−1 )ξ1

ξ2 ( µ
µ−1 )2ξ2

γ2(·)γ1(·)

S−1[γ1](·)

( µ
µ+1 )γ1(0)

γ1(0)

( µ
µ+1 )2γ2(0)

(i) S[γ2](·) is obtained by solving

R2

(ii)

(iii)

γ1(·) = γ(·) on [0, x1]

(x1, γ1(x1))

C1

x10

S−1[γ1](·)

ξ1 ( µ
µ−1 )ξ1

γ1(·)

( µ
µ+1 )γ1(0)

γ1(0)

Γ1 = R2
+\C1

v1(·, ·) = V (·, ·) on R1

C.1C.2

C2

[
− 1

µg ◦ S−1
]
(·, ·) = v2(·, ·)

0 ξ2

γ2(·) γ3(·) S−3[γ3](·)

( µ
µ−1 )3ξ3

ξ3 ( µ
µ−1 )2ξ2

(x2, γ2(x2))

x2

S−2[γ2](·)

S−1

(x1, γ1(x1))

( µ
µ+1 )γ1(0)

γ1(0)

( µ
µ+1 )2γ2(0)

( µ
µ+1 )3γ3(0)

Γ2 = R2
+\C2

S[γ2](·)

R1

R3

(ii)

(iii)

(i) S[γ3](·) is obtained by solving
γ1(0)

(x1, γ1(x1))

C2

x10

( µ
µ+1 )γ1(0)

S−2[γ2](·)

(x2, γ2(x2))

ξ2x2

γ2(·) = γ(·) on [0, x2]

γ2(·)

( µ
µ−1 )2ξ2

( µ
µ+1 )2γ2(0)

Γ2 = R2
+\C2

v2(·, ·) = V (·, ·) on R1 ∪R2

C.1C.2

(b) n = 1 in Step C.1.

(a) n = 0 in Step C.1

Fig 4. Case I: λ is “large.” The illustration of Method C, see page 33: Steps C.1 and C.2 when
(a) n = 0, and for (b) n = 1 in Step C.1.
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version of method B on page 30 to calculate each v(·, ·) and the boundary function
γ(·). Recall that S−n[γn](·) and xn(γn) are defined by (8.7) and (8.9). The steps
C.1 and C.2 below are illustrated in Figure 4 for n = 0 and n = 1.

Step C.0 Initialize n = 0, x0 = 0, v0(·, ·) ≡ 0 and the region R1 as in (10.8).
Step C.1 Calculate the value function V (φ0, φ1) = vn+1(φ0, φ1) for every (φ0, φ1) ∈

Rn+1 using (9.2) and (9.7).
Step C.2 Set n to n + 1.

(i) Determine the set{
(x, y) ∈ Rn : vn(x, y) = − x

µ− 1
− y

µ + 1
+

λ

cµ

√
2
}

(10.12)

of points in Rn which satisfy (10.4). This is the intersection of the set in
(10.3) and Rn. Namely, it is the section of the strictly decreasing, convex
and continuous curve x 7→ S[γn+1](x) contained in Rn.

(ii) Find the subset of Rn enclosed between the vertical y-axis and the curve
in (10.12). This is the intersection Rn ∩ Bn of the sets Rn and Bn in
(10.5).

(iii) Find the set Rn+1 = S−1(Rn ∩ Bn) in (10.8) by applying the transfor-
mation S−1(·, ·) to the set found in (ii).
The region Rn+1 is enclosed between the y-axis from left, the S−1-
transformation of the curve in (10.12) from right. This right boundary of
Rn+1 extends the boundary γ(·) ≡ γn+1(·) from the previous iteration
into the region S−(n+1)(Γ) ≡ S−(n+1)(Γn+1).

(iv) Go to Step C.1.

11. The smoothness of the value functions and the stopping bound-
aries. The general method described at the beginning of this section evaluates the
integrals Jvn(·, φ0, φ1) in (7.2) of the function [g + µ · vn ◦ S](·, ·) along the curves
(x(·, φ0), y(·, φ1)) in R2

+ in order to calculate the value function vn+1(φ0, φ1) as in
(7.1). For an accurate implementation of this method it may be useful to know how
smooth the integrand, or essentially the value function vn(·, ·), is.

The smoothness of the value function V (·, ·) may also allow us to formulate the
original optimal stopping problem in (4.12) as a free-boundary problem. Then, in
principle, we can calculate the value function V (·, ·) directly, by solving a partial
differential equation, as the next proposition suggests.

11.1 Proposition. Suppose that there is a bounded and continuous function w :
R2

+ 7→ (−∞, 0] which is continuously differentiable on R2
+\∂Γ, and whose first-order

derivatives are locally bounded near the boundary ∂Γ = {(x, γ(x)) : x ∈ [0, ξ]}.
Moreover,

(Ã − λ)w(x, y) + g(x, y) = 0, (x, y) ∈ C, (11.1)
w(x, y) = 0, (x, y) ∈ Γ, (11.2)

(Ã − λ)w(x, y) + g(x, y) > 0, (x, y) ∈ Γ\∂Γ, (11.3)
w(x, y) < 0, (x, y) ∈ C, (11.4)
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where Ã is the infinitesimal generator in (12.4) of the process Φ̃ acting on the
continuously differentiable functions.

Suppose also that the sample-paths of the process Φ̃ = (Φ̃(0), Φ̃(1)) spend zero
time on the boundary ∂Γ almost surely, i.e.,

Eφ0,φ1
0

[∫ ∞

0

1∂Γ(Φ̃t)dt

]
= 0, (φ0, φ1) ∈ R2

+. (11.5)

If the convex function γ(·) is also Lipschitz continuous on [0, ξ], then w(·, ·) = V (·, ·)
on R2

+.

Proof. Similar to the proof of Theorem 10.4.1 in Øksendal [14, p. 215].

Under certain conditions, we are able to show that the bounded, concave and
continuous value functions vn(·, ·), n ∈ N and V (·, ·) are continuously differentiable
on R2

+\∂Γx
n+1 and R2

+\∂Γx, respectively, and are not differentiable on the exit
boundaries ∂Γx

n and ∂Γx in (9.10), respectively. The exit boundaries ∂Γx
n, n ∈ N

and ∂Γx, and the entrance boundaries ∂Γe
n and ∂Γe, are connected subsets of R2

+,
and we have

∂Γn = ∂Γx
n ∪ cl(∂Γe

n), n ∈ N and ∂Γ = ∂Γx ∪ cl(∂Γe). (11.6)

Moreover, the boundary functions γn(·) and γ(·) are continuously differentiable on
their supports.

The hypotheses of Proposition 11.1 are satisfied with w(·, ·) , v(·, ·) in (5.10).
Thus, the function v(·, ·) ≡ V (·, ·) may be obtained by solving the variational
inequalities (11.1)-(11.4). This may be a challenging problem since, as we already
pointed out above, the smooth-fit principle is guaranteed not to hold on some part
of the free boundary. We shall not investigate the variational problem here, but
give a concrete example with this interesting boundary behavior and describe our
solution method for it.

The main result is Proposition 11.17 below, and is proven by induction. Here,
we shall study the basis of the induction by breaking it down in several lemmas.
The proof of the induction hypothesis is very similar, and we shall point out only
the major differences after the proposition’s statement on page 39.

Let us define the continuous mapping Gn : R3
+ 7→ R by

Gn(t, φ0, φ1) ,
[
g + µ · vn ◦ S

]
(x(t, φ0), y(t, φ1)), (t, φ0, φ1) ∈ R3

+, n ≥ 0, (11.7)

Note that (9.2) gives

vn+1(φ0, φ1) =
∫ rn(φ0,φ1)

0

e−(λ+µ)t Gn(t, φ0, φ1) dt, (φ0, φ1) ∈ Cn+1, n ≥ 0. (11.8)

Using (9.11), (9.12) and Lemmas 9.2 and 9.5, we obtain

(x(t, φ0), y(t, φ1))
∣∣∣
t=rn(φ0,φ1)

∈ ∂Γe
n+1 ⊆ {(x, an(x)) : x ∈ [0, αn]}

≡
{
(x, y) ∈ R2

+ : [g + µ · vn ◦ S](x, y) = 0
}

, (φ0, φ1) ∈ Cn+1 ∪ ∂Γx
n+1. (11.9)
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Therefore, for every n ∈ N

0 = Gn(t, φ0, φ1)
∣∣∣
t=rn(φ0,φ1)

, (φ0, φ1) ∈ Cn+1 ∪ ∂Γx
n+1. (11.10)

Under certain local smoothness and nondegeneracy conditions on the function
Gn(·, ·, ·), the implicit function theorems guarantee that the equation Gn(t, φ0, φ1) =
0 determines t = tn(φ0, φ1) in an open neighborhood of every point (rn(φ0, φ1), φ0, φ1)
in R+×Cn+1, as a smooth function of the variables (φ0, φ1). Since the continuation
region Cn+1 has compact closure, a finite subcovering of these open neighborhoods
exists. Patching the solutions tn(·, ·) in the finite subcovering gives the global solu-
tion, which is smooth and must coincide with rn(·, ·) on Cn+1.

In the remainder, we shall use the following version of the implicit function
theorem; see Protter and Morray [16, Chapter 14], and Conjecture 11.18.

11.2 Theorem (Implicit Function Theorem). Let A ⊆ Rm be an open set, F :
A 7→ R be a continuously differentiable function, and (t, x) ∈ R× Rm−1 be a point
in A such that

F (t, x) = 0, and
∂

∂t
F (t, x)

∣∣∣
(t,x)=(t,x)

6= 0.

Then there exist an open set B ⊆ Rm−1 containing the point x, and a unique
continuously differentiable function f : B 7→ R, such that t = f(x) and F (f(x), x) =
0 for all x ∈ B.

Since v0(·, ·) ≡ 0, we have

G0(t, φ0, φ1) = x(t, φ0) + y(t, φ1)−
λ

c

√
2, (t, φ0, φ1) ∈ R+ ×C1. (11.11)

The function G0(·, ·, ·) is continuously differentiable on R+ ×C1. By (6.8) in Sec-
tion 6, its partial derivative

DtG0(t, φ0, φ1) =
d

dt
[x(t, φ0) + y(t, φ1)] (11.12)

with respect to t-variable may vanish at most once; if this happens, this derivative
is strictly negative before, and strictly positive after, the derivative vanishes; oth-
erwise, it is strictly positive everywhere (see, also, Figure 2). Namely, the function
t 7→ G0(t, φ0, φ1) has at most one local minimum for every (φ0, φ1) ∈ R2

+.

11.3 Lemma. Fix any (φ0, φ1) ∈ R2
+. The function t 7→ G0(t, φ0, φ1) from R+

into R has at most one local minimum. It is strictly increasing if there is no local
minimum. If there is a local minimum, then the function G0(·, φ0, φ1) is strictly
decreasing before the minimum and strictly increasing after the minimum.

11.4 Lemma. The smallest minimizer r0(φ0, φ1) in (5.13) is continuously differ-
entiable at every (φ0, φ1) ∈ C1.
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Proof. The result will follow from Theorem 11.2 applied to the function G0(·, ·, ·)
on R × C1 at the point (t, x) = (r0(φ0, φ1), φ0, φ1) ∈ R × C1. We only need to
establish that

DtG0(t, φ0, φ1)
∣∣∣
t=r0(φ0,φ1)

6= 0, (φ0, φ1) ∈ C1.

Let us fix (φ0, φ1) ∈ C1 and assume that DtG0(r0(φ0, φ1), φ0, φ1) = 0. Then the
function t 7→ G0(t, φ0, φ1) is strictly decreasing on t ∈ [0, r0(φ0, φ1)] by Lemma 11.3,
and

G0(t, φ0, φ1) > G0(r0(φ0, φ1), φ0, φ1) = 0, t ∈ [0, r0(φ0, φ1)).

Therefore, (11.8) implies that v1(φ0, φ1) > 0. This contradicts our choice of (φ0, φ1)
in the continuation region C1, as well as the bound v1(·, ·) ≤ 0.

11.5 Corollary. The value function v1(φ0, φ1) is continuously differentiable at
every (φ0, φ1) ∈ C1. For every (φ0, φ1) ∈ C1,

Dφ0v1(φ0, φ1) =
∫ r0(φ0,φ1)

0

e−(λ+µ)tDφ0G0(t, φ0, φ1) dt =
1− e−(µ−1)r0(φ0,φ1)

µ− 1
,

Dφ1v1(φ0, φ1) =
∫ r0(φ0,φ1)

0

e−(λ+µ)tDφ1G0(t, φ0, φ1) dt =
1− e−(µ+1)r0(φ0,φ1)

µ + 1
.

(11.13)

Proof. By (11.8) and Lemma 11.4, the value function v1(·, ·) is continuously differ-
entiable. Using (11.9) after applying the chain-rule to (11.8) with n = 0 gives the
integrals in (11.13). These integrals can be calculated explicitly by using (4.7) or
(4.8).

11.6 Corollary. The entrance boundary ∂Γe
1 in (9.10) is connected. More precisely,

∂Γe
1 = {(x, γ1(x)) : x ∈ (ξe

1, ξ1)} for some 0 ≤ ξe
1 < ξ1, (11.14)

where ξ1 is the same as in [0, ξ1] = supp(γ1), the support of the boundary function
γ1(·); see Proposition 8.1.

11.7 Corollary. The restriction of the boundary function γ1(·) to the interval
(ξe

1, ξ1) is continuously differentiable. In fact,

γ1(x) = a0(x), x ∈ [ξe
1, ξ1], and [0, ξ1] ≡ supp(γ1) = supp(a0) ≡ [0, α0],

where

a0(x) =

 − x +
λ

c

√
2, x ∈

[
0,

λ

c

√
2
)

0, elsewhere

 (11.15)

is the continuously differentiable boundary function of the region A0 = {(x, y) ∈
R2

+ : [g + µ · v0 ◦ S](x, y) < 0} in (9.6).
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Proof. The function a0(·) in (11.15) is continuously differentiable on its support
supp(a0) = [0, α0], and the result follows from Lemma 9.5 and Corollary 11.6.

The entrance boundary ∂Γe
1 always exists. However, the exit boundary ∂Γx

1 may
not exist all the time. Next we shall identify the geometry of the exit boundary
∂Γx

1 when it exists.

11.8 Lemma. For every (φ0, φ1) ∈ ∂Γx
1 , we have [g + µ · v0 ◦ S](φ0, φ1) > 0.

Therefore, cl(∂Γe
1) ∩ ∂Γx

1 = ∅.

Proof. Suppose that (φ0, φ1) ∈ ∂Γx
1 . Let us assume that [g + µ · v0 ◦S](φ0, φ1) ≤ 0.

Then G0(0, φ0, φ1) = [g + µ · v0 ◦ S](φ0, φ1) ≤ 0 = G0(r0(φ0, φ1), φ0, φ1), and
Lemma 11.3 implies

G0(t, φ0, φ1) = [g + µ · v0 ◦ S](x(t, φ0), y(t, φ1)) < 0, t ∈ (0, r0(φ0, φ1)).

This inequality and (11.8) for n = 0 give

v1(φ0, φ1) =
∫ r0(φ0,φ1)

0

e−(λ+µ)tG0(t, φ0, φ1)dt < 0,

which contradicts v1(φ0, φ1) = 0. This proves that [g + µ · v0 ◦ S](φ0, φ1) > 0 for
every (φ0, φ1) ∈ ∂Γx

1 . Since the mapping (x, y) 7→ [g +µ · v0 ◦S](x, y) is continuous,
we have [g + µ · v0 ◦ S](φ0, φ1) = 0 for every (φ0, φ1) ∈ cl(∂Γe

1) by Lemmas 9.2 and
9.5. Therefore, cl(∂Γe

1) ∩ ∂Γx
1 = ∅.

The next corollary is helpful in determining the point (ξe
1, γ1(ξe

1)) ≡ (ξe
1, a0(ξe

1)).
The region An was introduced in Section 9.

11.9 Corollary. The parametric curve

C1 , R2
+ ∩ {(x(t, ξe

1), y(t, a0(ξe
1))) : t ∈ R} (11.16)

is the smallest among all parametric curves R2
+ ∩ {(x(t, φ0), y(t, φ1)) : t ∈ R},

(φ0, φ1) ∈ R2
+ that majorize the boundary function a0(·) of the region A0 = {(x, y) :

[g + µ · v0 ◦ S](x, y) < 0} = {(x, y) ∈ R2
+ : y < a0(x)}.

The curve C1 and the boundary ∂A0 = {(x, a0(x)) : x ∈ [0, α0]} touch exactly at
(ξe

1, a0(ξe
1)) ≡ (ξe

1, γ1(ξe
1)) and nowhere else.

Proof. By Corollary 11.7 and Lemma 11.8, we have (ξe
1, a0(ξe

1)) = (ξe
1, γ1(ξe

1)) ∈
cl(∂Γ1)\∂Γe

1. Therefore (ξe
1, a0(ξe

1)) 6∈ ∂Γe
1 ∪ ∂Γx

1 . Hence there exists some δ > 0
such that

(x(t, ξe
1), y(t, a0(ξe

1))) ∈ Γ1 ⊆ R2
+\A0, t ∈ (−δ,+δ). (11.17)

Recall from (9.18) that r̂(ξe
1, a0(ξe

1)) is the exit time of t 7→ (x(−t, ξe), y(−t, a0(ξe
1)))

from R2
+. Then the function

t 7→ G0(t, ξe
1, a0(ξe

1)) ≡ [g + µ · v0 ◦ S](x(t, ξe
1), y(t, a0(ξe

1))), t ∈ [−r̂(ξe
1, a0(ξe

1)),∞)

has a zero at t = 0 and is nonnegative for every t ∈ (−δ, δ) by (11.17). Hence it
has a local minimum at (ξe

1, a0(ξe
1)). By Lemma 11.3, the function G0(t, ξe

1, a0(ξe
1))

is strictly positive for t 6= 0. Therefore, y(t, a0(ξe
1)) > a0(x(t, ξe

1)) for t 6= 0.
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11.10 Remark. Since C1 ⊂ R2
+\A0, we have Jv0(t, φ0, φ1) > 0 for t > 0 and

(φ0, φ1) ∈ C1. This implies v1(φ0, φ1) = 0 for (φ0, φ1) ∈ C1. Therefore, C1 ⊂ Γ1.
The curve C1 divides R2

+ into two components. Since the continuation region C1

is connected and contains A0, the region C1 is contained in the (lower) component
which lays between C1 and x-axis. Thus the boundary ∂Γ1 is completely below the
curve C1, and they touch at the point (ξe

1, a0(ξe
1)) ≡ (ξe

1, γ1(ξe
1)). See Figure 5(a).

Next corollary shows that no points on the boundary {(x, a0(x)) : x ∈ [0, ξe
1)}

over the interval [0, ξe
1) of the region A0 = {(x, y) ∈ R2

+ : [g + µ · v0 ◦ S](x, y) < 0}
is a boundary point for the stopping region Γ1.

11.11 Corollary. For every x ∈ [0, ξe
1), we have γ1(x) > a0(x) and [g + µ · v0 ◦

S](x, γ1(x)) > 0.

Proof. If [0, ξe
1) = ∅, there is nothing to prove. Otherwise, fix any φ0 ∈ [0, ξe

1).
Assume that (φ0, a0(φ0)) ∈ ∂Γ1. By Corollary 11.6 and Lemma 11.8, we have
(φ0, a0(φ0)) /∈ ∂Γe

1∪∂Γx
1 . The same argument as in the proof of Corollary 11.9, with

(φ0, a0(φ0)) instead of (ξe
1, a0(ξe

1)), gives that the parametric curve {(x(−t, φ0), y(−t, a0(φ0))) :
t ∈ [−r̂(φ0, a0(φ0)),∞)} is the smallest majorant of the boundary function a0(·),
and both curves touch at the point (φ0, a0(φ0)). But this implies φ0 = ξe

1, a con-
tradiction with our choice of φ0.

11.12 Corollary. If φ0 ∈ [0, ξe
1), then (φ0, γ1(φ0)) ∈ ∂Γx

1 has an open neighbor-
hood, on the intersection with the continuation region C1 of which the function
r0(·, ·) is bounded and bounded away from zero.

On the other hand, the function r0(·, ·) is continuous on the entrance boundary
∂Γe

1: for every (φ0, φ1) ∈ ∂Γe
1 and every sequence {(φ(n)

0 , φ
(n)
1 )}n∈N ⊆ C1 converging

to the boundary point (φ0, φ1), we have limn→∞ r0(φ
(n)
0 , φ

(n)
1 ) = 0.

11.13 Lemma. If ξe
1 = 0, then ∂Γ1 = cl(∂Γe

1). If ξe
1 > 0, then the exit boundary

∂Γx
1 is not empty, and ∂Γ1 = ∂Γx

1 ∪ cl(∂Γe
1).

If ∂Γ1 6= cl(∂Γe
1), then ξe

1 > 0, and the exit boundary ∂Γx
1 is not empty by

Lemma 11.13. The characterization of the exit boundary in Lemma 9.7 can be cast
as

Γx
1 =

{(
x(−t, φ0), y(−t, a0(φ0))

)∣∣∣
t=br0(φ0,a0(φ0))

: φ0 ∈ (ξe
1, ξ

x
1 ]
}

.

for some ξx
1 ∈ (ξe

1, ξ1). More precisely,

ξx
1 = inf{φ0 ∈ [ξe

1, ξ1] : r̂0(φ0, γ1(x)) ≤ r̂(φ0, γ1(x))}. (11.18)

For every φ0 ∈ (ξe
1, ξ

x
1 ], we have r̂0(φ0, γ1(φ0)) ≤ r̂(φ0, γ1(φ0). See (9.18).

Our next result shows that the exit boundary ∂Γx
1 = {(φ0, γ1(φ0)) : φ0 ∈ [0, ξe

1)}
is on a continuously differentiable curve, if it is not empty.

11.14 Lemma. The restriction of the boundary function γ1(·) to the interval [0, ξe
1)

is continuously differentiable.
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If the value function v1(·, ·) were continuously differentiable on the exit bound-
ary ∂Γx

1 , then the result would follow from an application of the implicit function
theorem to the identity v1(φ0, φ1) = 0 near the point (φ0, φ1) = (φ0, γ1(φ0)). Unfor-
tunately, v1(·, ·) is not differentiable on ∂Γx

1 ; see Lemma 11.16. Therefore, we shall
first extend the restriction to the set C1 ∪ ∂Γx

1 of the value function v1(·, ·) to a
new function ṽ1(·, ·) on an open set B1 ⊃ C1∪∂Γx

1 such that ṽ1(·, ·) is continuously
differentiable on B1. We shall then use the identity ṽ1(φ0, γ1(φ1)) = 0 as above.

11.15 Lemma. The boundary function γ1(·) is continuously differentiable on the
interior of its support [0, ξ1].

The next result shows that the value function is not differentiable on the exit
boundary ∂Γx

1 . In fact, as the proof reveals, the left and right partial derivatives
are different along the exit boundary. Therefore, the smooth-fit principle does not
apply to the value function v1(·, ·) along (some part of) the boundary, if the exit
boundary ∂Γx

1 is not empty.

11.16 Lemma. The value function v1(·, ·) is continuously differentiable on the
entrance boundary ∂Γe

1, but is not differentiable on the exit boundary ∂Γx
1 .

The techniques used above in the analysis of the value function v1(·, ·) and the
boundary function γ1(·) can be extended by induction to every function vn(·, ·) and
the boundary function γn(·), if the followings are true for every n ∈ N:

A1(n): For every (φ0, φ1) ∈ R2
+, the function t 7→ Gn(t, φ0, φ1) in (11.7) from R+

into R has at most one local minimum. It is strictly increasing if there is no
local minimum. If there is a local minimum, then the function Gn(·, φ0, φ1)
is strictly decreasing before the minimum and strictly increasing after the
minimum.

A2(n): The function (x, y) 7→ [g + µ · vn ◦ S](x, y) is (continuously) differentiable
on the entrance boundary ∂Γe

n+1 of the stopping region Γn+1 = {(x, y) :
vn+1(x, y) = 0}.

11.17 Proposition. If A1(k) and A2(k) above are valid for every 0 ≤ k ≤ n, then
the followings hold:

1. The value function vn+1(·, ·) is continuously differentiable on R2
+\Γ

x
n+1 ev-

erywhere except the exit boundary ∂Γx
n+1. For every (φ0, φ1) ∈ Cn+1,

Dφ0vn+1(φ0, φ1) =
∫ rn(φ0,φ1)

0

e−(λ+µ)tDφ0Gn(t, φ0, φ1)du

=
∫ rn(φ0,φ1)

0

e−(λ+µ)t [1 + (µ− 1)Dφ0vn ◦ S] (x(u, φ0), y(u, φ1))du,

Dφ1vn+1(φ0, φ1) =
∫ rn(φ0,φ1)

0

e−(λ+µ)tDφ1Gn(t, φ0, φ1)du

=
∫ rn(φ0,φ1)

0

e−(λ+µ)t [1 + (µ + 1)Dφ1vn ◦ S] (x(u, φ0), y(u, φ1))du.
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2. The entrance boundary ∂Γe
n+1 is connected. More precisely,

∂Γe
n+1 = {(x, an(x)) : x ∈ (ξe

n+1, ξn+1)} for some ξe
n+1 ∈ [0, ξn+1).

The boundary function an(·) of the region An = {(x, y) ∈ R2
+ : [g + µ · vn ◦

S](x, y) < 0} is continuously differentiable on (ξe
n+1, ξn+1). Therefore, the

boundary function γn+1(·) ≡ an(·) on (ξe
n+1, ξn+1) is continuously differen-

tiable.
3. The parametric curve

Cn+1 , R2
+ ∩ {(x(t, ξe

n+1), y(t, an(ξe
n+1))) : t ∈ R}

is the smallest among all the parametric curves R2
+ ∩ {(x(t, φ0), y(t, φ1)) : t ∈

R}, (φ0, φ1) ∈ R2
+ that majorize the boundary function an(·) of the region

An = {(x, y) : [g + µ · vn ◦ S](x, y) < 0} = {(x, y) ∈ R2
+ : y < an(x)}.

The curve Cn+1 and the boundary ∂An = {(x, an(x)) : x ∈ [0, αn]} touch
exactly at (ξe

n+1, an(ξe
n+1)) ≡ (ξe

n+1, γn+1(ξe
n+1)) and nowhere else.

4. If ξe
n+1 = 0, then ∂Γn+1 = cl(∂Γe

n+1). If ξe
n+1 > 0, then the exit boundary

∂Γx
n+1 is not empty, and ∂Γn+1 = ∂Γx

n+1 ∪ cl(∂Γe
n+1).

5. The boundary function γn+1(·) is continuously differentiable on the interior
of its support [0, ξn+1].

The proof of the proposition is by induction on n ∈ N0. The suppositions A1(0)
and A2(0) are always valid; see Lemma 11.3, and note that [g+µ·v0◦S](·, ·) ≡ g(·, ·)
is continuously differentiable everywhere. All of the claims are proved for the basis of
the induction n = 0 before the statement of the proposition. For n ≥ 1, the proofs
are the same with obvious changes, with the exception of the differentiability of
an(·) in part 2 of the proposition.

For n = 0, the differentiability of a0(x) = −x+(λ/c)
√

2, x ∈ (0, ξ1) was obvious.
For n ≥ 1, the function an(·) is not available explicitly, only through

[g + µ · vn ◦ S](x, an(x)) = 0, x ∈ [0, ξn+1].

By A2(n), the function [g+µ ·vn ◦S](·, ·) is continuously differentiable on ∂Γe
n+1 =

{(x, an(x)) : x ∈ (ξe
n+1, ξn+1)}. Since y 7→ [g + µ · vn ◦ S](x, y) is strictly increasing

for every x ∈ R+, we have

∂

∂y
[g + µ · vn ◦ S](x, y)

∣∣∣
(x,y)=(x,an(x))

> 0, x ∈ (ξe
n+1, ξn+1).

Thus, the function an(·) is continuously differentiable on (ξe
n+1, ξn+1) by the implicit

function theorem.

11.1. The interplay between the exit and entrance boundaries. We have been
unable to identify fully all the cases where the hypotheses A1(n) and A2(n) on
page 39 are satisfied for every n ∈ N (see, though, Section 11.2 for the important
case of “large” disorder arrival rate λ, and Section 11.3 for another interesting
example, where these hypotheses are satisfied). However, they are sufficient for
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Proposition 11.17 to hold, and Proposition 11.17 shows the crucial interplay be-
tween the exit and entrance boundaries. We would like to illustrate this interplay
briefly; it may be very useful in designing efficient detection algorithms for general
Poisson disorder problems. Later, we shall suggest how the gap may be closed as
an interesting research problem.

In Section 9.2, we showed that both the value functions and the exit bound-
aries are determined by the entrance boundaries; see Lemma 9.7. More explicitly,
once the entrance boundary ∂Γe

n+1 has been obtained, one can calculate the value
function vn+1(·, ·) and the exit boundary ∂Γx

n+1 by running backwards in time the
parametric curves t 7→ (x(t, φ0), y(t, φ1)) from every point (φ0, φ1) on the entrance
boundary ∂Γe

n+1 and by evaluating the explicit expressions of Lemma 9.7 along the

ξe
1 ξ1

Exit boundary ∂Γx
1

Entrance
boundary ∂Γe

1:
γ1(·) = a0(·)
on [ξe

1, ξ1]

of the stopping region Γ1:

Γ1

γ1(·) > a0(·) on [0, ξe
1)

satisfying the equation[
1
µ · g ◦ S−1

]
(·, ·) = v1(·, ·)

a0(·)

γ1(·)

S[a1]: The locus of points
Γ1

A0A0

C1: tangent to a0(·) at ξe
1

Exit boundary ∂Γx
n+1

of the stopping region Γn+1:

Γn+1

γn+1(·) > an(·) on [0, ξe
n+1)

Γn+1

An

ξn+1ξe
n+1

Cn+1: tangent to an(·) at ξe
n+1

Entrance
boundary ∂Γe

n+1:
γn+1(·) = an(·)
on [ξe

n+1, ξn+1]

S[an+1]: The locus of points

γn+1(·)

an(·)

An

satisfying the equation[
1
µ · g ◦ S−1

]
(·, ·) = vn+1(·, ·)

(a)

(c)

(b)

(d)

Fig 5. Figures (a) and (b) illustrate Steps D.1 and D.2 of Method D page 42 for n = 0, and
Figures (c) and (d) for a general n.
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way. On the other hand, the entrance boundary ∂Γe
n+1 can be found when the value

function vn(·, ·) has already been calculated. Since v0 ≡ 0 is readily available, the
following iterative algorithm will give us every vn(·, ·), n ∈ N0 and the boundary
functions γn(·); see also Figure 5:

Step D.0 Initialize n = 0, v0(·, ·) ≡ 0 on R2
+. Let a0(·) be the boundary function

of the region A0 = {(φ0, φ1) ∈ R2
+ : [g + µ · v0 ◦ S](φ0, φ1) < 0}; see (11.15).

Step D.1 There is unique number φ0 = ξe
n+1 in the bounded support φ0 ∈ [0, ξn+1]

of the function an(·) such that, for every small δ > 0, we have

an(x(t, φ0)) ≤ y(t, an(φ0)), t ∈ [0, δ) if φ0 = 0, and t ∈ (−δ, δ) if φ0 > 0.

Equivalently, the parametric curve Cn+1 , R2
+ ∩{(x(t, ξe

n+1), y(t, an(ξe
n+1))) :

t ∈ R} in (3) of Proposition 11.17 majorizes the boundary {(x, an(x)) : x ∈
supp(an)} of the region An = {(x, y) ∈ R2

+ : [g + µ · vn ◦ S](x, y) < 0} every-
where. The entrance boundary of the stopping region Γn+1 = {(φ0, φ1) ∈ R2

+ :
vn+1(φ0, φ1) = 0} is given by ∂Γe

n+1 = {(φ0, an(φ0)) : φ0 ∈ (ξe
n+1, ξn+1)}.

(i) Find the entrance boundary ∂Γe
n+1.

(ii) For every (φ0, φ1) ∈ ∂Γe
n+1, take the following steps to calculate the

value function vn+1(·, ·) on the continuation region Cn+1 and the exit
boundary ∂Γx

n+1:

(a) Calculate r̂(φ0, φ1) , inf{t ≥ 0 : (x(−t, φ0), y(−t, φ1)) 6∈ R2
+}.

(b) If −Jvn(−r̂(φ0, φ1), φ0, φ1) < 0, then set r̂n(φ0, φ1) = ∞. Other-
wise, find

r̂n(φ0, φ1) , inf{t ∈ (0, r̂(φ0, φ1)] : −Jvn(−t, φ0, φ1) ≥ 0}

by a bisection search on (0, r̂(φ0, φ1)], and add the point

(x(−r̂n(φ0, φ1), φ0), y(−r̂n(φ0, φ1), φ1)) ∈ ∂Γx
n+1

to the exit boundary.
(c) Calculate the value function

vn+1(x(−t, φ0), y(−t, φ1)) = −e−(λ+µ)tJvn(−t, φ0, φ1)

along the curve (x(−t, φ0), y(−t, φ1)), t ∈ (0, r̂(φ0, φ1) ∧ r̂n(φ0, φ1)]
until it either leaves R2

+ or hits the exit boundary ∂Γx
n+1.

The union ∂Γx
n+1 ∪ cl(∂Γe

n+1) = ∂Γx
n+1 ∪ {(x, an(x)) : x ∈ [ξe

n+1, ξn+1]}
gives the boundary ∂Γn+1 = {(x, γn+1(x)) : x ∈ [0, ξn+1]} and the
boundary curve γn+1(·), which is strictly decreasing and convex on its
support [0, ξn+1].

(iii) Set vn+1(·, ·) = 0 on the stopping region Γn+1 = {(x, y) : y ≥ γn+1(x)}.
Step D.2 Set n to n + 1. Determine the locus of the points (φ0, φ1) in R2

+ that
satisfy the equation [

1
µ
· g ◦ S−1

]
(φ0, φ1) = vn(φ0, φ1).
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This locus is the same as {(x, S[an+1](x)) : x ∈ supp(S[an+1])}; see No-
tation 8.2. Shift it by the linear transformation S−1 of (5.8) to obtain the
boundary {(x, an(x)) : x ∈ supp(an)} of the region An = {(x, y) : [g + µ · vn ◦
S](x, y) < 0}. Go to Step D.1.

11.18 Conjecture. The algorithm relies on only two results from Section 11: (i)
the entrance boundary ∂Γe

n+1, n ∈ N0 is connected, and (ii) the boundary ∂Γx
n+1,

n ∈ N0 is the disjoint union of the exit boundary ∂Γx
n+1 and the closure of the

entrance boundary ∂Γe
n+1. Part (ii) was proved by using (i) and the first hypothesis

A1(n+1) on page 39; see Lemma 11.13. We conjecture that the hypothesis A1(n+1)
always holds for all n ∈ N0.

On the other hand, part (i) was proved by using the continuity of the map-
ping (φ0, φ1) 7→ rn(φ0, φ1) on the connected continuation region Cn+1; see Corol-
lary 11.6. The continuity of the mapping rn(·, ·) followed from its continuous dif-
ferentiability on Cn+1, which we proved by using the implicit function theorem
(Theorem 11.2) under hypothesis A2(n + 1); see Lemma 11.4. We conjecture that
this mapping is always continuous on the continuation region Cn+1. This may be
proved directly by using a weaker version of the implicit function theorem (see, e.g.,
Krantz and Parks [12]) or by using nonsmooth analysis (see, e.g., Clarke et al. [7]).

11.2. The regularity of the value functions and the optimal stopping boundaries
when the disorder arrival rate λ is “large”. One of the cases where both A1(n)
and A2(n) on page 39 are satisfied for every n ∈ N, is when the disorder arrival
rate λ is “large”; see Section 4.3 and Figure 1(a).

Suppose that λ ≥ [1− (1+µ)(c/2)]+. Then the curve t 7→ (x(t, φ0), y(t, φ1)), and
therefore the mapping t 7→ Gn(t, φ0, φ1), t ∈ R+, are strictly increasing for every
(φ0, φ1) ∈ R2

+ and n ∈ N0; see Lemma 9.2. Hence, A1(n) always holds for every
n ∈ N0.

For the same reason, all of the exit boundaries ∂Γx
n, n ∈ N are empty; see Sec-

tion 10. Since ∂Γx
1 is empty, the value function v1(·, ·) is continuously differentiable

everywhere. Therefore, A2(1) holds. Then Proposition 11.17 implies that v2(·, ·) is
continuously differentiable everywhere since ∂Γx

2 is empty. Therefore, A2(2) holds,
and so on.

11.19 Corollary (“Large” disorder arrival rate: smooth solutions of reference op-
timal stopping problems). Suppose that λ ≥ [1 − (1 + µ)(c/2)]+. Then A1(n) and
A2(n) hold for every n ∈ N0, and Proposition 11.17 applies. Particularly, for every
n ∈ N0:

1. the value function vn+1(·, ·) is continuously differentiable everywhere;
2. the exit boundary ∂Γx

n+1 is empty, and ∂Γn+1 = cl(∂Γe
n+1); and

3. the boundary function γn+1(·) is continuously differentiable on the interior of
its support [0, ξn+1]. Thus, the function γn+1(·) coincides with the boundary

a0(x) = −x +
λ

c

√
2 of the region A0 on the interval

[
0,

λ
√

2
2c

]
,

and fits smoothly to this function at the right end-point of the same interval.
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The last part of (3) in the corollary follows from (10.11) in Section 10 and
Proposition 11.17. Recall also from Remark 8.6 that, if the disorder arrival rate λ
is “large”, then there is an increasing sequence of sets R+ × [Bn,∞) whose limit
is R+ × (0,∞), and v(·, ·) = vn(·, ·) on R+ × [Bn,∞) for every n ∈ N. Therefore,
Corollary 11.19 implies immediately that the value function v(·, ·) and the boundary
function γ(·) are continuously differentiable on R+ × (0,∞) and on the interior of
the support [0, ξ] of the function γ(·), respectively.

To prove that v(·, ·) is continuously differentiable on (0,∞) × {0}, we shall use
again the implicit function theorem. By Proposition 5.6 and Remark 5.10,

v(φ0, 0) = Jv(r(φ0, 0), φ0, 0) =
∫ r(φ0,0)

0

e−(λ+µ)tG(t, φ0, 0)dt, φ0 ∈ R+.

The function (t, φ0) 7→ G(t, φ0, 0) , [g + µ · v ◦ S](x(t, φ0), y(t, 0)) is continu-
ously differentiable on (0,∞) × (0,∞) since v(·, ·) is continuously differentiable
on R+ × (0,∞) and (x(t, φ0), y(t, 0)) ∈ (0,∞) × (0,∞) for every t > 0. Moreover,
the partial derivative (t, φ0) 7→ Dφ0G(t, φ0, 0) is locally bounded on (0,∞)× (0,∞)
by Corollary 5.4. Therefore, the function (t, φ0) 7→ Jv(t, φ0, 0) is continuously dif-
ferentiable on (0,∞)× (0,∞) and

Dφ0Jv(t, φ0, 0) =
∫ t

0

e−(λ+µ)uDφ0G(t, φ0, 0)du

=
∫ t

0

e−(µ+1)u [1 + (µ− 1) Dφ0v ◦ S] (x(u, φ0), y(u, 0))du, (t, φ0) ∈ R+×(0,∞).

Since v(φ0, 0) ≡ 0 for every φ0 ∈ [ξ,∞), it is continuously differentiable on
(ξ,∞). To show that it is differentiable on (0, ξ), it is enough to prove that the
mapping φ0 7→ r(φ0, 0) from (0, ξ) to R+ is continuously differentiable. Observe
that, if we define

F (t, φ0) , γ(x(t, φ0))− y(t, 0), (t, φ0) ∈ R2
+,

then F (r(φ0, 0), φ0) = 0 for every φ0 ∈ [0, ξ]. For every φ0 ∈ (0, ξ), the function
F (·, ·) is continuously differentiable in some neighborhood of (r0(φ0, 0), φ0) since
x(r(φ0, 0), φ0) ∈ (0, ξ) and γ(·) is continuously differentiable on [0, ξ). Moreover,

DtF (t, φ0) = γ′(x(t, φ0))Dtx(t, φ0)−Dty(t, 0) < 0

at every (t, φ0) ∈ R2
+ where DtF (t, φ0) exists (because since γ(·) is decreasing, t 7→

x(t, 0) and t 7→ x(t, φ0) are strictly increasing). Then the implicit function theorem
implies that φ0 7→ r(φ0, 0), and therefore, φ0 7→ v(φ0, 0) = Jv(r(φ0, 0), φ0, 0), is
continuously differentiable at φ0 ∈ (0, ξ). A similar argument as in Corollary 11.12
shows that φ0 7→ r(φ0, 0) is continuous at φ0 = ξ and limφ0↑ξ r(φ0, 0) = 0. By the
Leibniz rule (see, e.g., Protter and Morrey [16, Theorem 11.1, p. 286]), the limit of
the derivative Dφ0v(φ0, 0) = DtJv(r(φ0, 0), φ0, 0) + Dφ0Jv(r(φ0, 0), φ0, 0)

=
∫ r(φ0,0)

0

e−(µ+1)u [1 + (µ− 1) Dφ0v ◦ S] (x(u, φ0), y(u, 0))du, φ0 ∈ (0, ξ)
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of the value function v(·, ·) at (φ0, 0), as φ0 increases to ξ, equals zero. Recall that,
since r(φ0, 0) > 0 for every φ0 ∈ [0, ξ), the derivative of t 7→ Jv(t, φ0, 0) on the
right-hand side vanishes at its minimizer t = r(φ0, 0). Thus, the left and right
derivatives of the concave function φ0 7→ v(φ0, 0) at φ0 = ξ, are equal:

D−
φ0

v(ξ, 0) = lim
φ0↑ξ

D−
φ0

v(φ0, 0) = lim
φ0↑ξ

Dφ0v(φ0, 0) = 0 = D+
φ0

v(ξ, 0).

This shows that the function (0,∞) 3 φ0 7→ v(φ0, ·) is continuously differentiable.
Hence the value function v(·, ·) is continuously differentiable on R+ × {0}.

11.20 Corollary (“Large” disorder arrival rate: smooth solution of the main op-
timal stopping problem). Suppose that λ ≥ [1− (1 + µ)(c/2)]+. Then

1. the value function v(·, ·) is continuously differentiable everywhere;
2. the boundary function γ(·) is continuously differentiable on the interior of its

support [0, ξ], coincides with the boundary function

a0(x) = −x +
λ

c

√
2 of the region A0 on the interval

[
0,

λ
√

2
2c

]
,

and fits smoothly to this function at the right end-point of the same interval;
3. the function v(·, ·) is the solution of the variational inequalities (11.1)-(11.4).

11.21 Corollary. If λ ≥ [1 − (1 + µ)(c/2)]+, then both the sequence {vn}n∈N of
the value functions and the sequences of their partial derivatives {Dφ0vn}n∈N and
{Dφ1vn}n∈N converge uniformly to the value function v and its partial derivatives
Dφ0v and Dφ1v, respectively.

Proof. Follows immediately from Theorem 25.7 in Rockafellar [17, p. 248].

The results obtained in Section 9 for the functions vn, n ∈ N can be extended
easily to the value function v(·, ·), n ∈ N. As in Lemma 9.2, we have

A , {(x, y) ∈ R2
+ : [g + µ · v ◦ S](x, y) < 0} = {(x, y) ∈ R2

+ : y < a(x)},
{(x, y) ∈ R2

+ : [g + µ · v ◦ S](x, y) = 0} = {(x, a(x)) : x ∈ [0, α]}

for some decreasing function a : R+ 7→ R+ which is strictly decreasing on its finite
support [0, α]. We have A ⊆ C, and equality holds if λ ≥ [1− (1 + µ)(c/2)]+ since
the parametric curves t 7→ (x(t, φ0), y(t, φ1)) increase and do not come back the
region A after they leave; see Section 10. Therefore, γ(·) ≡ a(·) and

[g + µ · v ◦ S](x, y) > 0, (x, y) ∈ Γ\∂Γ. (11.19)

Proof of Corollary 11.20. Only (3) remains to be proven. The function v : R2
+ 7→

(−∞, 0] is bounded and continuously differentiable. By the definition of the contin-
uation region C = {(x, y) ∈ R2

+ : v(x, y) < 0} and the stopping region Γ = R2
+\C,

the (in)equalities (11.2) and (11.4) are satisfied. On the other hand, (11.19) implies

[(Ã − λ)v + g](φ0, φ1) = [g + µ · v ◦ S](φ0, φ1), (φ0, φ1) ∈ Γ
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is strictly positive for every (φ0, φ1) ∈ Γ\∂Γ, i.e., (11.3) is also satisfied. On the
other hand, [(Ã − λ)v + g](φ0, φ1) equals

Dφ0v(φ0, φ1)
[
(λ + 1)φ0 +

λ(1−m)√
2

]
+ Dφ1v(φ0, φ1)

[
(λ− 1)φ1 +

λ(1 + m)√
2

]
+ µ

[
v

((
1− 1

µ

)
φ0,

(
1 +

1
µ

)
φ1

)
− v(φ0, φ1)

]
− λv(φ0, φ1) + g(φ0, φ1)

= Dφ0v(φ0, φ1) ·Dtx(0, φ0) + Dφ1v(φ0, φ1) ·Dty(0, φ1)− (λ + µ)v(φ0, φ1)
+ [g + µ · v ◦ S](φ0, φ1)

=
∂

∂t

[
e−(λ+µ)tv(x(t, φ0), y(t, φ1)) +

∫ t

0

e−(λ+µ)t[g + µ v ◦ S](x(u, φ0), y(u, φ1))du

]∣∣∣∣
t=0

=
∂

∂t

[
e−(λ+µ)tv(x(t, φ0), y(t, φ1)) + Jv(t, φ0, φ1)

]∣∣∣
t=0

, (φ0, φ1) ∈ C.

Observe that the expression in the square brackets of the last equation equals
v(φ0, φ1) for every sufficiently small t > 0, by (5.19) in Remark 5.10. Therefore, the
derivative above equals zero, and (11.1) holds. This completes the proof that the
function v(·, ·) satisfies the variational inequalities (11.1)-(11.4).

The boundary function γ(·) is strictly decreasing on its support. The process
Φ̃ can have at most countably many jumps, and its paths are strictly increasing
between the jumps. Therefore, the time that the process Φ̃ spends on the boundary
∂Γ = {(x, γ(x)) : x ∈ [0, ξ]} equals zero almost surely. Since the derivative of
the convex boundary curve 0 ≥ γ′(x) ≥ γ′(0+) = a0(0+) = −1 is bounded on
x ∈ (0, ξ), the curve is Lipschitz continuous on its support.

Finally, Corollary 11.20 also shows that for every λ ≥ [1 − (1 + m)(c/2)]+, the
smooth restrictions of value function vn+1(·, ·) to the continuation region Cn+1 and
to the stopping region Γn+1 fit to each other smoothly across the smooth boundary
∂Γn+1 = {(x, γn+1(x)) : x ∈ [0, ξn+1]}.

However, if 0 < λ < 1 − (1 + m)(c/2) is small, then the corresponding value
function does not have to have the same smooth-fit property.

11.3. Failure of the smooth-fit principle: a concrete example. Here we shall give
a concrete example of a case where the value function fits smoothly across the
entrance boundary, but fails to fit smoothly across the exit boundary of the optimal
stopping region; see Figure 6(d).

Suppose that the disorder arrival rate λ, the pre-disorder arrival rate µ of the
observations, the detection delay cost c per unit time, and the expectation m =
E0[Λ−µ] of the difference Λ−µ between the arrival rates of the observations after
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and before the disorder, are chosen so that

0 < λ < 1− (1 + m)(c/2)
µ + 1

µ
φd > φ1

y < S[a0](x) =
µ + 1

µ
a0

(
µ

µ− 1
x

)
, (x, y) ∈

{
(φ∗0, φ

∗
1), (0, φ1)

}


. (11.20)

Here φd > 0 is the mean-reversion level in (4.14) of y 7→ y(t, φ1) for every initial
condition φ1 ∈ R+; see Section 4.4. The point

(φ∗0, φ
∗
1) =

(
λ√
2

(
1− λ

c
− 1
)

,
λ√
2

(
1 + λ

c
+ 1
))

(11.21)

is the intersection of the straight lines ` in (6.7) and y = a0(x). Recall from (11.15)
that a0(·) is the boundary function of the region A0 = {(x, y) ∈ R2

+ : g(x, y) <
0} ≡ {(x, y) ∈ R2

+ : y < a0(x)}. For every initial point (φ0, φ1) in R2
+, the sum

t 7→ x(t, φ0) + y(t, φ1), t ∈ R+ of the coordinates of the parametric curve t 7→
(x(t, φ0), y(t, φ1)), t ∈ R+ strictly decreases before the parametric curve meets the
line `, and strictly increases thereafter; see Lemma 11.3 and (6.8). Finally, the point
(0, φ1) with

φ1 = − λ(1 + m)√
2(λ− 1)

+
[
φ∗1 +

λ(1 + m)√
2(λ− 1)

][
1 + φ∗0

√
2(λ + 1)

λ(1−m)

]−(λ−1)/(λ+1)

(11.22)

is the initial point on the y-axis of the parametric curve t 7→ (x(t, 0), y(t, φ1)),
t ∈ R+ which passes trough the point (φ∗0, φ

∗
1) in (11.21). The coordinate φ1 in

(11.22) is found by substituting the solution of x(t∗, 0) = φ∗0 for t∗ into the equation
y(t∗, φ1) = φ∗1 and solving the latter for φ1; see also Figure 6(a).

Let us show that, under the conditions in (11.20), the “closedness” property in
(8.4) holds. By Lemma 11.3 and (6.8), the curve C1 in Corollary 11.9 becomes

C1 = {(x(t, 0), y(t, φ1)) : t ∈ R+} ≡ R2
+ ∩ {(x(t, φ∗0), y(t, φ∗1)) : t ∈ R};

it is tangent to the broken line {(x, a0(x)) : x ∈ R+} at the point (φ∗0, φ
∗
1). Therefore,

ξe
1 = φ∗0 by the same corollary, and the entrance boundary of the stopping region

Γ1 = {(x, y) : v1(x, y) = 0} is ∂Γe
1 = {(x, a0(x)) : x ∈ (φ∗0, (λ/c)

√
2)} by Corol-

lary 11.6. Moreover, the boundary function γ1(·) of the region Γ1 = {(x, γ1(x)) :
γ1(x) ≤ y} is supported on [0, (λ/c)

√
2] and satisfies

γ1(x) = a0(x), x ∈
[
φ∗0,

λ

c

√
2
]

and γ1(x) < y(0, φ1) = φ1, x ∈ [0, φ∗0).

(11.23)

The equality follows from Corollary 11.7, and the inequality from Remark 11.10
and the fact that the parametric curve C1 is decreasing. One can easily see from
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(11.23) and the second inequality in (11.20), that

(0, φd) ∈ R+ × [φd,∞) ⊂ S−1(Γ1) =
{
(x, S−1[γ1](x)) : x ∈ R+

}
,

φd ≥ S−1[γ1](0) =
µ

µ + 1
γ1(0). (11.24)

The restrictions of the value functions v(·, ·) and v1(·, ·), and therefore those of

φ1

λ
c

√
2

φd

A0 ≡ C0

(φ∗0, φ
∗
1)

C1

0 λ
c

√
2

a0(·)

S[a0](·):
[

1
µ · g ◦ S−1

]
(·, ·) = v0(·, ·)

`(a)

λ
c

√
2

φd

0 λ
c

√
2

B1

S[a1(·)]:
[

1
µ · g ◦ S−1

]
(·, ·) = v1(·, ·)

a1(·)

apply S−1

S−1[γ1](·)

γ(0)

ξe = φ∗0

γ1(·)
A1

x1

(c)

The value function v(·, ·)
is differentiable everywhere except
on the exit boundary ∂Γx

λ
c

√
2

φd

0

γ(0)

ξe = φ∗0

γ1(·)

γ2(·)

of the stopping region Γ

the exit boundary ∂Γx

γ(·)

x1
λ
c

√
2 ξ

Γ(d)

A0 ≡ C0

λ
c

√
2

φ1

(φ∗0, φ
∗
1)

C1

γ1(0)

φd

a0(·) γ1(·)

S−1[γ1](·)

v(·, ·) = v1(·, ·) on R+ × [B1,∞)

∂Γx = ∂Γx
1 = {(x, γ1(x)) : x ∈ [0, ξe

1)}

0

µ
µ+1γ1(0) ≡ B1

x1
λ
c

√
2ξe

1 = φ∗0

γ(·) = γ1(·) on [0, x1)

(b)

Fig 6. (a) shows the location of points (φ∗0, φ∗1) and (0, φ1) and the line described by the function
S[a0](·). In (b) and (c), we recall how to find the function v1(·) and region A1, respectively;
compare with Figure 4. The boundary function γ(·) of the stopping region Γ = {(x, y) ∈ R2

+ :
v(x, y) = 0} is sketched in (d).
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the boundaries ∂Γ and ∂Γ1, coincide on R+ × [φd,∞). First, observe thatx(t, φ0) + y(t, φ1) ≥ x(t, 0) + y(t, φ1) ≥
λ

c

√
2

i.e., (x(t, φ0), y(t, φ1)) /∈ C0, t ∈ R+

 , (φ0, φ1) ∈ R+ × [φ1,∞),

where C0 = {(x, y) ∈ R2
+ : g(x, y) < 0} is as in (4.13) and coincides with A0.

By the second inequality in (11.20) and the properties of the parametric curves
t 7→ (x(t, φ0), y(t, φ1)), t ∈ R+ (see Section 4.2), we have

(φ0, φ1) ∈ R+ × [φd,∞) =⇒

{
S(φ0, φ1) ∈ R+ × [φ1,∞) ⊂ R+ × [φd,∞)
(x(t, φ0), y(t, φ1)) ∈ R+ × [φd,∞), t ∈ R+

}
.

Using the last two displayed equations gives that, if the initial state Φ̃0 on a sample-
path of the sufficient statistic Φ̃ = (Φ̃(0), Φ̃(1)) is in R+× [φd,∞), then the sample-
path stays in the region R2

+× [φd,∞) and never returns to the advantageous region
C0 after the first jump; see Section 4.1. In fact,

v ◦ S(φ0, φ1) = inf
τ∈S

ES(φ0,φ1)
0

[∫ τ

0

e−λug(Φ̃u)du

]
= 0, (φ0, φ1) ∈ R+ × [φd,∞),

and therefore,

v(φ0, φ1) = J0v(φ0, φ1) = inf
t∈[0,∞]

∫ t

0

e−(λ+µ)u

≡g(·,·)︷ ︸︸ ︷
[g + µ · v ◦ S](x(u, φ0), y(u, φ1))du

= J0v0(φ0, φ1) = v1(φ0, φ1), (φ0, φ1) ∈ R+ × [φd,∞). (11.25)

The stopping region Γ = {(x, y) ∈ R2
+ : v(x, y) = 0} and its boundary ∂Γ are

determined by the value function v(·, ·). Then (11.25) implies that the restrictions
of the boundaries ∂Γ and ∂Γ1 to the region R+ × [φd,∞) also coincide. Therefore,
the second inequality in (11.20) implies

φd <
λ

c

√
2 ≤ γ1(0) = γ(0), and S−1[γ](0) ≡ µ

µ + 1
γ(0) < φd

follows from (11.24). Since the boundary function S−1[γ](·) of the region S−1(Γ) is
decreasing (see (8.7)), the second inequality gives

R+ × [φd,∞) ⊆ S−1(Γ) = {(x, y) ∈ R2
+ : S−1[γ](x) ≤ y}.

But starting at any (φ0, φ1) ∈ R×[0, φd], the parametric curves t 7→ (x(t, φ0), y(t, φ1)),
t ∈ R+ are increasing. Since the boundary functions S−n[γ](·) of the regions
S−n(Γ) = {(x, y) ∈ R2

+ : S−n[γ](x) ≤ y}, n ∈ N are also decreasing, every re-
gion S−n(Γ), n ∈ N is “closed” in the sense of (8.4). Therefore, Method A on
page 24 can be used in order to calculate the value function v(·, ·) on R2

+.

11.22 Corollary. Suppose that (11.20) holds. Let Bn , [µ/(µ+1)]nγ1(0) for every
n ∈ N. Then the sequence R+ × [Bn,∞), n ∈ N increases to R+ × (0,∞), and we
have v(·, ·) = vn(·, ·) on R+ × [Bn,∞) for every n ∈ N.
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Since (φ∗0, φ
∗
1) ∈ R+× [φd,∞) ⊆ R+× [B1,∞), the exit boundaries ∂Γx

1 and ∂Γx

of the stopping regions Γ1 and Γ are the same, and

∂Γx = ∂Γx
1 = {(x, γ1(x)) : x ∈ [0, ξe

1)} ≡ {(x, γ1(x)) : x ∈ [0, φ∗0)}.

From the entrance boundary ∂Γe
1 = {(x, a0(x)) : x ∈ (φ∗0, (λ/c)

√
2)} of the stopping

region Γ1, we can obtain its exit boundary ∂Γx
1 and the value function v1(·, ·) on

the continuation region C1 by using Method D on page 42; see Figures 5(a,b) and
6(b).

Note also that the value function v(·, ·) ≡ v1(·, ·) is continuously differentiable
on R+ × [B1,∞)\∂Γx

1 and is not differentiable on ∂Γx
1 by Corollary 11.5 and

Lemma 11.16. Let x1 ≡ x1(γ1) = min{x ∈ R+ : S−1[γ1](x) = γ1(x)} is the
(smallest) intersection point of the functions S−1[γ1](·) and γ1(·) as in (8.9). Then
Corollary 8.4 implies

{(x, γ(x)) : x ∈ R+} ∩ S−1(Γ1) = {(x, γ1(x)) : x ∈ [0, x1]},

and the restriction of the boundary function γ(·) ≡ γ1(·) to the interval [0, x1) is
continuously differentiable by Lemma 11.15.

Using Corollary 11.22, we can also show that the restrictions of the value function
v(·, ·) and the boundary ∂Γ of the stopping region Γ on the complement of the region
R+ × [B1,∞) are continuously differentiable.

Since the sequence {vn(·, ·)}n∈N of the value functions increases to the function
v(·, ·), all of them coincide with v(·, ·) ≡ v1(·, ·) on the region R+× [B1,∞). On the
region R+ × [0, B1), they differ, but are continuously differentiable.

In fact, since every parametric curve t 7→ (x(t, φ0), y(t, φ1)), t ∈ R+ starting at
any point (φ0, φ1) ∈ R+× [0, φd] ⊃ R+× [0, B1] is increasing, the hypothesis A1(n)
on page 39 holds on the region R+ × [0, φd] for every n ∈ N.

On the other hand, the third inequality in (11.20) guarantees that hypothesis
A2(n) on page 39 also holds on R+× [0, φd] for every n ∈ N. Indeed, every entrance
boundary ∂Γe

n+1 coincides with some part of the boundary ∂An = {(x, an(x)) : x ∈
R+} of the region An = {(x, y) ∈ R2

+ : [g + µ · vn ◦ S](x, y) < 0}; see Lemma 9.5.
Since the sequence {an(·)}n∈N0 of the boundary functions is increasing, the third
inequality in (11.20) implies

y < S[a0](x) ≤ S[an](x), n ∈ N0, (x, y) ∈
{
(φ∗0, φ

∗
1), (0, φ1)

}
.

Thus, by an induction on n ∈ N0, we can easily show that the transformation
S(∂Γe

n+1) of the entrance boundary ∂Γe
n+1 of every stopping region Γn+1 is away

from the exit boundary ∂Γx
n+1 ≡ ∂Γx

1 . Therefore, the function (x, y) 7→ [g +µ · vn ◦
S](x, y) is differentiable on the entrance boundary ∂Γe

n+1. The same induction, as
in Section 11.2, will also prove the continuous differentiability of the value functions
vn(·, ·), n ∈ N and v(·, ·) on the region R+ × [0, φd] ⊃ R+ × [0, B1], as well as, the
continuous differentiability of the restrictions of the boundaries ∂Γn, n ∈ N and ∂Γ
to the set R+ × [0, φd].

11.23 Corollary. Suppose that (11.20) holds. Then the boundary function γ(·) of
the stopping region Γ = {(x, y) ∈ R2

+ : γ(x) ≤ y} is continuously differentiable on
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its support [0, ξ]. The exit boundary Γx is not empty. The value function v(·, ·) is
continuously differentiable on R2

+\∂Γx, but not differentiable on ∂Γx.

The interesting feature of the solutions of the problems covered under condition
(11.20) is that the smooth-fit principle is satisfied on one connected proper subset of
the (connected and continuously differentiable) boundary of the optimal stopping
region, and fails on the complement of this subset. Moreover, the value function is
continuously differentiable away from the boundary.

The conditions in (11.20) are satisfied, for example, if λ = 0.15, µ = 1.5 and
c = 0.7 and m = 0.9. In general, the functions S−1[a0](·) and a0(·) always intersect
on the line y = x. Since γ1(·) ≥ a0(·) and γ1(·) is decreasing, we have x1 ≤
(λ/c) · (

√
2/2), with equality if and only if

S−1(φ∗0, φ
∗
1) ∈ {(x, y) ∈ R2

+ : x < y} ⇐⇒ 1 < µ(λ + c).

This condition is satisfied for the numbers above. As a result, we have x1 = (λ/c) ·
(
√

2/2) and γ(x) = a0(x) = x − (λ/c)
√

2 for every x ∈ [φ∗0, x1]. The boundary
function γ(·) is strictly above the function a0(·) everywhere else.

12. Appendix: proofs of selected results.

The P0-infinitesimal generator Ã of the process Φ̃ in (4.5). Let us denote by

Ã the infinitesimal generator under P0 of the process Φ̃ =
[
Φ̃(0) Φ̃(1)

]T
in (4.5).

For every function f ∈ C1,1(R+ × R+), we have

f(Φ̃t) = f(Φ̃0) +
∑

0<s≤t

[
f(Φ̃s)− f(Φ̃s−)

]
+

Z t

0


Dφ0f(eΦs)

»
(λ + 1)eΦ(0)

s +
λ(1−m)√

2

–
+ Dφ1f(eΦs)

»
(λ− 1)eΦ(1)

s +
λ(1 + m)√

2

–ff
ds,

(12.1)

and
∑

0<s≤t

[
f(Φ̃s)− f(Φ̃s−)

]
equals∫ t

0

[
f

((
1− 1

µ

)
· Φ̃(0)

s−,

(
1 +

1
µ

)
· Φ̃(1)

s−

)
− f

(
Φ̃(0)

s−, Φ̃(1)
s−

)]
dNs.

Note that {Nt − µt; t ≥ 0} is a (P0, F)-martingale. Then for every F-stopping time
τ such that

Eφ0,φ1
0

∣∣∣f(Φ̃τ

)∣∣∣ < ∞ and

Eφ0,φ1
0

[∫ τ

0

∣∣∣∣f ((1− 1
µ

)
· Φ̃(0)

s−,

(
1 +

1
µ

)
· Φ̃(1)

s−

)
− f

(
Φ̃(0)

s−, Φ̃(1)
s−

)∣∣∣∣ ds

]
< ∞,

(12.2)

we have

E0f(Φ̃τ ) = f(Φ̃0) + E0

∫ τ

0

Ãf(Φ̃s)ds, t ≥ 0, (12.3)
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and Ãf(φ0, φ1) equals

Dφ0f(φ0, φ1)
[
(λ + 1)φ0 +

λ(1−m)√
2

]
+ Dφ1f(φ0, φ1)

[
(λ− 1)φ1 +

λ(1 + m)√
2

]
+ µ

[
f

((
1− 1

µ

)
φ0,

(
1 +

1
µ

)
φ1

)
− f(φ0, φ1)

]
, (φ0, φ1) ∈ R+ × R+. (12.4)

Proof of Lemma 5.3. Let w : R2
+ 7→ R be a bounded Borel function. Since

g(·, ·) ≥ g(0, 0) = −λ
√

2/c in (4.12) is bounded from below, the function J0w
is well-defined. By (5.7),

Jw(t, φ0, φ1) ≥ −
(

λ

c

√
2 + µ||w||

)∫ ∞

0

e−(λ+µ)udu = −
(

λ

c

√
2 + µ||w||

)
1

λ + µ

for every t ∈ [0,∞]. Since we also have J0w(φ0, φ1) ≤ Jw(0, φ0, φ1) = 0, we obtain
(5.9).

Suppose now that w is also concave. For every u ∈ R, the functions φ0 7→ x(u, φ0)
and φ1 7→ y(u, φ1) in (4.8) are linear. The mappings (φ0, φ1) 7→ S(φ0, φ1) in (5.8)
and (φ0, φ1) 7→ g(φ0, φ1) in (4.12) are also linear. Therefore, the integrand in (5.7),
namely (φ0, φ1) 7→ e−(λ+µ)u

(
g + µ · w ◦ S

)(
x(u, φ0), y(u, φ1)

)
ixs concave for every

u ∈ [0,∞). Thus, the mappings (φ0, φ1) 7→ Jw(t, (φ0, φ1)), t ∈ [0,∞] in (5.7) are
concave. Then J0w(φ0, φ1) = inft∈[0,∞] Jw(t, φ0, φ1) is a lower envelope of concave
mappings, and therefore, is a concave function of (φ0, φ1) ∈ R2

+. Finally, it is clear
from (5.7) that w1 ≤ w2 implies that J0w1 ≤ J0w2.

Proof of Corollary 5.4. The function v0 ≡ 0 has all of the properties. The proof
follows from an induction and the properties of concave functions.

For the proof of Proposition 5.5, we shall need the following result on the char-
acterization of F-stopping times, see Brémaud [6, Theorem T33, p. 308], Davis [9,
Lemma A2.3, p. 261].

12.1 Lemma. For every F-stopping time τ and every n ∈ N0, there is an Fσn-
measurable random variable Rn : Ω 7→ [0,∞] such that τ ∧σn+1 = (σn +Rn)∧σn+1

holds P0-a.s. on {τ ≥ σn}.

Proof of Proposition 5.5. First, we shall establish the inequality

Eφ0,φ1
0

∫ τ∧σn

0

e−λtg
(
Φ̃t

)
dt ≥ vn(φ0, φ1), τ ∈ S, (φ0, φ1) ∈ R2

+ (12.5)

for every n ∈ N0, by proving inductively on k = 1, . . . , n + 1 that

Eφ0,φ1
0

∫ τ∧σn

0

e−λtg
(
Φ̃t

)
dt ≥ RHSk−1 :=

Eφ0,φ1
0

[(∫ τ∧s

0

e−λtg
(
Φ̃t

)
dt + 1{τ≥s}e

−λsvk−1

(
Φ̃s

))∣∣∣∣
s=σn−k+1

]
. (12.6)
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Observe that (12.5) follows from (12.6) when we set k = n + 1.
If k = 1, then the inequality (12.6) is satisfied as an equality, since v0 ≡ 0.

Suppose that (12.6) holds for some 1 ≤ k < n + 1. We shall prove that it must also
hold when k is replaced with k + 1. Let us denote the right-hand side of (12.6) by
RHSk−1, and rewrite it as

RHSk−1 = RHS
(1)
k−1 + RHS

(2)
k−1 , Eφ0,φ1

0

[∫ τ∧σn−k

0

e−λtg
(
Φ̃t

)
dt

]
+ Eφ0,φ1

0

[
1{τ≥σn−k}

(∫ τ∧s

σn−k

e−λtg
(
Φ̃t

)
dt + 1{τ≥s}e

−λsvk−1

(
Φ̃s

))∣∣∣∣∣
s=σn−k+1

]
.

(12.7)

By Lemma 12.1, there is an Fσn−k
-measurable random variable Rn−k such that

τ ∧ σn−k+1 = (σn−k + Rn−k) ∧ σn−k+1 holds P0-almost surely on {τ ≥ σn−k}.
Therefore, the second expectation, denoted by RSH

(2)
k−1, in (12.7) becomes

Eφ0,φ1
0 1{τ≥t}

[∫ (t+Rn−k)∧s

t

e−λug
(
Φ̃u

)
du + 1{t+Rn−k≥s}e

−λsvk−1

(
Φ̃s

)]∣∣∣∣∣t=σn−k
s=σn−k+1

= Eφ0,φ1
0

{
1{τ≥σn−k}e

−λσn−kfn−k(Rn−k, Φ̃σn−k
)
}

by the strong Markov property of N , where

fk−1(r, φ0, φ1) , Eφ0,φ1
0

[∫ r∧σ1

0

e−λtg
(
Φ̃t

)
dt + 1{r≥σ1}e

−λσ1vk−1

(
Φ̃σ1

)]
= Jvk−1(r, (φ0, φ1)) ≥ J0vk−1(φ0, φ1) = vk(φ0, φ1).

The (in)equalities follow from (5.3), (5.4) and (5.6), respectively. Thus

RHS
(2)
k−1 ≥ Eφ0,φ1

0

[
1{τ≥σn−k}e

−λσn−kvk

(
Φ̃σn−k

)]
.

From (12.6) and (12.7), we obtain

Eφ0,φ1
0

∫ τ∧σn

0

e−λtg
(
Φ̃t

)
dt ≥ RHSk−1 = Eφ0,φ1

0

[∫ τ∧σn−k

0

e−λtg
(
Φ̃t

)
dt

]
+ RHS

(2)
k−1

≥ Eφ0,φ1
0

[∫ τ∧σn−k

0

e−λtg
(
Φ̃t

)
dt + 1{τ≥σn−k}e

−λσn−kvk

(
Φ̃σn−k

)]
= RHSk.

This completes the proof of (12.6) by induction on k, and (12.5) follows by setting
k = n + 1 in (12.6). When we take the infimum of both sides in (12.5), we obtain
Vn ≥ vn, n ∈ N.

The reverse inequality Vn ≤ vn, n ∈ N follows immediately from (5.11), since
every F-stopping time Sε

n is less than or equal to σn, P0-a.s. by construction. There-
fore, we only need to establish (5.11). We shall prove it by induction on n ∈ N. For
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n = 1, the left-hand side of (5.11) becomes

Eφ0,φ1
0

∫ Sε
1

0

e−λtg
(
Φ̃t

)
dt = Eφ0,φ1

0

∫ rε
0(φ0,φ1)∧σ1

0

e−λtg
(
Φ̃t

)
dt = Jv0(rε

0(φ0, φ1), φ0, φ1).

Since Jv0(rε
0(φ0, φ1), φ0, φ1) ≤ J0v0(φ0, φ1) + ε by Remark 5.2, (5.11) holds for

n = 1.
Suppose that (5.11) holds for every ε > 0 for some n ∈ N. We will prove that it

also holds when n is replaced with n + 1. Since Sε
n+1 ∧ σ1 = r

ε/2
n

(
Φ̃0

)
∧ σ1, P0-a.s.,

the expectation Eφ0,φ1
0

[∫ Sε
n+1

0
e−λtg

(
Φ̃t

)
dt
]

becomes

Eφ0,φ1
0

[∫ Sε
n+1∧σ1

0

e−λtg
(
Φ̃t

)
dt + 1{Sε

n+1≥σ1}

∫ Sε
n+1

σ1

e−λtg
(
Φ̃t

)
dt

]

= Eφ0,φ1
0

[∫ rε/2
n (φ0,φ1)∧σ1

0

e−λtg
(
Φ̃t

)
dt

]
+ Eφ0,φ1

0

[
1{rε/2

n (φ0,φ1)≥σ1}
e−λσ1fn

(
Φ̃σ1

)]
by the strong Markov property of N , where

fn(φ0, φ1) , Eφ0,φ1
0

[∫ Sε/2
n

0

e−λtg
(
Φ̃t

)
dt

]
≤ vn(φ0, φ1) + ε/2

by the induction hypothesis. Therefore,

Eφ0,φ1
0

[∫ Sε
n+1

0

e−λtg
(
Φ̃t

)
dt

]
≤ Eφ0,φ1

0

[∫ rε/2
n (φ0,φ1)∧σ1

0

e−λtg
(
Φ̃t

)
dt+

1{rε/2
n (φ0,φ1)≥σ1}

e−λσ1vn

(
Φ̃σ1

)]
+ ε/2 = Jvn(rε/2

n (φ0, φ1), (φ0, φ1)) + ε/2. (12.8)

Since Jvn(rε/2
n (φ0, φ1), (φ0, φ1)) ≤ vn+1(φ0, φ1)+ε/2 by Remark 5.2, this inequality

and (12.8) prove (5.11) when n is replaced with n + 1.

Proof of Proposition 5.6. Corollary 5.4 and Propositions 5.5 and 5.1 imply that
v(φ0, φ1) = limn→∞ vn(φ0, φ1) = limn→∞ Vn(φ0, φ1) = V (φ0, φ1) for every (φ0, φ1) ∈
R2

+. Next, let us show that V = J0V . Since (vn)n≥1 is a decreasing sequence,

V (φ0, φ1) = lim
n→∞

vn(φ0, φ1) = inf
n≥1

vn(φ0, φ1) = inf
n≥1

J0vn−1(φ0, φ1) (12.9)

for every (φ0, φ1) ∈ R2
+. Since (Jvn)n≥1 is a decreasing sequence, and {vn}n∈N are

uniformly bounded, we have V (φ0, φ1) = infn≥1 J0vn−1(φ0, φ1) = J0v(φ0, φ1) =
J0V (φ0, φ1) by the dominated convergence theorem and (12.9). Finally, since U ≤ 0,
we have U ≤ vn for every n by induction, and U ≤ limn→∞ vn = V .

Proof of Lemma 5.7. Let us fix a constant u ≥ t and (φ0, φ1) ∈ R2
+. Then

Jw(u, φ0, φ1) = Eφ0,φ1
0

[∫ t∧σ1

0

e−λsg(Φ̃s)ds + 1{u≥σ1}e
−λσ1w(Φ̃σ1)

]
+ Eφ0,φ1

[
1{σ1>t}

∫ u∧σ1

t

e−λsg(Φ̃s)ds

]
. (12.10)
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On the event {σ1 > t}, we have u∧σ1 = [t + (u− t)]∧ [t + (σ1 ◦ θt)] = t + [(u− t)∧
(σ1 ◦ θt)]. Therefore, the strong Markov property of N gives

Eφ0,φ1
0 1{σ1>t}

∫ u∧σ1

t

e−λsg(Φ̃s)ds = Eφ0,φ1
0 1{σ1>t}e

−λtEeΦt
0

[∫ (u−t)∧σ1

0

e−λsg(Φ̃s)ds

]
= Eφ0,φ1

0

[
1{σ1>t}e

−λt
(
Jw(u− t, Φ̃t)− EeΦt

0

[
1{u−t≥σ1}e

−λσ1w(Φ̃σ1)
])]

= e−(λ+µ)t Jw
(
u− t, (x(t, φ0), y(t, φ0))

)
− Eφ0,φ1

0

[
1{σ1>t}1{u≥σ1}e

−λσ1w(Φ̃σ1)
]
.

The third equality follows from the definition of Jw in (5.3) and the last from (4.10)
and the strong Markov property. Substituting the last equation into (12.10) and
simplifying the rest give

Jw(u, φ0, φ1) = Jw(t, (φ0, φ1)) + e−(λ+µ)t Jw
(
u− t, (x(t, φ0), y(t, φ0))

)
.

Finally, taking the infimum of both sides over u ∈ [t, +∞] gives (5.12).

Proof of Proposition 5.11. First, let us show (5.22) for n = 1. Fix ε ≥ 0 and
(φ0, φ1) ∈ R2

+. By Lemma 12.1, there exists a constant u ∈ [0,∞] such that Uε ∧σ1

= u ∧ σ1. Then

Eφ0,φ1
0 MUε∧σ1 = Eφ0,φ1

0

[
e−λ(u∧σ1)V (Φ̃u∧σ1) +

∫ u∧σ1

0

e−λsg(Φ̃s)ds

]
= Eφ0,φ1

0

[∫ u∧σ1

0

e−λsg(Φ̃s)ds + 1{u≥σ1}e
−λσ1V (Φ̃σ1)

]
+ Eφ0,φ1

0

[
1{u<σ1}e

−λuV (Φ̃u)
]

= JV (u, (φ0, φ1)) + e−(λ+µ)uV
(
x(u, φ0), y(u, φ1)

)
= JuV (φ0, φ1),

(12.11)

where the third equality follows from (5.3) and (4.10), and the fourth from (5.16).
Fix any t ∈ [0, u). By (5.16) and (4.10) once again, we have

JV (t, φ0, φ1) = JtV (φ0, φ1)− e−(λ+µ)tV (x(t, φ0), y(t, φ1))

≥ J0V (φ0, φ1)− Eφ0,φ1
0

[
1{σ1>t}e

−λtV (Φ̃t)
]
.

On the event {σ1 > t}, we have Uε > t (otherwise, Uε ≤ t < σ1 would imply
Uε = u ≤ t, which contradicts with our initial choice of t < u). Thus, V (Φ̃t) < −ε
on {σ1 > t}. Hence,

JV (t, φ0, φ1) > J0V (φ0, φ1) + ε e−(λ+µ)u ≥ J0V (φ0, φ1)

for every t ∈ [0, u). Therefore, J0V (φ0, φ1) = JuV (φ0, φ1), and (12.11) implies

Eφ0,φ1
0 [MUε∧σ1 ] = JuV (φ0, φ1) = J0V (φ0, φ1) = V (φ0, φ1) = Eφ0,φ1

0 [M0].
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This completes the proof of (5.22) for n = 1. Now suppose that (5.22) holds for
some n ∈ N, and let us show the same equality for n + 1. Note that

Eφ0,φ1
0 [MUε∧σn+1 ] = Eφ0,φ1

0 [1{Uε<σ1}MUε ] + Eφ0,φ1
0

[
1{Uε≥σ1}

∫ σ1

0

e−λsg(Φ̃s)ds

]
+ Eφ0,φ1

0

[
1{Uε≥σ1}

{∫ Uε∧σn+1

σ1

e−λsg(Φ̃s)ds + e−λ(Uε∧σn+1)V (Φ̃Uε∧σn+1)

}]
.

Since Uε ∧σn+1 = σ1 +[(Uε ∧σn) ◦ θσ1 ] on the event {Uε ≥ σ1}, the strong Markov
property of Φ̃ at the stopping time σ1 will complete the proof.

Proof of Proposition 5.12. Note that the sequence of random variables∫ Uε∧σn

0

e−λsg(Φ̃s)ds + e−λ(Uε∧σn)V (Φ̃Uε∧σn) ≥ −2
∫ ∞

0

e−λs λ

c

√
2 ds = −2

√
2

c

is bounded from below, see (4.12). By (5.22) and Fatou’s Lemma, we have

V (φ0, φ1) ≥ Eφ0,φ1
0

[
lim

n→∞

(∫ Uε∧σn

0

e−λsg(Φ̃s)ds + e−λ(Uε∧σn)V (Φ̃Uε∧σn)

)]

≥ Eφ0,φ1
0

[∫ Uε

0

e−λsg(Φ̃s)ds

]
− ε

for every (φ0, φ1) ∈ R2
+. The second inequality follows from (5.21).

Proof of Proposition 8.3. Let us prove (8.5) for n = 1. Take (φ0, φ1) ∈ S−1(Γ).
By (8.4), the curve u 7→ (x(u, φ0), y(u, φ1)), u ≥ 0 does not leave S−1(Γ). Hence,

S
(
x(u, φ0), y(u, φ1)

)
∈ Γ and (V ◦ S)

(
x(u, φ0), y(u, φ1)

)
= 0, u ∈ R+.

Then Lemma 5.6, (5.4), (5.6) and Proposition 5.5 imply that

V (φ0, φ1) = J0V (φ0, φ1) = inf
t∈[0,∞]

∫ t

0

e−(λ+µ)u[g +µ ·V ◦S]
(
x(u, φ0), y(u, φ1)

)
du

= inf
t∈[0,∞]

∫ t

0

e−(λ+µ)ug
(
x(u, φ0), y(u, φ1)

)
du = J0V0(φ0, φ1) = V1(φ0, φ1).

Since V is the limit of the decreasing sequence {Vn}n∈N, the equalities V = V1 =
V2 = · · · on S−1(Γ) follow.

On S−1(Γ) ∩C, we have 0 > V = V1 = V2 = · · · . Therefore, S−1(Γ) ∩C ⊆ Ck

for every k ≥ 1. Taking intersection of both sides with S−1(Γ) gives S−1(Γ)∩C ⊆
S−1(Γ)∩Ck for every k ≥ 1. To prove the opposite inclusion, note that V = Vk < 0
on S−1(Γ) ∩Ck for every k ≥ 1. Therefore, S−1(Γ) ∩Ck ⊆ C, k ≥ 1. Intersecting
both sides with the set S−1(Γ) gives S−1(Γ) ∩Ck ⊆ S−1(Γ) ∩C, k ≥ 1.

The proof of S−n(Γ)∩Γ = S−n(Γ)∩Γn = S−n(Γ)∩Γn+1 = · · · reads as in the
previous paragraph, after every “C” is replaced by “Γ”, and every strict inequality
by an equality. This completes the proof of (8.5) for n = 1.
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Suppose that (8.5) holds for some n ∈ N, and let us prove it for n + 1. Take
(φ0, φ1) ∈ S−(n+1)(Γ). Since the curve u 7→ (x(u, φ0), y(u, φ1)), u ∈ R+ does not
leave the region S−(n+1)(Γ) by (8.4), we have S

(
x(u, φ0), y(u, φ1)

)
∈ S−n(Γ), u ∈

R+, and

(V ◦ S)
(
x(u, φ0), y(u, φ1)

)
= (Vn ◦ S)

(
x(u, φ0), y(u, φ1)

)
, u ∈ R+

by the induction hypothesis. Lemma 5.6, (5.4), (5.6) and Proposition 5.5 imply

V (φ0, φ1) = J0V (φ0, φ1) = inf
t∈[0,∞]

∫ t

0

e−(λ+µ)u[g +µ ·V ◦S]
(
x(u, φ0), y(u, φ1)

)
du

= inf
t∈[0,∞]

∫ t

0

e−(λ+µ)u[g + µ · Vn ◦ S]
(
x(u, φ0), y(u, φ1)

)
du = Vn+1(φ0, φ1).

Since V is the limit of the decreasing sequence {Vn}n∈N, we have V = Vn+1 =
Vn+2 = · · · on S−(n+1)(Γ). From these equalities follows the proof of the equalities
of the regions in (8.5) for n+1, by similar arguments presented for n = 1 above.

Proof of Lemma 9.2. The obvious choices are the function an : R+ 7→ R+ and
the number αn in (9.3) and (9.4), respectively. By the discussion above,{

(x, y) ∈ R2
+; [g + µ · vn ◦ S](x, y) < 0

}
= An = R2

+\epi(an)

=
{
(x, y) ∈ R2

+; y < an(x)
}

= {(x, y) ∈ [0, αn)× R+; y < an(x)} ,

and (9.6) follows. The proof will be complete if we show the equality in (9.5).
Since [g+µ·vn◦S](x, y), x ∈ R+ is continuous, we have [g+µ·vn◦S](x, an(x)) ≥ 0

for every x ∈ R+, and the equality holds for every x ∈ [0, αn) because an(x) > 0,
x ∈ [0, αn). Because an(·) is also continuous, the equality also holds for (x, y) =
(αn, a(αn)), and

[g + µ · vn ◦ S](x, an(x)) = 0, x ∈ [0, αn]. (12.12)

The identity (9.5) will follow immediately if we show for the same An in (9.1) that

[g + µ · vn ◦ S](x, y) > 0, (x, y) ∈
(
R2

+\An

)
\{(x, an(x)) : x ∈ [0, αn]}. (12.13)

The nonpositive function vn(·, ·) is concave and equal to zero outside the bounded
region Cn. Therefore, the functions y 7→ vn(x, y), x ∈ R+ and x 7→ vn(x, y), y ∈ R+

are nonpositive, concave and equal zero for every large real y and x, respectively.
This implies that the functions y 7→ vn(x, y), x ∈ R+ and x 7→ vn(x, y), y ∈ R+

are nondecreasing. Therefore, the functions y 7→ [g + µ · vn ◦ S](x, y), x ∈ R+ and
x 7→ [g+µ·vn◦S](x, y), y ∈ R+ are strictly increasing since both S(x, y) and g(x, y)
are strictly increasing in both x and y. Now (12.13) follows from (12.12).

Proof of Lemma 9.7. Fix any (φ0, φ1) ∈ ∂Γe
n+1. Then vn+1(φ0, φ1) = 0, and

substituting (φ−t
0 , φ−t

1 ) , (x(−t, φ0), y(−t, φ1)) into (9.15) for t ∈ [0, r̂(φ0, φ1)] gives

Jtvn(x(−t, φ0), y(−t, φ1)) = −e−(λ+µ)tJvn(−t, φ0, φ1), t ∈ [0, r̂(φ0, φ1)], (12.14)
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thanks to the semigroup property of x(·, ·) and y(·, ·).
By the definition of the entrance boundary ∂Γe

n+1 in (9.10), the point (φ0, φ1)
is reachable from the inside of the continuation region Cn+1. Namely, there exists
some δ > 0 such that (x(−t, φ0), y(−t, φ1)) ∈ Cn+1 and rn(x(−t, φ0), y(−t, φ1)) = t
for every t ∈ (0, δ]. Then (9.16) implies

0 > vn+1(x(−t, φ0), y(−t, φ1)) = −e−(λ+µ)tJvn(−t, φ0, φ1)

for every t ∈ (0, δ]. Since r̂n(φ0, φ1) is the first time when the last function on the
right may change its sign, we obtain

−Jvn(−t, φ0, φ1) < 0, t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)).

Using (9.16) once again, we conclude

vn+1(x(−t, φ0), y(−t, φ1)) ≤ Jtvn(x(−t, φ0), y(−t, φ1))

= −e−(λ+µ)tJvn(−t, φ0, φ1) < 0, t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)).

Thus {(x(−t, φ0), y(−t, φ1)); t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1))} ⊆ Cn+1,

rn(x(−t, φ0), y(−t, φ1)) = t, vn+1(x(−t, φ0), y(−t, φ1)) = −e−(λ+µ)tJvn(−t, φ0, φ1),

for t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)). The third equation follows from the second and
(12.14), and the second from the first and the fact (x(t, x(−t, φ0)), y(t, y(−t, φ1))) =
(φ0, φ1) ∈ Γ. Taking the limit in the third equation as t increases to r̂n(φ0, φ1) gives vn+1(x(−t, φ0), y(−t, φ1))

∣∣∣
t=brn(φ0,φ1)

= 0, and

(x(−r̂n(φ0, φ1), φ0), y(−r̂n(φ0, φ1), φ1)) ∈ ∂Γx
n+1

 if r̂n(φ0, φ1) ≤ r̂(φ0, φ1).

Finally, every (φ̃0, φ̃1) ∈ Cn+1 ∪ ∂Γx
n+1 is reachable from (φ0, φ1) ≡ rn(φ̃0, φ̃1) ∈

∂Γe
n+1 on the entrance boundary by {(x(t, φ̃0), y(t, φ̃1)); t ∈ [0, rn(φ̃0, φ̃1)]} which

is contained (possibly, excluding end-points) in the continuation region Cn+1.

Proof of Corollary 11.6. By Lemma 11.4, the function (φ0, φ1) 7→ r0(φ0, φ1)
is continuous on the continuation region (φ0, φ1) ∈ C1. Therefore, the entrance
boundary ∂Γe

1 is the image of the continuous mapping (see the definition in (9.10))

(φ0, φ1) 7→ (x(r0(φ0, φ1), φ1), γ1(y(r0(φ0, φ1), φ1))), (φ0, φ1) ∈ C1

from the connected C1 into R2
+. Thus the set ∂Γe

1 is a connected subset of R2
+.

Since the parametric curves t 7→ (x(t, φ0), y(t, 0)), φ0 ∈ R+ starting on the
x-axis are increasing, the points on the boundary ∂Γ1 where these curves meet
the boundary belong to the entrance boundary ∂Γe

1; see also Figure 1. Hence
{(x, γ1(x)) : x ∈ [δ, ξ1)} ⊆ ∂Γe

1 for some 0 ≤ δ < ξ1. Then the connectedness
of ∂Γe

1 gives (11.14) with ξe
1 , inf{x ∈ R+ : (x, γ1(x)) ∈ ∂Γe

1}.
Indeed, the point (ξe

1, γ1(ξe
1)) does not belong to the entrance boundary ∂Γe

1.
Suppose it does. Then {(x(−t, ξe

1), y(−t, γ1(ξe
1))); t ∈ (0, δ]} ⊂ C1 for some δ > 0.
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Let (φ0, φ1) ∈ C1 be the point in the middle of the vertical line-segment con-
necting the points (x(−δ, ξe

1), y(−δ, γ1(ξe
1))) and (x(−δ, ξe

1), γ1(x(−δ, ξe
1))). Then we

have x(δ, φ0) = x(δ, x(−δ, ξe
1)) = ξe

1 and y(δ, φ1) > y(δ, y(−δ, γ1(ξe
1))) = γ1(ξe

1) =
γ1(x(δ, φ0)) since the mapping φ 7→ y(t, φ) is increasing for every t ∈ R. Therefore,
(x(δ, φ0), y(δ, φ1)) ∈ Γ1 and 0 < r0(φ0, φ1) < δ. Thus we have (x(r0(φ0, φ1), φ0),
y(r0(φ0, φ1), φ1)) ∈ ∂Γe

1, but x(r0(φ0, φ1), φ0) < x(δ, φ0) = ξe
1 (the mapping φ 7→

x(t, φ) is increasing for every t ∈ R). This contradicts the minimality of ξe
1.

Proof of Corollary 11.12. Suppose ξe
1 > 0 and fix any φ0 ∈ [0, ξe

1). Let φ0 ,
(1/2)(φ0 + ξe

1). Then (φ0, γ1(φ0)) ∈ ∂Γx
1 , and γ1(φ0) > γ1(φ0) > γ1(ξe

1) since γ1(·)
is strictly decreasing on its support. Then the set B , [0, φ0) × (γ1(φ0),∞) is an
open neighborhood of (φ0, γ1(φ0)) such that for every (φ̃0, φ̃1) ∈ B ∩C1, we have

0 < r ≤ r0(φ̃0, φ̃1) ≤ r < ∞,

where r , inf{t ≥ 0 : y(t, γ1(φ0)) ≤ γ1(ξe
1)} and r , inf{t ≥ 0 : x(t, 0) ≥ ξ1}. This

completes the proof of the first part.
Now let (φ0, φ1) ∈ ∂Γe

1 be a point on the entrance boundary. Take any con-
vergent sequence {(φ(n)

0 , φ
(n)
1 )}n∈N in the continuation region C1 whose limit is

the boundary point (φ0, φ1). Since r0(·, ·) ≤ r (see above) on C1, the sequence
{r0(φ

(n)
0 , φ

(n)
1 )}n∈N is bounded and has a convergent subsequence. We shall con-

clude the proof of the second part by showing that every convergent subsequence
of the sequence {r0(φ

(n)
0 , φ

(n)
1 )}n∈N has the same limit 0.

Without changing the notation, suppose that {r0(φ
(n)
0 , φ

(n)
1 )}n∈N converges to

some finite number r0 ≥ 0. Since the functions (φ0, φ1) 7→ v1(φ0, φ1) and (t, φ0, φ1) 7→
Jv0(t, φ0, φ1) are continuous, we have

0 = v1(φ0, φ1) = lim
n→∞

v1(φ
(n)
0 , φ

(n)
1 ) = lim

n→∞
Jv0

(
r0(φ

(n)
0 , φ

(n)
1 ), φ(n)

0 , φ
(n)
1

)
= Jv0(r0, φ0, φ1) =

∫ r0

0

e−(λ+µ)tG0(t, φ0, φ1)dt.

If we show that G0(t, φ0, φ1) > 0 for every t > 0, then r0 = 0 follows.
However, t = 0 is a point of increase for the function t 7→ G0(t, φ0, φ1). Since

(φ0, φ1) ∈ ∂Γe
1 = {(x, a0(x)) : x ∈ (ξe

1, ξ1)} by Corollary 11.7, and the boundary
function a0(·) of the region A0 = {(x, y) ∈ R2

+ : [g + µ · v0 ◦ S](x, y) < 0} is strictly
decreasing, there exists some δ > 0 such that (x(t, φ0), y(t, φ1)) ∈ A0 ⊆ C1 for
every t ∈ [−δ, 0). Therefore,

G(t, φ0, φ1) = [g + µ · v0 ◦ S](x(t, φ0), y(t, φ1)) < 0 = G0(0, φ0, φ1), t ∈ [−δ, 0).

Then Lemma 11.3 implies that G0(t, φ0, φ1) > 0 for every t > 0 and completes the
proof of r0 = 0.

Proof of Lemma 11.13. If ξe
1 = 0, then cl(∂Γe

1) = {(x, γ1(x)) : x ∈ [0, ξ1]} =
∂Γ1 by Corollary 11.6. In the remainder, suppose that ξe

1 > 0 and fix any φ0 ∈
[0, ξe

1). The boundary point (φ0, γ1(φ0)) is not included in the entrance boundary
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∂Γe
1. We shall prove that it is an exit boundary point; namely, there exists some

δ > 0 such that (see (9.10))

(x(t, φ0), y(t, γ1(φ0))) ∈ C1, ∀ t ∈ (0, δ]. (12.15)

Since the boundary γ1(·) is strictly decreasing on its support [0, ξ1], we have

0 ≤ φ0 < ξe
1 =⇒ γ1(φ0) > γ1(ξe

1).

Then there is always a sequence of points {(φ(n)
0 , φ

(n)
1 )}n∈N ⊆ C1 such that

φ
(n)
0 = φ0 and φ

(n)
1 > γ1(ξe

1) for every n ∈ N, and lim
n→∞

φ
(n)
1 =↑ γ1(φ0).

Namely, the sequence {(φ(n)
0 , φ

(n)
1 )}n∈N “increases” to the point (φ0, γ1(φ0)) along

the vertical line passing through the point (φ0, γ1(φ0)). For every n ∈ N, we have

v1(φ
(n)
0 , φ

(n)
1 ) = Jv0

(
r0(φ

(n)
0 , φ

(n)
1 ), φ(n)

0 , φ
(n)
1

)
, and(

x
(
r0(φ

(n)
0 , φ

(n)
1 ), φ(n)

0

)
, y
(
r0(φ

(n)
0 , φ

(n)
1 ), φ(n)

1

))
∈ ∂Γe

1.

By Corollary 11.12, the sequence {r0(φ
(n)
0 , φ

(n)
1 )}n∈N is bounded. Therefore, it

has a convergent subsequence; we shall denote it by the same notation and its
limit by r0. The functions Jv0(·, ·, ·), x(·, ·), y(·, ·) and v1(·, ·) are continuous, and
v1(φ0, γ1(φ0)) = 0. Therefore, taking limits of the displayed equations above gives

0 = Jv0(r0, φ0, γ1(φ0)) and (x(r0, φ0), y(r0, γ1(φ0))) ∈ cl(∂Γe
1). (12.16)

The second expression implies that x(r0, φ0) ≥ ξe
1. We shall prove that the inequality

is strict, and therefore,

(x(r0, φ0), y(r0, γ1(φ0))) ∈ ∂Γe
1. (12.17)

Let us assume that x(r0, φ0) = ξe
1. Then the second expression in (12.16) implies

that (x(r0, φ0), y(r0, γ1(φ0))) = (ξe
1, γ1(ξe

1)). Thus (φ0, γ1(φ0)) is on the curve C1

given by (11.16). Then Corollary 11.9 implies that G(t, φ0, γ1(φ0)) > 0 for every t 6=
r0. Since r0 > 0, this implies that Jv0(r0, φ0, γ1(φ0)) =

∫ r0

0
e−(λ+µ)sG0(s, φ0, γ1(φ0))

ds is strictly positive. But this contradicts the first equality in (12.16). Therefore,
we must have x(r0, φ0) > ξe

1, and (12.17) is correct.
Now we are ready to prove (12.15). Since φ0 < ξe

1, we have [g+µ·v0◦S](φ0, γ1(φ0))
> 0 by Corollary 11.11. Because the mapping [g+µ ·v0 ◦S](·, ·) is continuous, there
exists some r0 > δ > 0 such that

G0(t, φ0, γ1(φ0)) = [g + µ · v0 ◦ S](x(t, φ0), y(t, γ1(φ0))) > 0, t ∈ [0, δ].
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Then for every t ∈ (0, δ] we have

v0(x(t, φ0), y(t, γ1(φ0))) ≤ Jv0(r0 − t, x(t, φ0), y(t, γ1(φ0)))

=
∫ r0−t

0

e−(λ+µ)u[g + µ · v0 ◦ S]
(
x(u, x(t, φ0)), y(u, y(t, γ1(φ0)))

)
du

= e(λ+µ)t

∫ r0

t

e−(λ+µ)u[g + µ · v0 ◦ S]
(
x(t, φ0), y(t, γ1(φ0))

)
du

= e(λ+µ)t

Jv0(r0, φ0, γ1(φ0))︸ ︷︷ ︸
=0

−
∫ t

0

e−(λ+µ)uG0(u, φ0, γ1(φ0))du

 < 0.

Therefore, (12.15) holds, and (φ0, γ1(φ0)) ∈ ∂Γx
1 .

Proof of Lemma 11.14. There is nothing to prove if ξe
1 = 0. Therefore, suppose

ξe
1 > 0. Let B1 be the union of the continuation region C1 and the open subset

of [0, ξe
1) × R+ strictly below the curve C1 in Corollary 11.9 Then B1 is open and

C1 ∪ ∂Γx
1 ⊂ B1, see Remark 11.10. Define{

r̃0(φ0, φ1) , inf{t > 0 : (x(t, φ0), y(t, φ1)) ∈ ∂Γe
1}

ṽ1(φ0, φ1) , Jv0(r̃0(φ0, φ1), φ0, φ1)

}
, for every (φ0, φ1) ∈ B1.

Then

r0(φ0, φ1) = r̃0(φ0, φ1) and v1(φ0, φ1) = ṽ1(φ0, φ1), (φ0, φ1) ∈ C1 ∪ ∂Γx
1 , (12.18)

Let us show that r̃0(·, ·), and therefore, ṽ1(·, ·) are continuously differentiable on
B1. The infimum r̃0(φ0, φ1) is finite and strictly positive for every (φ0, φ1) ∈ B1.
By (9.12), G0(r̃0(φ0, φ1), φ0, φ1) equals

[g+µ ·v0◦S](x(r̃0(φ0, φ1), φ0), y(r̃0(φ0, φ1), φ1)) = 0, (φ0, φ1) ∈ B1. (12.19)

The mapping (t, φ0, φ1) 7→ G0(t, φ0, φ1) is continuously differentiable. If

DtG0(t, φ0, φ1)
∣∣∣
t=er0(φ0,φ1)

6= 0, (φ0, φ1) ∈ B1, (12.20)

then Theorem 11.2 implies that, in an open neighborhood in B1 of every (φ0, φ1),
the equation G0(t, φ0, φ1) = 0 determines t = t(φ0, φ1) implicitly as a function of
(φ0, φ1), and this function is continuously differentiable. In every neighborhood,
these solutions must then coincide with r̃0(φ0, φ1). Therefore, r̃0(φ0, φ1) is contin-
uously differentiable on B1. Then the function ṽ1(φ0, φ1) is continuously differen-
tiable on B1 since Jv0(·, ·, ·) is continuously differentiable on R3

+.
Now fix any (φ0, φ1) ∈ B1 and assume DtG0(r̃0(φ0, φ1), φ0, φ1) = 0. Then the

function t 7→ G0(t, φ0, φ1) has a local minimum at t = r̃0(φ0, φ1). Lemma 11.3
and (12.19) imply that G0(t, φ0, φ1) > 0 for every t 6= r̃0(φ0, φ1). Therefore, the
parametric curve

{(x(t, φ0), y(t, φ1)) : t ∈ R} ∩ R2
+ ⊆ R2

+\A0
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does not intersect A0, but touches the boundary ∂A0. Then this curve has to be
the same as C1 in Corollary (11.16), and (φ0, φ1) ∈ C1. But this contradicts with
(φ0, φ1) ∈ B1, since Remark 11.10 and the description of B1 show that C1∩B1 = ∅.
Therefore, (12.20) holds.

Now let us show that γ1(·) is continuously differentiable on [0, ξe
1). Fix any

φ0 ∈ [0, ξe
1). Then (φ0, γ1(φ0)) ∈ ∂Γx

1 ⊂ B1, and ṽ1(φ0, γ1(φ0)) = 0 by (12.18).
The function ṽ1(·, ·) is continuously differentiable on B1. Therefore, the result will
again follow from the implicit function theorem (Theorem 11.2) if we show that
Dφ1 ṽ1(φ0, γ1(φ0)) 6= 0. However, Dφ1 ṽ1(φ0, γ1(φ0)) equals

D−
φ1

ṽ1(φ0, γ1(φ0)) = D−
φ1

v1(φ0, γ1(φ0)) = lim
φ1↑γ1(φ0)

D−
φ1

v1(φ0, φ1)

= lim
φ1↑γ1(φ0)

Dφ1v1(φ0, φ1) = lim
φ1↑γ1(φ0)

1− e−(µ+1)r0(φ0,φ1)

µ + 1
> 0.

The second equality follows from (12.18), and the third from the concavity of v1(·, ·).
The fourth and the fifth follow from Corollary 11.5. Finally, the limit at the end is
strictly positive since r0(·, ·) is bounded away from zero in the intersection of C1

with some neighborhood of (φ0, γ1(φ0)) by Corollary 11.12.

Proof of Lemma 11.15. The result follows from Corollary 11.7 if ξe
1 = 0. There-

fore, suppose ξe
1 > 0. Then the boundary function γ1(·) is continuously differen-

tiable on [0, ξe
1) ∪ (ξe

1, ξ1) by Corollary 11.7 and Lemma 11.14. We need to show
that x 7→ γ1(x) is continuously differentiable at x = ξe

1.
Recall that the function γ1(·) is convex. Therefore, the left-derivative D−γ1(·)

and the right-derivative D+γ1(·) of the function γ1(·) exist and are left- and right-
continuous, respectively, at x = ξe

1. Thus

lim
x↑ξe

1

Dγ1(x) = lim
x↑ξe

1

D−γ1(x) = D−γ1(ξe
1)

≤ D+γ1(ξe
1) = lim

x↓ξe
1

D+γ1(x) = lim
x↓ξe

1

Dγ1(x). (12.21)

The continuity of the derivative Dγ1(·) of the function γ1(·) at x = ξe
1 will follow

immediately from the existence of the derivative of γ1(·) at x = ξe
1.

Now recall from Corollary 11.9 and Remark 11.10 that the point (ξe
1, γ1(ξe

1)) is
on the parametric curve C1, which lays above {(x, γ1(x)) : x ∈ R+} and touches it
at the point (ξe

1, γ1(ξe
1)). Therefore, for every t > 0 and s > 0

y(0, γ1(ξe
1))− y(−t, γ1(ξe

1))
x(0, ξe

1)− x(−t, ξe
1)

≤ γ1(x(0, ξe
1))− γ1(x(−t, ξe

1))
x(0, ξe

1)− x(−t, ξe
1)

≤ γ1(x(s, ξe
1))− γ1(x(0, ξe

1))
x(s, ξe

1)− x(0, ξe
1)

≤ y(s, γ1(ξe
1))− y(0, γ1(ξe

1))
x(s, ξe

1)− x(0, ξe
1)

.

When we take the limit as t ↓ 0 and s ↓ 0, we obtain

Dty(0, γ1(ξe
1))

Dtx(0, ξe
1)

≤ D−γ1(ξe
1) ≤ D+γ1(ξe

1) ≤
Dty(0, γ1(ξe

1))
Dtx(0, ξe

1)
.
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Note that the terms on far left and far right are the same. Therefore, D−γ1(ξe
1) =

D+γ1(ξe
1) and the derivative of the boundary function γ1(·) at x = ξe

1 exists.

Proof of Lemma 11.16. Since v1(·, ·) is concave, the left derivatives D−
φ0

v1(·, ·),
D−

φ1
v1(·, ·) and the right derivatives D+

φ0
v1(·, ·), D+

φ1
v1(·, ·) exist and are left- and

right-continuous on the boundary ∂Γ, respectively. Because v1(·, ·) vanishes on Γ1,
and the function γ1(·) is strictly decreasing, we have

D−
φ0

v1(φ0, φ1) ≥ D+
φ0

v1(φ0, φ1) = 0, (φ0, φ1) ∈ ∂Γ1\{(0, γ1(0))}. (12.22)

D−
φ1

v1(φ0, φ1) ≥ D+
φ1

v1(φ0, φ1) = 0, (φ0, φ1) ∈ ∂Γ1\{(ξ1, 0)}. (12.23)

For every boundary point (φ0, φ1) ∈ ∂Γ1\{(0, γ1(0))} and any {(φ(n)
0 , φ

(n)
1 )}n∈N

⊂ C1 such that limn→∞ φ
(n)
0 =↑ φ0 and φ

(n)
1 = φ1 for every n ∈ N, we have

D−
φ0

v1(φ0, φ1) = lim
n→∞

D−
φ0

v1(φ
(n)
0 , φ

(n)
1 ) = lim

n→∞
Dφ0v1(φ

(n)
0 , φ

(n)
1 )

= lim
n→∞

1− exp
{
−(µ− 1)r0(φ

(n)
0 , φ

(n)
1 )
}

µ− 1
. (12.24)

The second and the third equalities follow from Corollary 11.5. The function r0(·, ·)
is continuous on the entrance boundary ∂Γe

1 and is bounded away from zero in
some neighborhood of every point on the exit boundary ∂Γx

1 , see Corollary 11.12.
Therefore, the limit on the right in (12.24) equals zero for every point (φ0, φ1) on
the entrance boundary ∂Γe

1 and is strictly positive for every point (φ0, φ1) on the
exit boundary ∂Γx

1 .
Thus, for every (φ0, φ1) ∈ ∂Γe

1, the equality in (12.22), and as a result of a simi-
lar argument, the equality in (12.23) are attained. Therefore, the partial derivatives
Dφ0v1(·, ·) and Dφ1v1(·, ·) exist at every (φ0, φ1) ∈ ∂Γe

1 and are continuous since
Dφ0v1(·, ·) = D±

φ0
v1(·, ·) is both left- and right-continuous near the entrance bound-

ary ∂Γe
1.

However, if (φ0, φ1) is a point on the exit boundary ∂Γx
1 , then the inequalities in

(12.23) and (12.24) are strict. Namely, the v1(·, ·) is not differentiable on the exit
boundary ∂Γx

1 .
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