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Abstract

Atlas-type models are constant-parameter models of uncorrelated stocks for equity
markets with a stable capital distribution, in which the growth rates and variances
depend on rank. The simplest such model assigns the same, constant variance to all
stocks; zero rate of growth to all stocks but the smallest; and positive growth rate to
the smallest, the Atlas stock. In this paper we study the basic properties of this class
of models, as well as the behavior of various portfolios in their midst. Of particular

interest are portfolios that do not contain the Atlas stock.
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1 Introduction

Size is one of the most important descriptive characteristics of assets: one can understand
a lot about an equity market by observing, and making sense of, the continual ebb and flow
of small-, medium- and large-capitalization stocks in its midst. Thus it is important to have
models which describe (if not explain) this flow, and which exhibit stability properties for
the resulting distribution of capital that are in agreement with actual observation. This

paper studies models of this type and analyzes portfolio performance in their context.

The simplest such model is the Atlas Model for equity markets, introduced in Example
5.3.3 of Fernholz (2002). This is a constant-coéfficient model for the values (capitalizations)
of stocks represented by their relative rank and driven by independent Brownian motions.
It assigns the same, constant volatility to all stocks; zero growth-rate to all stocks but the
smallest; and positive growth-rate to the smallest stock. Because it is responsible for all the
growth (or support) in the market, this smallest stock is then called the Atlas stock.

Somewhat more precisely: with g > 0, o > 0 given constants, with independent Brow-
nian motions Wi(-),...,W,(-), and with X;(¢) representing the capitalization at time ¢ of
the stock with index (name) ¢, the Atlas model postulates the dynamics

d (log X;(t)) = v(t)dt + o;(t) dW;(t), 1=1,...,n, (1.1)
where the growth rates and volatilities are specified by

vi(t) = ng - 1{Xi(t):Xpt(n)(t)} , oi(t) = o. (1.2)
We are using here the “reverse order-statistics” notation

max Xz(t) = X(l)(t) 2 X(g)(t) 2 2 X(n_l)(t) 2 X(n)(t) = 1min Xz(t) (13)

1<i<n 1<i<n

for the capitalizations of stocks ranked in descending order, from largest to smallest; we

consider also the random permutation (p;(1),...,p:(n)) of (1,...,n), for which
Xpt(k)(t) = X(k)(t), and pt(k) <pt(k+ 1) if X(k)(t) = X(k—l—l)(t) (1.4)

hold with £ =1,...,n. Roughly speaking, this means that p;(k) is the name (index) of the
stock with the k"—largest relative capitalization at time ¢, and that ties are resolved by

resorting to the lowest index.

More generally, suppose we are given real numbers v, g1, ..., g, 01 >0, ..., 0, >0



such that

g1<0, gl+gz<0, cee, gl+---+gn_1<0, g1+---+gn=0. (15)

Corresponding to these parameters, the general model considered in this paper postulates
the dynamics of (1.1) for the stock-capitalizations X (t),..., X, (¢), but now with growth
rates and volatilities given by

%) = YD Gl xi=xpm®) i) = Y 0k Lixi=x,, 00} (1.6)
k=1 k=1

in place of (1.2). In other words, this more general model specifies v + g as the growth
rate, and oy as the volatility, for the stock with rank k£ at any given time. We shall refer to
the model of (1.1), (1.6) as First-Order Model.

Clearly

y=9g>0, g=-g for k=1,....n—1 and g,=(n—-1)g (1.7)

in the case of the Atlas model of (1.1), (1.2). We shall call Generalized Atlas Model a model
of the type (1.1), (1.6) with parameters that satisfy (1.7), though with possibly different
volatilities.

All these models have strictly nondegenerate volatility structures and bounded drift
coéfficients, so they admit a (unique) equivalent martingale measure on any given time-
horizon; thus there are no relative arbitrage opportunities for such models, of the type en-
countered in Fernholz et al. (2005), Fernholz & Karatzas (2005).

The first question that arises for the First-Order Model of (1.1), (1.6) is the rigorous
formulation of, and the study of existence/uniqueness of solution to, the resulting system of
stochastic differential equations. This task we undertake in Section 2, whereas in Section 3
and the Appendix we study the behavior of the resulting “ranked capitalization” (reverse-
order-statistics) processes of (1.3). Section 4 deals with ergodic properties of these processes.
Portfolios in the context of the model (1.1), (1.6) are introduced in Section 5, where we also
study the growth rates of a few relatively easy-to-implement investment rules. Some detailed
comparisons of long-term-growth performance are carried out in Section 6. We conclude
with considerations of diversity in Section 7, where some elementary computations show
that models of this sort capture very well the intuitive notion that “no stock can be allowed
to dominate the entire market with anything but extremely low probability” — despite the

fact that such models fail to be diverse in a strict, almost sure sense.



2 The Model

Let us start by constructing a diffusion process corresponding to the stochastic equation of

(1.1), (1.6). We consider a collection {QS)} \ of polyhedral domains in /R" with the
1<4,k<n

following property:

y=(Y1,---,Yn) € Qg) means that y; is ranked k™ among 1,..., ¥, . (2.1)
We resolve ties by resorting to the lowest index; for instance, we set
oV ={yeR [y >y, Vi=2...,n}, QU={yeR"[y <y, Vj=2...n}

and

o) ={vem

y1<112i£kyjr for Somejla"'ajka and ylzy@ v£¢{]1aa]k}}

for k=1,...,n—2. Clearly, the collection {Qg)} is a partition of IR"™ for each fixed
1<

<i<n
k; and

{Q,(f)} is a partition of IR" for each fixed i. (2.2)
1<k<n
Consider now real constants v, oy >0,...,0, >0 and ¢i,...,g, satisfying the condi-

tions of (1.5). We shall look at the system of Stochastic Differential Equations

aYi(t) = (ﬁgklgw(t»ﬂ) &+ Yol (Y(0) - dWi(D), YO =g (23)

k=1

for the n—dimensional process Y (-) = (Yi(),...,Yx(:)), with given initial condition y =
(F1,---,9n) - In other words: as long as Y'(-) is in the polyhedron Q,(;) , the equation (2.3)
postulates that the i"*—coordinate process Y;(-) evolve like a Brownian motion with drift

gr + and variance o2, for each i=1,...,n.

The theory of Bass & Pardoux (1987) establishes that the system of stochastic differential
equations (2.3) has a weak solution, which is unique in the sense of the probability law.

Once this solution has been constructed, we can look at the vector of processes X(-) =
(X1(-),...,Xn(+)) defined by

Xi(t) := eVl i=1,...,n (2.4)

as the rigorous interpretation of the First-Order Model of (1.1), (1.6). With this interpreta-



tion Y;(t) represents the log-capitalization of the i* company at time ¢.

Now let us observe from (2.3), the remark preceding (2.2), and (1.5), that we have

iY}(t) =Y +nyt + iak Bi(t), where By(t) := i/otlgl(j)(Y(s)) dWi(s) (2.5)

and Y =>"" | ¥;(0). The resulting processes Bj(:),...,By,(-) are continuous local martin-
gales with quadratic (cross-) variations (By, By)(t) equal to

ZZ/O 1Ql(ci)(Y(8)) 1Q§j)(Y(S)) d(VVZ,W]>(8) = Z/O 1Q§ci)(Y(8)) 1Q£¢)(Y(S)) dS = 5]9@15.

P. Lévy’s characterization (e.g., Theorem 3.3.16 in Karatzas & Shreve (1991)) identifies the
processes Bi(-),...,By(-) as independent standard Brownian motions; then the strong law

of large numbers in conjunction with (2.5) gives

1
Th_r)r;o T;Y;(T) = ny, as. (2.6)

In the Appendix we shall strengthen this result, and show that in fact

1 Y;(T
lim —log X;(T) = lim ()

Tsoo T e cE holds a.s., for every 7 =1,...,n. (2.7)
2.1 Remark: Coherence. Denoting by X () := X;(¢) +--- + X,(¢) the total market

capitalization and by
Xi(t) .
() = 25 =1,..

the relative capitalizations of the individual companies, we see from (2.7) that

N (2.8)

1 1
lim —log X(T) = max <lim TIOng'(T)) =7

T—o0 1<i<n \T—x

and thus also

.1 .
Th_l)TC}oTlogui(T)—O, Vi=1,...,n,

holds a.s. In the terminology of Fernholz (2002), page 26, the model of (2.3), (2.4) — or
equivalently, that of (1.1), (1.6) — is coherent.

2.2 Remark: Taking turns as Atlas. From (2.3), (2.7) and the strong law of large



numbers for Brownian motion, it follows that

R 17
Jim ; O (T /0 1Ql(ci)(Y(t))dt> =0  holds as.

for every ¢+ = 1,...,n. Now suppose the parameters of the model satisfy the conditions
Yy=9g>0, g1 =--=¢gp1=—g, go = (n—1)g of (1.7) for a generalized Atlas model;
then
- 1 [T n [
g (7| loo@)dt) =g (5[ Lo (®)d—1),
T/, % T J, n
k=1
and for every ¢ =1,...,n we obtain
lim /T1 V() dt = (2.9)
im — i = —, a.s. )
T—o0 T 0 7(1) n

In other words: “each stock acts as Atlas roughly (1/n)® of the time”. It is then natural

to conjecture that we should have

, a.s. (2.10)

lim /T o (V(t)dt =
im — ; - —
T J, o) n

T—o0

for every k=1,...,n, that is, not just for £ =n asin (2.9).
As it turns out, this property holds for the general First-Order Model; in particular, each
stock spends asymptotically the same amount of time in every rank.

2.3 Proposition: The solution of the system (2.3) of stochastic differential equations

satisfies the ergodic relation (2.10) for every k=1,...,n and every i =1,...,n.

Proof: Let ¥, denote the symmetric group of permutations of {1,...,n}. For each p € ¥,
let Ry == iy Q,(cp(k)); the set R, consists of all points y = (yi,...,yn) € IR™ such that
Yp(k) 1s ranked k™ among yi,...,y, for all & = 1,...,n (with ties once again resolved in

favor of the lowest index). In particular,

yp(l) 2 yp(2) 2 e 2 yp(n) if (/S 7-\)*p- (211)

Clearly {R, }pes, is a partition of IR". Let R denote the interior of the polyhedron R,,

and set R° = [J,ex, R, The exceptional set R® := IR"\R° can also be described as
{(y1,---,yn) € R"|y; = y, for some i # j}. Furthermore, any p € %, acts as a linear
transformation of IR™ via p(y1,-..,%n) := (Yp-1(1),-- -+ Yp-1(n)); under this action, we have

yeRy ifand onlyif p~'y € RS := {(y1,...,yn) ER"|y1 > 1> --- >y} (2.12)

6



Define

Gy) =D lr, W% 1) Gpim)'s  SW) =D 1r,(y) diagloyiq), - -, Tprigmy)-

Pezn pEEn

Set v := (1,1,...,1)" and note that y € R, <= y+av e R, forall a € IR, as ranks

of codrdinates are preserved by adding scalar multiples of v. It follows that
Gly+av)=G(y) and Sy+av)=S8(y) forall ye R", acR. (2.13)
We also have two crucial properties which follow directly from (2.12):
Glpy) =pG(y),  Spy) =pSly) forall peX, yeR" (2.14)

Equations (2.3) and (2.5) may be rewritten in this setting as

dY (t) = (G(Y (t)) + ) dt + S(Y(£)) dW (t), Y(0) =7 (2.3)"
d (i Y;(t)) =nydt+v'S(Y(t)) dW (), (2.5)

respectively. Now define the process

Y(t) = Y(t) - (%ilfi(t)) v, 0<t<oo

which lives in the subspace I := {(y1,...,yn) € R"|y1 + - - -+ y, = 0} of IR™ with normal

vector v. From (2.3)" and (2.5), we have
dY (t) = G(Y () dt + S(Y (1)) dW (), Y (0) =7,

where §:=g— (137 %)v and S(y) := S(y) — Lov'S(y) for all y € R". In fact,

dY (1) = G(Y () dt + S(Y (1)) dW (), Y (0) =7, (2.15)

because of (2.13). We note that if € II, then for any y € IR",

~ 1
mtS(y)x = a:tS(y)x — —xtvvtS(y)x = xtS(y):E > ammHa:||2,
n
where we have set 0,5, := min{oy,...,0,} > 0 and used the fact that z'v = z-v = 0. This

means that the covariance matrix in (2.15) is uniformly nondegenerate when restricted to



the subspace II. In particular, the theory of Bass & Pardoux (1987) once again shows that
the II-valued solution Y'(+) of (2.15) is unique in the sense of the probability law.

We now claim that
y-G(y) <c|ly||] holds for all y eI, (2.16)

where ¢ < 0 is a constant depending only on n and g¢1,...,¢,. Indeed, fix y € II. There
exists p € X, such that y € R,, so

n

n n n—1 k
G) =D Vi) = D Upk) Ik = Yp(m) D Im + > _(Up(k) — Yp(k+1)) D ms>  (2.17)
i=1 k=1 m=1 k=1 m=1

where the final equality follows by summation by parts. From (1.5), we have Y _ g, =0
and 3¢ gn <Oforallk=1,...,n—1, and (2.11) gives Yp(k) — Yp(k+1) > 0 for the same
range of k. Set ¢ = n~"/?max;cpen 1{d.F _, gm} < 0, and note that (2.11) and the fact
that y € 1T imply that yp1) > 0, ypm) < 0 and ypy > y; for all ¢ = 1,...,n. In particular,
yl? < nmax{yZ,, Yom} < 7(Yp) = Yp(n))?. Finally, (2.17) gives

3
,_.

y-G(y) = (yp(k) Yolk+1) ngﬁc\fz Yo(k) — Yp(k+1) = VI (Up(1) — Yp(my) < clly]l-

1

By
Il

In the Appendix, it is shown that the inequality (2.16) implies that the process

Y(+) is recurrent with respect to B NI, for some ball B C IR" centered at 0.  (2.18)

Theorem 5.1 on page 121 of Khas’minskii (1980) guarantees that the process Y (-) of (2.15)
admits a stationary distribution u, such that for any bounded, measurable function f : II —

IR we have
o1
jll_r)rgof i f dt—/f ) dp(y a.s. (2.19)

Moreover, p is a probability measure on Il which does not depend on the initial value
Y (0) = g. Setting § = 0 = ¢, fix some p € ¥,, and apply it to (2.15) to obtain

d(pY (t)) = pG(Y (1)) dt +pS(Y (1)) dW (1), ~ Y(0) =0,
which, in view of (2.14), may be rewritten as

d(pY (t)) = G1(pY (t)) dt + S;(pY (t)) dW (), pY (0) =0, (2.20)



where G (y) = G(y) and S;(y) = S(y) for all y not in the exceptional set R¢. It is argued
in the Appendix that (2.15), (2.20) imply that the processes

Y (-) and pY (-) have the same stationary distribution . (2.21)

Since p is arbitrary, it follows that p is invariant under the action of 3,,. From (2.19) with
fly) = 1z, (y), we obtain

Jim © / (POt = [ 1,0 duts) = [ 1) dut), s

By the remark preceding (2.13), we may replace Y () by Y (¢) in the above equation to
conclude that the a.s.-limiting value of 77" fOT 1,(Y(t)) dt is independent of p. Summing
over all p € ¥,,, we find that

1 [T
lim T/ Iz, (Y (1)) dt = — forall peX,, as. (2.22)
0

For fixed 7 and k, (2.10) now follows by summing (2.22) over the (n — 1)! permutations
p € ¥, satisfying p(k) = i. o

The above proof shows that any given ranking of the stocks in a First-Order Model occurs
roughly 1/n! of the time. This does not imply that the rank changes occur with roughly the
same frequency at all scales. For example, consider an Atlas model with n = 3 and constant
volatilities across ranks. The plane IT = {(y1,¥2,¥3) | y1 + y2 + y3 = 0} is represented in

" {y2 = ys}

{y1 > y3 > 1o}
i \ R_I
{y3>y1>§ \ $={y1 > 12> ys}
/ 3 {y1 = va}
v // / "
{ys > 12 > 11} / > > )
{y2>ys > u}
\Y

{y1 = ys}

Figure 1: Projection of the Atlas model with n = 3 onto the subspace II



Figure 1. The vectors shown are values for G(y) for various y € II. The function G(y) is
constant within each of the six wedges; furthermore, changes in rank occur when the process
Y (-) hits the exceptional set R, which is the union of the three lines shown. It is clear from
the direction of the vectors that changes of rank will be likely to occur much more frequently
between the bottom two stocks than the top two stocks. That is, changes in 17() between
the three pairs of regions labelled (LII), (IILIV) and (V,VI) occur more frequently than
between (ILIII), (IV,V) and (VLI). Of course, this does not hold in the general First-Order
Model. The above proof also reveals that the rank-ordered process - 5, 1z, (Y (-))p 'Y (")
is a reflected Brownian motion in the polyhedral region R; with constant drift equal to
(g1 +7,---,9n +7), covariance matrix given by diag(oy,...,0,), and normal reflection on

the boundary.

3 Ranked Capitalization Processes

Having constructed the solution Y (-) = (Yi(+),...,Ya(-)) of the stochastic differential sys-

tem (2.3), let us now look at the processes

Zy(t) =) Lo (Y(8) - Yi(t), 0<t<oo (3.1)
i=1
for k =1,...,n. These are the log-capitalizations of the various companies listed according
to their rank, so that
X (t
Xoglt) = %0, pugo(t) = ) (32

Xq(t) + -+ Xn(t)

represent respectively the absolute and relative capitalizations of the company ranked k%
at time ¢, in accordance with (1.3) and (2.8). Denoting by A®FF1(.) := Ay, () the local
time accumulated at the origin by the non-negative semimartingale Zy(-) — Zx11(-) up to

—Zg41
calendar time ¢, and setting
Ay =0, AT()=o0,

we obtain the dynamics for the processes in (3.1) in the form

[dABFH(E) — dA*THE () ]

dZy(t) = ilgg) (Y(t)) - dY;i(t) + %

10



or equivalently

Zi(t) = Zk(0) + (gx +7)t + ok Bi(t) + % [ARFFLE) — AR HR()], 0<t<oo. (3.3)
We have used the equations of (2.3) and the notation of (2.5), and have applied the general-
ized Tto rule for convex functions of semimartingales from section 3.7 in Karatzas & Shreve
(1991), in a manner similar to the derivations in Chapter 4 of Fernholz (2002). (These
derivations require that the processes Y7, ..., Y, be pathwise mutually nondegenerate, as
in Definition 4.1.2 of Fernholz (2002); however, this follows from an application of the Gir-
sanov theorem, which is justified by the uniform nondegeneracy of the variance structure
and boundedness of the drift coéfficients.)

In conjunction now with (2.7), the dynamics (3.3) yield the strong law of large numbers

lim — [AMHT) - AMUT)] = 290, as. (3.4)

T—00

for every £k =1,...,n. Taking k = 1, this means that the limit

1
)\1,2 = lim —AI’Q(T)

T—o0
exists a.s., and that Ao = —2g¢;. Arguing by induction, we see that all limits
. L kkt
/\k,k—|—1 = lim —A® (T) (35)
T—o0

exist a.s. and satisfy
)\k—l,k — )‘k,k—|—1 = 29k for k= 1, .o, n (36)
(of course, A1 = Apnt1 =0). In other words, the quantities of (3.5) are given as

Ak,k+1:—2(gl+---+gk)>0, for k=1,...,n—1. (3.7)

Observe now from (3.3) the decomposition
Zk(t) = Zea(t) = Zk(0) = Zk42(0) + Ok(t) + Azi—z,,, (1) (3.8)

for the non-negative semimartingale Zy(-) — Zx41(-) . We are using here the notation

1 —~

@k(t) = (gk - gk+1)t — 5 [Ak_l’k(t) + Ak+1’k+2(t)} -+ Sk * W(k)(t) y (39)

11



where

— 1
sp = yJoi+or, and WH(@E) = o (ak By(t) — 0341 Bk+1(t)> (3.10)

is standard Brownian Motion. This decomposition (3.8) shows that Zy(-) — Zx41(-) is the
reflection at the origin of the semimartingale O(-) in (3.9). Now the bounded variation
part of the semimartingale ©(-) is of the form

1

{(gk ~ k) ~ 5 [ARTUR() + ARTLRF2(3) ] } t = —(Ak,k+1+o(1))t

as t — oo, thanks to (3.5) and (3.6). Thus ©(-) behaves asymptotically as Brownian
Motion with negative drift —Ag 541 .

4 Stability of Capital Distribution

Let us look now at the ergodic behavior, as ¢t — oo, of the non-negative process

- t -

Ex(t) :=log (“(’“7’()> = Z(t) — Z+1(t) = Zx(0) +Ok(t) + A5, (1), 0<t<oo (4.1)
k1) (2)

in (3.8): namely, the reflection at the origin of the semimartingale ©(-) of (3.9). As we

have remarked, this process Z¢(-) behaves asymptotically as Brownian Motion with negative

drift —Aj k41, reflected at the origin. Therefore,

: k) (1) N e e
lim 1 ————— ] = lim Z(t) = &, distribution. 4.2
Jim log (N(k+1)(t) Jim k(t) = &, in distribution (4.2)
Here, for each £k =1,...,n—1 the random variable &, has an exponential distribution with
parameter
2\ 4
TE 1= k’2k+1 = - (91:_ 2+ 9¢) >0, ie, P >z)=e ™, V 2>0. (4.3)
Sk Ok + 0j 11

This leads to the asymptotic Pareto distribution

Hie) (t)

lim P [ >y] =y =P >logy), Vy>1 (4.4)
[k+1)(2)

t—00

for the ratios of successively ranked capitalizations, which is frequently observed in practice;
see Chapter 5 of Fernholz (2002), in particular Figure 5.1 on page 95 and the discussion on

12



page 102.

We also obtain for every k =1,...,n — 1 the strong law of large numbers

e 17 1ik) (1)
lim —/ Zx(t))dt = lim — / (lo (7> dt = E a.s. 4.5
T—oo T [ g( k( )) T—oo T [ g & N(k+1)(t) [g(é.k)] ( )

for every measurable function g : [0,00) — IR with [;*[g(z)| e ™" dz < 00 ; see Khas’minskii
(1960), Theorem 3.1, Gihman & Skorohod (1972) §23, or Khas’'minskii (1980), Theorem 5.1
on p. 121.

e In fact, we can ascertain a little more generally that we have in distribution:

. - ok p) (t) fn-1)(t)) _
tliglo <H1(t), ce _n,l(t)> = lim <log i@’ log W) = (51, ... ,§n,1) .(4 ;

This follows from the very detailed analysis of what Harrison & Williams (1987.a,b) and
Williams (1987) call “reflected (or regulated) Brownian motions” (RBM’s, for short) in
polyhedral domains; see, in particular, sections 4-8 of Harrison & Williams (1987.b) which
are of particular relevance to our setting here. Then Theorem 3.1 of Khas'minskii (1960)
guarantees again that a strong law of large numbers

i [ 0(Z 0, F @)t = Bo( 6] (@)

T—=oo T

holds a.s., for every bounded, measurable g : [0,00)" ! — IR.

Remark: As discussed in Harrison & Williams (1987.a,b) and Williams (1995), the joint
distribution of the random vector (&i,...,&,—1) has a probability density function p :
[0,00)"t — [0,00) with f[o’oo)n_lp(x) dr = 1 that satisfies a certain integral equation
(the basic adjoint relation of (3.2) in Williams (1995) or (BAR) on page 103 in Harrison &

Williams (1987)). This equation involves the second-order diffusion operator

1 S~ p(z) <= op(z)
L = - A + 7
P 2 = ¥ 0x\0x, ; M1 Oxy

and specifies appropriate boundary conditions on the faces of the orthant [0,00)" !. Here

13



A = {Ag} = XX’ where we have set

g1 —09 0 0 0
s
0 0 0 -+ op_1 —0,

for the (n — 1) x n volatility matrix for the multi-dimensional Brownian motion

;:\k(t) = Ek(o) — Ager1t +0x B(t) — oks1 Brya(t) + A, (1), 0<t<o0

fork=1,...,n—1, with normal reflection on each of the faces of the orthant. In particular,
o?+o0: —o03 0 e 0 0
—0o3  o3+o03 —o0F .- 0 0
A= 0 -0}  o3+4o0; .- 0 0
0 0 0 < —0l | ol +0?

The structure of this process has slightly more complicated volatilities than the setting of
Harrison & Williams (1987.b); satisfies their “stability condition” A; o >0, ..., Aoy, >0
which ensures positive recurrence; but fails to satisfy their “skew-symmetry condition”, that
makes p(-) the product of the exponential densities in (4.3). It is highly unlikely that the
“basic adjoint relation” which characterizes p(-) can be solved in closed form; as a result,
we know only the one-dimensional marginals of the density p(-), not the density itself.

<

e By the Skorohod representation, one can construct now, possibly on an enlarged proba-
bility space, copies (51, cee ,§n,1) of the random variables ({-“1, e ,§n,1) , as well as copies
(Z1(-)s - - -, Bin—1(+)) of the processes (u1(:),...,pn-1(+)), such that

. Fn) (t) ﬁ(n—l)(t)> _ (. 7
tlg& <log @ log i () = (51, e ,§n_1)

holds almost surely, instead of just in distribution as in (4.6). In particular,

_~ ) )
lim (“"“)()) = el Tt k=1...,n-1

t—00 m

i) (1)
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holds almost surely, and gives

lim <1_~M7(n)(t)) — egn—l + egn—1+§~n—2 4ot egn_1+...+g1 as.

which then leads to

— e &n—1++&

lim f)(t) = My = — — — 8. 4.
ti{c{lo N(k)() k 1+eén-1 ... 4 ebn-1++& o as ( 8)

for every £k = 1,...,n. The understanding here is that the ‘empty summation’, which

occurs in the numerator when k£ = n, is taken to be equal to zero.

e Consider now the vector of random variables (Mj,..., M) defined by
M, = (1 +ebnl 4o pelnm1 Tt )_1 and My = M, -eb—11"t& (4.9)

for k=1,...,n—1, by analogy with (4.8). From the equation (4.8) and the discussion that
precedes it, we can re-cast (4.6) as
lim (p(l)(t) e ) (t)) = (My,...,M,), in distribution. (4.10)
— 00
The quantities of (4.9) are the long-term relative weights of the various stocks in this market,

represented by their ranks — from the largest (namely, M;) down to the smallest (namely,
M,,). We also have from (4.7) the strong law of large numbers

17
Thm T/ Flpay@), - @) dt = E[ f(My,...,M,)], as. (4.11)
—00 0
for every bounded and measurable f: A" — IR, where A" = {(z1,..., z,) € R" |z >

0,...,2, >0, Z?lejzl}.

4.1 The Certainty-Equivalent Approximation

The random vector M = (My,..., M,) of (4.9), (4.10) is hard to come to grips with: as
we have already remarked, we do not know much about the joint distribution of the ran-
dom variables (&1,...,&,—1) which determine it. In fact, we only know the one-dimensional
marginal distributions of the random variables &i,...,&, 1 individually — namely, the ex-
ponentials of (4.3). We look then at a particularly convenient approximation of the vector
M = (M,...,M,), obtained by replacing the random variables & in (4.9) by their ex-

15



pected values

pe = E(&) = 1/rp = —
namely:
MO = (14 ePrt foooqermttto )L and MOP .= MCP . epomttrton (413)

for k=1,...,n—1. We call the resulting probability vector M ? = (MFE ... MCP) the
Certainty-Equivalent Approximation of the long-term relative capitalizations (M, ..., M,)
in (4.9), (4.10).

4.1 Example: For the Atlas Model of (1.7) with constant variances
oi=02>0 for k=1,...,n, (4.14)

the quantities of (4.12) take the form p, = a/k, k=1,...,n—1 with a:=02/2g, and
we have a further approximation for the certainty-equivalent quantities of (4.13), namely

k—Ot
2?21 g

MEF ~ k=1,...,n. (4.15)

4.2 Example: For the generalized Atlas Model of (1.7) with linearly-growing variances

op = o>+ ks?, k=1,...,n forsome o*>0, s°>0, (4.16)

we get pr =20+ "‘ki , k=1,...,n—1 with 8 := s?/4g, and the certainty-equivalents of

(4.13) are now approximated as

f—(a+B) o —2Bk
Z?:l j_(CH'ﬂ) e—285 "’

MEE ~ k=1,....n. (4.17)

5 Portfolios and their Growth Rates

Let us consider now investing in the market of (1.1), (1.6) — equivalently modelled by (2.3)
and (2.4) — according to a portfolio rule 7 = (my,...,m,). This is a process adapted to
the natural filtration F = {F(t)}o<t<oo Of by the stock-prices F(t) := o(X(s),0 < s <1),
which satisfies m(¢t) > 0,..., m,(¢t) > 0 and Y .  m(t) =1 for all 0 < ¢t < co. The

16



interpretation is that m;(t) represents the proportion of the portfolio’s wealth Z7(t) that
is invested at time ¢ in the 3** stock, so that

dZ g Z it

and Z™(0) = z > 0 is the initial capital. The quantities b;(t) := v (t) + (c2(t)/2) for

i=1,...,n appearing in (5.1) are the rates of return of the individual stocks.

Zm {( +U“22(t)>dt+ai(t)dﬂfi(t) (5.1)

As shown in Fernholz (2002), Chapter 1, an application of It6’s rule casts (5.1) in the

equivalent form
T n_ooT
log Z™(T) = logz + / Y (t) dt + Z/ mi(t)o (t) dW,(t) , 0<t<oo. (5.2)
0 — Jo

Here the quantities

n

= D_mlt)n(t) +17(1), =52 ml) (1 -m®) o)  (53)

—_

denote, respectively, the growth rate and the excess growth rate of the portfolio. The appel-
lation is justified by the a.s. equality

Tlgrgo% <logZ“(T) _ /OTWt) dt) 'y (5.4)

this is a consequence of (5.2), the boundedness of m;(-), o;(-), and the strong law of large
numbers for Brownian Motion. The rate of return and the variance of the portfolio ()

are, respectively, the quantities

n

= Y m() (%-(t) + (02(1) /2)) and (07 (t))? = Som)oiw).  (55)

We shall denote by

™ : 1 T T K : 1 T ™
G*m = Jim = [ o, Gim = Jim £ [0, (56)
the long-term averages of the growth rate and of the excess growth rate, respectively, when-
ever these limits exist a.s. In fact, when the first limit in (5.6) exists, it is clear from (5.4)
that .

G™(n) = lim T log Z™(T)

T—o00
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will also hold a.s. We have parametrized the quantities of (5.6) by the market size n because
we shall also be interested in the large-market behavior, as the number of equities tends to
infinity, of some simple and consistently defined families IT = {7(™},cy of portfolio rules:
m._ g x(n) o . - ()
.= nh_g)lo G™ (n), r, = nh_)n()lo GT ' (n). (5.7)
We shall study, and then compare to each other, the quantities of (5.6), (5.7) for a few

simple but important and relatively easy-to-implement investment rules, for which the limits
indicated in (5.7) exist.

5.1 Example: The Market-Portfolio rule x(-) = (p1(-),...,un(-)) has already been
introduced in (2.8), namely

X;(t)
Xl(t) + -+ Xn(t) ’

wi(t) = i=1,...,n. (5.8)

It invests in each company in proportion to its relative market capitalization, and yields a
wealth Z#(-) = 2X (-) that reflects the entire market capitalization, in proportion of course
to the initial investment z > 0. For this market portfolio, and with the notation of (3.2) for

the reverse order-statistics, the quantities of (5.3) become

1 n
=7+ nguk) + @), ) = égaﬁ-u(k)(t) (1= pw (@)  (5.9)
in the context of the model of (1.1), (1.6). Also, we know from Remark 2.1 that

T
G*(n) == lim % /0 W) dt = lim f log Z4T) = v,  as.  (5.10)

T—00

so that (5.9), (4.11) then imply

T
Gi(n) = Jim % / Z% (Mk (1— My ) ng (Mg). (5.11)

Here (M, ..., M,) is the vector of long-term ranked market weights of (4.9), (4.10).
e For the (generalized) Atlas Model of (1.7), these formulae give

Gh(n) = g, G (n) = g(l—n-]E(Mn)). (5.12)

5.2 Example: The Equally-Weighted Portfolio rule 5(-) = (m1(-),...,m.(-)) assigns

18



equal weights

1
ni(t) == —, i=1,...,n (5.13)
n
to all stocks at all times. Clearly,
n(p) — n npy . 1 ~
V() = + 7@, W) = 5D ok (5.14)
k=1

e For the variance structure of (4.16) and with v = g > 0, these imply

-1 1
Gl(n) = n2n (02+52 %) ; G"(n) = g + GI(n). (5.15)

In particular, for the constant-variance case of (4.14) we get
o2
Fn =g =+ 7 When S = 0 (516)

whereas [7 = I = oo when s >0 in (4.16).

5.3 Example: The Diversity-Weighted Portfolio rule J®)(.) = (ﬁgp)(-), . ,197(11’)(-))

is given in terms of the market portfolio as

®) () . (i (1)) i N
S ) e M) b 17

for some fixed number p € (0,1). This portfolio has been studied already by Fernholz
(2002) and Fernholz et al. (2005); in particular, we know from these sources that

(») T
log (%) = log (%) + (1 —p)/0 AP (tHydt, 0<T <o (5.18)

1/p
holds a.s. for every T € (0,00), with the notation D(z) := (Zn xp) . But (5.3) gives

=11

Y Oy > ot 9k (ke (2))P
T ) = e 0

with the help of which (5.18) reads
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1 (o2 [ 09 Y aoe iy oy~ L[ Xk 9k @)
T(l g7 (T) / 7 (t)dt> 7 loe 25 0) =) — 7 o Doper (e (1)
1 D(N(T)) b T 9(@)
* Tl‘)g(D(u(o») - [

Sending 7 to infinity in this expression and recalling (5.4), (5.10) and (4.11), we deduce that
the a.s. limits of (5.6) exists for the diversity-weighted portfolio, and are given by

dt

G (n) = —i E ( Zzg(z(\%)) | G""(n) =7+ (1-p)-G!"(n). (5.19)

As expected, these formulae reduce to those of (5.10), (5.11) when p = 1; and for the Atlas
Model of (1.7) they give

G ()= 2. [1 —n-E ((M—)p)p) } . ) =g+ 1 -p) G (n). (5.20)

e We shall also look at modified versions of the portfolios considered so far in Examples
5.1-5.3, which “shun the smallest stock in the market”.

5.4 Example: The Restricted Market Portfolio rule 7i(-) = (fi(-),...,Ha(")) is

defined in terms of the market portfolio of Example 5.1 as

~ pa(t) ,
() = —P 1 xS i=1,...,n. 5.21
0= T @ ere 21

We shall justify in the Appendix the computations

n—1
iy — g [ I Moo D 1 9 M Ay oo Maa
G (n) E( L : GHi(n) = v—gn-E ) 622

e These quantities are the same in the case (1.7) of the Atlas Model:

GE(n) = G*(n) = ¢ (1 —(n—=1)-E <1Af’§}n)) . (5.23)

5.5 Example: The Restricted Equally-Weighted Portfolio rule 7(-) = (71 (), ..., ("))

assigns equal weights to all stocks but the smallest, which receives zero weight:

1

mi(t) = 1 lxosxmo) i=1,...,n. (5.24)
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Clearly,

[y

~ ~ n—2
+ Y1), Yt) = 2n—1) Tk - (5.25)
1

n gn
m(t) = _
7"(t) Y n—1

B
Il

e For the (generalized) Atlas model of (1.7) with variance structure (4.16), this gives

G'(n) = GM(n) = ;1((:7__12))2 (02+82 nT—1> . (5.26)

Just as in (5.16), we get then

0.2

2

in the case of equal variances (s = 0), and whereas I'7 = I'7 = co when s > 0.

M =17 =

* )

(5.27)

5.6 Example: The Restricted Diversity-Weighted Portfolio rule 1’9‘(;0)(,) = (?9? )(-),
., 0P(2)) is defined as

@) (t) = (:uz ()P

(@ + -+ (o (@) KO0 i=l..on. (528)

for some fixed number p € (0,1). Note that o) (-) is simply the restricted market portfolio
i(+) of Example 5.4. We shall see in the Appendix that the a.s. limits of (5.6) exist for this
portfolio and are given by

G () = 1o (%(Mn—l)p:‘lzzﬂl Ik (Mk)p) ’ (5.29)
p k=1 (Mp)?
GO (n) = o — % B (gn(Mn1)P + (%;E(PA)/[SEJZ; gk (My,)P ) | (5.30)

in the context of the First-Order Model. Again, these formulae reduce to those of (5.22)
when p=1.

e Just as in (5.23), these quantities are the same in the context of (1.7), namely:

Gf(p) (n) _ Gﬁ(l’) (n) _ g [1 _ (TL _ 1) ) (%) ] . (531)
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6 Comparisons and Approximations

We can begin now to make some comparisons of long-term-growth behavior for the portfolio

rules introduced in Examples 5.1-5.6. For instance, (5.12) and (5.16) give
M=y and 7= (0%2), T"=g+(0%2)=gl+a)  (6.1)

in the context of the Atlas Model (1.7), (4.14) and with the notation of (4.15) for the
asymptotic (as n — o00) long-term growth rates of the market-portfolio rule u(-) and
the equally-weighted portfolio rule 7n(-). Thus, in a large Atlas Model, the equally-weighted
portfolio outperforms the market portfolio in terms of long-term growth rate, by the amount
a?/2.

Do these features persist when one is not able to invest in the smallest stock? We know
from (5.27) that the restricted equally-weighted portfolio 7(-) has asymptotic long-term
growth rate

I = (6%/2) = ag = I'7. (6.2)

The inability to invest in the smallest stock of a large Atlas Model, penalizes the long-term
growth rate of equal-weighting by the amount (0?/2) , but leaves its long-term excess growth

rate the same.

But how about the performance of the restricted market-portfolio 7i(-) of Example 5.47

From (5.23) we see that we have to calculate the limit

et (on () -

not a straightforward task. Similarly for the diversity-weighted portfolio 9®)(-) of Example

* T)

: (6.3)

5.3 and its restricted counterpart 1/9\(’7)(-) of Example 5.6: in accordance with (5.20) and
(5.31), we have to compute the quantities

Ff(p) _ F@(P) _ ]g) [1 _ nh_)nolo ((n -1)-E (%)) ] . (6.5)

To carry out the computations of (6.3)-(6.5) we shall resort to the certainty-equivalent

and

approximation of subsection 4.1. In particular, we shall replace in (6.3)-(6.5) the random
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variables M, ..., M, by the constants

k_(a+/8) e _2,519
ST @ ¢ 28

MZE ~ k=1,...,n, with a>0,8>0 (6.6)

as in (4.17) and Examples 4.1, 4.2.

6.1 Atlas Model with a = (¢2/2g) > 1

In this setting we have 5 =0 and the series »_ jenJ @ appearing in the denominator of
M,SENL k=1,...,n (6.7)
Z?:l J
converges, therefore
MSE ~ O(n™®), nMSE ~ O(n*~) as n — 0o.

It follows then from (5.12) that

[~ g(1— lim (nMZP)) ~ g = I". (6.8)

n—oo

5.4 Example (Continued): For the restricted market portfolio 7i(-) the relations (6.3) and

N N -1 -MCE
o=t 1= g ()|~ .

(6.7) now give

Comparing with (6.1) we see that, in this case, dropping (or inability to invest in) the
smallest stock does not result in loss of long-term growth for the market portfolio.

5.3 Example: (Continued): For the diversity-weighted portfolio 9®)(-) the relations (6.4)
and (6.7) give

» MC’E P 1—ap
1- 2% O lim ( n (M, C)E ) ~ lim (%) . (6.10)
g n—00 Zk:l(Mk )P n—00 Zk:lk op

We need to distinguish two cases:

Case I: If (1/a) < p <1 then the limit in the expression (6.10) is equal to zero, and we
obtain
AR %, " ~ g+ (1-pT?” ~ %. (6.11)
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Comparing with (6.1) and (6.8) we see an advantage over the market portfolio p(-) in this
case: [ > r 9% > ' But comparing with (6.1) again, we see that a disadvantage
emerges vis-a-vis the equally-weighted portfolio n(-): T >T?% 1 > T

Case II: 1If 0 <p < (1/a) then lim, (%) = 1—ap and (6.10) gives

M ~ag = (0%/2), T ~ g+ (1-p)(0?/2). (6.12)

There is a definite advantage over the market portfolio (Fﬂ(m > Ff(p) > I'") and a
disadvantage vis-a-vis the equally-weighted portfolio ( I'7 > ro® , I'l = Ff(p) ).

5.6 Example (Continued): For the restricted diversity-weighted portfolio 9@ (-) the rela-
tions (6.5) and (6.7) give

N N _ l—ap
r’” =" ~ 4 [1— lim (—(nn - )] .
b Zk:lk op

From the preceding discussion we see

r9® = @ . incase ap>1 (6.13)

~y

9
p
(that is, no disadvantage at all for dropping the smallest stock), and

Ff(p) _ Fﬁ(f’) ~ag = (02/2), in case ap <1 (6.14)

(in other words, a drop of ro® 9 (1—ap)g in long-term growth rate, due to inability

to invest in the smallest stock).

If ap > 1, the restricted diversity-weighted portfolio outperforms the restricted market
portfolio (compare with (6.9)) and underperforms the restricted equally-weighted portfolio
(compare with (6.2)). When ap < 1 the advantage versus the restricted market portfolio
remains, but the disadvantage vis-a-vis the restricted equally-weighted portfolio disappears.

6.2 Atlas Model with o = (06?/2g) <1

In this case we have again 8 =0 in (6.6), so MF¥ ~ % satisfies
j=1

l-a
Jim (47) o~ tin () =1
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e For the market portfolio p(-) we have now

' =g, I# ~ g(l— lim (nMSE)) ~ ag = (06%/2) (6.15)

n—oQ

from (6.1) and (6.8), and for its restricted version 7i(-) the equation (6.3) gives

" =T¢ ~ g- [1 — lim <%” ~ ag = (%/2). (6.16)

n—oo

In other words: when the market portfolio cannot invest in the smallest stock, there is a
loss of long-term growth rate (I'* > T'#) for a < 1, whereas T* ~T'# for a = 1.
e For the diversity-weighted portfolio 9)(-) it is easy to check from (6.4) that the expres-

sions
% ~ag = (0%/2), T ~ g+ (6%/2)(1-p) (6.17)

of (6.10) and (6.12) prevail again; the same is true of the expressions
M ~ (0%/2), I ~ (6%/2) (6.18)

of (6.14) for the restricted counterpart 1’9‘(;;)(_) of 9)(-). In this case the restricted market-,
equally-weighted- and diversity-weighted-portfolios [i(-), 7(-) and 5@)(_) have exactly the

same long-term-growth performance.

6.3 Maximal Growth Rate in the Atlas Model

All these comparisons beg the obvious question: What is the mazimum long-term growth-
rate imyp_, oo % Z™(T) from investment, that one can achieve over all possible portfolio rules
7(-) ? In the context of the Atlas Model it is natural to guess that the best such rate can
be attained by always investing in the smallest, the Atlas stock: namely, that

— 1 1 _ .
limy oo = Z"(T) < lim =Z" (T) = ny, a.s. (6.19)
T T—o00
holds for every portfolio 7(-), where
W;k(t) = 1{X¢(t):X(n)(t)} ; 1= 1, B (620)

is the portfolio that invests always and exclusively in the Atlas stock.
This eminently reasonable guess can be justified rigorously when ng > (0?/2) using
the theory for portfolio optimization developed in Karatzas & Shreve (1998); in particular,
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Example 6.4.2 on p. 282 and Theorem 3.10.1 on page 152. It is interesting then to compare
the optimal growth-rate G™ (n) = ng of (6.19) with the growth-rate

n—1 o2
2

G"(n) = g+

of the equally-weighted portfolio 7(-) from (5.15); with that of its modified counterpart 7(-)
from (5.26), namely
- n(n—2) o?
G"(n) = —
(n) =g+ -T2 3
and with the asymptotic (as n — oo) long-term growth-rates

n—oo

1 —
T = lim G*(n) ~ g 1+Tp(1/\ap)

of the diversity-weighted portfolio, and

' = lim G’g(p)(n) ~ 2(1/\04]7),
p

n—oo

of its restricted counterpart, from (6.11), (6.12) and (6.13), (6.14), respectively.

The trouble, of course, is that the portfolio of (6.20) is extremely hard, if not impossible,
to implement in practice — quite in contrast to the portfolios of Examples 5.1-5.6 that can

be implemented with relative ease.

6.4 Generalized Atlas Model of (4.16)

Let us consider now the case of variance coéfficients of the form (4.16) with o2 > 0. The

certainty-equivalent approximation of (6.6) with 3 = (s*/4g) > 0 now has the advantage

that the series ), j —(a+8) ¢ =287 appearing in the denominator of (6.6), converges for any

values of the parameters a > 0, 8 > 0; this makes the analysis much easier than before.
In particular, it is checked using (6.3)-(6.6) that we have

M~ g=T1", and ' ~g, TH~g (6.21)
for the market portfolio and its modification 7i(-); that

(p) (») (p)
' ~ (g/p), T ~g+QQ-pI?" ~ (g/p)
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for the diversity-weighted portfolio; and

95(») 9(@)
I’ ~ (g/p), I"" ~ (g9/p)

for its modified version. In other words, the diversity-weighted portfolio loses no long-term
performance by shunning (or failing to invest in) the smallest stock; and by selecting the
parameter p € (0,1) sufficiently small, we see that diversity-weighted portfolios can be
constructed that have arbitrarily large long-term growth rates — at least if the number of
stocks in the market is large.

The assumption of linear growth of variance coéfficients with decreasing size captures
quite well the actual measurement of stock-price volatilities reported in Figure 5.5 of Fernholz
(2002), page 109. This figure plots the smoothed annualized values of si against rank & in
the entire U.S. equity market for the period 1990-1999 (see the discussion in Section 5.1, page
95 of Fernholz (2002) for details of which securities are included). Recalling from (3.10) that
S; = 0p+0p,1, it is reasonable to make the approximation o} ~ s3/2. Accordingly, Figure 2

below, which shows the annualized values of o7 against k over the same time period, is a

0.35 -

0.25 -

02

0.15 -

01r

! ! ! ! ! !
0 1000 2000 k3000 4000 5000

Figure 2: Smoothed annualized values of o7, from 1990 to 1999 data

— log(MF*) (estimated)

_i2F - log(pk) (observed average)

0 1 2 3 4 5 6 7 8
log(k)

Figure 3: Estimated and actual capital distribution curves for 1990 to 1999
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scaled version of Figure 5.5 of Fernholz (2002). In the figure, the variances o2 do appear to
grow roughly linearly with rank. Using regression, we have estimated the parameters o2 and
52 of (4.16) to be 0.075 and 6.0 x 1075, respectively. Furthermore, we have computed the
annualized excess growth rate of the entire U.S. equity market over the same time period (c.f.
Figure 1 of Fernholz and Karatzas (2005)) to be about 4.4%; motivated by the observation
['# ~ g of (6.21) above, we can estimate that g ~ 0.044 over this period. Using our estimates
for the parameters 02, s> and g, we have plotted the quantities MCF of (6.6) in Figure 3,
along with the observed capital distribution curve as given in Figure 5.3 of Fernholz (2002).
The two curves are in rough agreement, with the biggest discrepancies occurring for about
the 20 highest-ranked stocks.

6.5 Simulations

In order to test the performance of the certainty-equivalent approximation, we have used
numerical simulations to measure the diversity of Atlas models under a variety of different
conditions. In particular, we wish to see if f€F = f(ME¥ ... MCF) is a good approx-
imation for the right-hand side E [ f(M, ..., M,)] of (4.11), by comparing f“F with the
values over time of T fOT f(pay(t), - -, ) (t)) dt. We have chosen the function f given by
f(z) :==> " af. This is the pth power of the so-called diversity function, which is defined
in Fernholz (2002) and also as D(x) in Example 5.3 above. We have set p = 0.5; results for
other values of p in the interval [0.2,0.8] are similar. In each panel of Figure 4, the horizon-
tal dotted line represents the value of fOF = f(MCP¥ ... MS"). The three curves in each
panel represent the simulated values of the time averages 7! fOT Flpay(@), - -, wny(t)) dt as
T varies. The scale on the horizontal axis is in years, assuming 250 iterations per year. Of
the three curves in each panel, the solid curve shows the result when the initial values of
the weights agree with (M, ..., MSF). The dashed curve corresponds to initially equal
weights, and the dotted curve corresponds to an initial distribution where one weight is very
close to 1.0. In the three left-hand panels, the volatility o7 is constant across ranks; the
(constant) growth rate g is chosen appropriately in order to model the three cases oo = 0.5,
1.0 and 1.5. In the corresponding right-hand panels, the volatility o7 now grows linearly
with rank k, as in (4.16). The parameters o2 and s?, now taken at a daily frequency, have
been set as 1/250th of the corresponding annualized values from Section 6.4 above. Once
again the parameter g has been selected in order to achieve the desired values of .. In each
case, the number of stocks n was taken to be 5000, and the simulation was run over 5000
years (1.25 million iterations).

In each simulation, all three initial conditions eventually lead to values of the time-average

of f which are relatively stable, approximately equal to each other and which compare
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favorably with the value arising from the certainty-equivalent approximation. The rate of
convergence seems to increase as « decreases. A possible explanation for this is that the

largest weight 11y is quite large for higher values of «; when this is the case, the diversity

[ is sensitive to changes in p(1), affecting the rate of convergence.
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Figure 4: Average pth-power of Diversity in Atlas Models (n = 5000, p = 0.5)

6.6 Efficient Portfolios in Generalized Atlas Models

A portfolio is called efficient, if its variance is minimal among all portfolios with the same

rate of return. Consider a portfolio 7(-) in a generalized Atlas market with n + 1 stocks,

29



restricted to invest in all but the smallest stock at all times; we shall denote by 7(x)(¢) the
relative weight this portfolio assigns to the stock ranked k% at time ¢. Then from (5.5) we

see that the rate of return and the variance of this portfolio are

n

F(t) =D of Fw(t) and  (07(1) =D of Gwm®)®,

k=1

respectively. In order to minimize ((ﬁ(t))2 with b7(t) constant and 7Tp)(f) > 0, ...
Tn)(t) >0, Tay(t) +---+ T (t) = 1, we must have

20’,%7?(]9)(15):)\10']%-{-)\2, k:1,...,’l’b

where A; and Ao are Lagrange multipliers. The solution is

1

2 n -2
Ok Ej:l g

The “efficient frontier” for this model consists of the one-parameter family of portfolios

~ 1

defined by (6.22). In the case (4.14) of constant variances the two fractions on the right-
hand-side of (6.22) are equal, so for the prototype Atlas Model equal weights produce the
only efficient portfolio.

For the general Atlas Model, the value A =1 produces the most risky portfolio, and the
value A =0 the least risky. With linearly-growing variances as in (4.16), the weights given
by (6.22) for the portfolios of the efficient frontier are considerably less concentrated in the
large stocks than the stable market-weights of Figure 5.3 in Fernholz (2002), p. 108.

7 Considerations of Diversity

The Atlas Model of (1.1), (1.2) has constant and invertible volatility matrix and bounded
growth rates, so it admits a unique equivalent martingale measure on every finite time-

horizon [0,7]. For this reason, it cannot be weakly diverse: in other words, for every
T € (0,00) and ¢ € (0,1) we have

1[»(%/:“(1)(75)(# < 1-5) <1, (7.1)

as shown in Fernholz et al. (2004). We shall argue below that the probability in (7.1) is
actually very close to one: for all intents and purposes, such a model captures rather well
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in practice the descriptive and intuitively plausible requirement, that “no stock should be
allowed to dominate the entire market, even on the average, with anything but an extremely
low probability”.

Let us then try to estimate the probability in (7.1) for a market of n = 5000 stocks,
similar in size to the U.S. stock market, We take a time period of 7" = 2 years, let § = .01,
and wish to measure the probability that the weak diversity condition holds, i.e., that none
of the stocks has a time-average market weight greater than 1 — ¢ = .99 over the 2-year
period. We shall assume that the stocks are lognormally distributed relative to the market.

We first need to estimate the relative variance of a typical stock with respect to the
market. The drift component, without leakage, of the diversity-weighted portfolio in (5.17)
is equal to (1 — p)/2, times the weighted average of the relative variances 7; of the stocks
in the market. In the example of Fernholz (2002), section 6.2, this component was 1.46% a
year with p = .50, so we can estimate the average relative stock variance at about 5.84% a
year. This means that the average relative standard deviation would be about 24% a year,
which seems within the range of what one would reasonably expect.

For weak diversity to fail, at least one stock must attain a market weight of at least .98 at
some time during the first year, since otherwise the time-average of the largest weight could
not be greater than .99 over the 2-year period. By the reflection principle (e.g. Karatzas &
Shreve (1991), section 2.6.A) the probability a stock weight hitting .98 during the first year
is equal to twice the probability that its weight exceeds .98 at the end of the year. Let us
estimate this last probability.

Suppose the starting weight of the stock is .03. For the weight to increase to .98, the
stock would have to increase relative to the market by a factor A, where

034

— = .98
034+ .97 ’

so A = 1584. On a logarithmic scale, this would be about 7.37 = log A, so with an annual
standard deviation of about .24, this is slightly greater than 30 standard deviations. If stock

price has a lognormal distribution, then the probability of a price move of this size is

L/w gy <« /oote_tz/Q g = & g (7.2)
V21 J30 30v27 J30 30v/2m

By the reflection principle, the probability that the stock’s market weight attains .98
sometime during the year is double this probability. To find the probability that any one of
the n = 5000 stocks attains a market weight of .98, we must multiply the result by 5000,
so in all we must multiply the probability in (7.2) by 10*. Hence, the probability that at
least one of the stocks reaches .98 during the first year is not greater than 1071, so the
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probability in (7.1) that the weak diversity condition holds, exceeds 1 — 10193, Now even
without writing this number out as .9999...999 we can see that it is pretty close to 1, so it
would seem that a market of this type is likely to behave rather like a diverse market over

a 2-year period. And this is without invoking antitrust legislation.

8 Appendix

Proof of (2.7): We shall establish in this section the strong law of large numbers (2.7).

This property is equivalent to the analogous result

1
lim p Zy(t) = v, as, Vk=1,...,n (8.1)

t—o0

for the log-capitalization processes of (3.1). Indeed, (2.7) implies (8.1) thanks to (3.1) and
the partition property (2.2); and conversely, the partition property that precedes (2.2) leads

to
> 10 (Y(1) - Zi(t) = ZYi(t) (Z 1Q£¢>(Y(t))1gg>(y(t))) = Z%‘ Yi(t) = Y;(2)
for every j=1,...,n, and thus (8.1) leads to (2.7).

We shall prove (8.1) under the assumptions
9150, g+9<0, g+ 49150 (8:2)

and

which, taken together, are actually weaker than (1.5). To this end, let us recall from (3.3)
that .
Zk(t) = Ze(0) + (g + )t + 2 [ABFFL () — APV () | + o B(2) (8.4)

holds for every £k =1,...,n. Fix k€ {1,...,n— 1} and observe

kZ(t) <) Zi(t) =) Zi(0) + (m +) gg> t+ %A’“”““(t) + o Bi(t), (8.5)

=1 =1 =1
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-2 > 3 2l = 3 Ze(0)+(("—/€)7+ > ge) (SN S 0 B,

l=k+1 (=k+1 l=k+1 l=k+1
(8.6)

After re-arranging terms and using (8.3), we see that the two inequalities of (8.5), (8.6)
imply

. (&ﬁ) ARFH(E) < ;;ge - Xk Rl
= (% + nik> ézzlge + Ry (t), (8.7)
where
Ri(t) = (Zze(m + ZwBN)) T (Z 20 + 3 WBM) - 88)

From the law of the iterated logarithm for Brownian Motion we observe that we have
limy o0 (8734 Ri(t)) = 0 a.s., thus

k
1
~3 AFFFL() < ¢ (Z gg) +o(t**)  ast— o0 (8.9)

=1

almost surely — for every k =1,...,n—1 thanks to (8.7) and (8.8), and trivially for £ =0
and £ =n.

Let us recall now the decomposition
Zk(-) = Ze1 (1) = Zi(0) = Zi41(0) + Ok(-) + AP (8.10)

of (3.8), which exhibits the non-negative semimartingale Zy(-) — Zx;1(-) as the reflection
at the origin of the process O(-) of (3.9). Thanks to (8.9), the bounded variation part
(95 — grs1)t — 3 [AF=VR(E) + ARFLE+2(2) ] of this semimartingale ©j(-) is dominated by

k—1 k+1 k
(g5 — gre1)t + (de+de> t+o(B*) = 2 ( gg) +o(t*h), as t— oo

=1 {=1 =1

a.s. In other words, ©(-) is dominated by a Brownian Motion (thus Zj(-) — Zx1(:) is
dominated by a reflected Brownian Motion) whose drift is bounded from above by o(t~/%)

a.s. (If the inequalities in (8.2) are strict, as they are in (1.5), then this drift is eventually
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negative and we can appeal to the strong law of large numbers, as opposed to the law of the
iterated logarithm, for the Brownian Motion process.) A reflected Brownian motion with

drift of this type is easily seen to be of the order o(t) as ¢t — oo, and so we have

lim 1<Zk(t) —Zk+1(t)) =0, as (8.11)

tsoo

Now let us divide by ¢ throughout (8.10), then let ¢ — 0o to obtain

O =y k+1,k+2 kk+1
i 3 [ 5 A5+ 4 0) - 40| = g g, as
for every £k =1,...,n— 1, from the strong law of large numbers for Brownian Motion in

conjunction with (8.11). Adding up from k=7 to k=n—1 we get

1

Jim = [ASVEE) — ASH () — A" (@) ] = 2(9e—gn),  as. (8.12)
forany £=1,...,n—1, since A™"*1(-) =0. Adding up over these values of ¢ we obtain
lim ! [AY () =A™ () = (n—1)- A" (1) ] = 2 nz_lgg - 2(n—-1)-9,, as,

t—00

=1

and recalling (8.3) and A%!(-) = 0 we arrive at

1
lim —A""'"(t) = 2¢g,, as.

t—oo t
Substitution into (8.12) yields

lim & [ASM() — AL ()] = 240, as.

t—oo

for £ =1,...,n. The property (8.1) now follows from this, in conjunction with (8.4) and

the strong law of large numbers for Brownian Motion. o

Remark: Suppose now that the condition (8.2) fails; namely, that le:l g¢ > 0 holds for
some k=1,...,n— 1. Then by analogy with (8.5), (8.6) we have

k Zl(t) > ZZg(t) = ZZ@(O) + (k’y + Zgg> t+ %Ak:k—kl(t) + Zo-é Bg(t) ’

=1 =1 =1
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and the strong law of large numbers for Brownian motion implies

k
de > v, a.s.
=1

x| =

Z
lim inf # > v+

t—o0

so that (8.1) cannot hold in this case.

Proof of (2.18): To see that the process 17() is recurrent with respect to BNII for some ball
B C IR" centered at the origin, it suffices to show that the process N(-) := (1+||Y(-)[[?)'/2
is recurrent with respect to [1,C] for some C' > 0. An application of Itd’s rule to (2.15)
shows that

dN(t) = ((N(t))—l?(t)-G(Y(t)) +N1(t)> dt + ((N(t))—l?(t) : §(1’7(t))dW(t)), (8.13)

where

M) = (V) (1= 1) S0 = (V) S T (002

Here p, is defined as in (1.4); that is, p, € %, satisfies Y (¢) € Ry, for allt > 0. It
is easy to check that Ni(t) < ¢ (N(t))~! for some ¢; > 0; furthermore, the fact that
Y(t) - G(Y(t) < c||[Y(t)]| for some ¢ < 0 implies that the term (N(t))~'Y (¢) - G(Y (¢)) in
(8.13) is uniformly bounded from above by some constant ¢, < 0 whenever N(t) > 2. It
follows that there are constants c3 < 0, C' > 0 such that the drift term in (8.13) is bounded
from above by ¢; whenever N(¢) > C. Finally, note that the coéfficient (N (¢))~'Y ()-S(Y (t))
of dW (t) in (8.13) is a matrix whose entries are uniformly bounded from above and below

by Omaz := max{oy,...,0,}. The desired recurrence follows.

Proof of (2.21): In order to prove that the processes Y (-) and pY (-) of (2.15) and (2.20)
respectively (with § = 0 in (2.15)) have the same stationary distribution p, it suffices to
show that the processes have the same law. We claim that Y'(-) also satisfies (2.20), that is,

dY (t) = G (Y (t)) dt + S, (Y (£)) dW (t), Y (0) = 0. (8.14)

Indeed, if Y (-) and pY (-) both satisfy (8.14) then they have the same law, since the stochastic
differential equation (8.14) has a unique solution in the sense of the probability law. To
establish (8.14) for the process Y (-) of (2.15), note that G(y) = Gi(y) and S(y) = S1(y)
except on the set R® = {(y1,...,yn) € IR"|y; — y; = 0 for some i # j}. It suffices to show
that

meas{t € [0,00) : Yi(t) - Y;(t) =0} =0, as. (8.15)

for all pairs ¢ # j. For such pairs (4, j), the process Y;;(:) := Yi(+) —17]() is a semimartingale,
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with drift bounded in absolute value by max{2|gx|} and variance bounded from above and
below by max;{207} and ming{202} > 0, respectively. Over any bounded time-interval
[0, 7], removal of drift via the Girsanov theorem, followed by a time change, establishes
(8.15) and completes the proof of (2.21).

Proof of (5.30), (5.29), (5.22): To justify the computations (5.30), (5.29) we recall from
Equation (4.3.4) of Fernholz (2002) that the a.s. identity

7%(T) 1 "L (g (T))P L 17
log — = = — log | ==, + l—p/ 7y (¢ dt——/ 9 () At
7n(T) " p oy ) O DA [ Ty AT

holds. From (5.3) we have

n—1 n—1
5 5 ~p) Y it 9k (g ()P
YU =y ) =+ ) g () =y + — :
Z ) S (g (1))

which allows us to write the above identity in the equivalent form

%(logzﬁ“”(T)— / 7% (1) dt) = (0 74(T) —7) — 7 / V7w dt (8.16)

0

1
— 1
+pT og

Z;ll(ﬂ(k)(T))P 1 T Zz;igk(/‘(k)(t))p 1 T;,\(p) o
( Zi(mm(@)”) T Jo "1y (£)P =57 /0 (n-1)(t) d (t).

On the other hand, we get from (3.5), (3.7), (4.11) and (1.5) that

; 1 ’ 9(p) n—1,n _ (Mn—l)p

holds a.s. Taking now the limit as 7" goes to infinity in (8.16) and using (5.4), (5.10), (4.11)
and (8.17), we see that the a.s. limits in (5.6) exist for this portfolio and are given by the
formulae of (5.30), (5.29). Finally, (5.22) is simply a special case of (5.30), (5.29) in the case
p =1 of the market portfolio.

9 Note Added in Proof

We show that the long-term average relative capitalization weight, for each individual stock

(listed by name) in a first-order model, tends to 1/n: in other words, for each i = 1,...,n,
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we have

T—ooo T n

1T 1
lim — [ p(t)dt = —, a.s. (9.1)
0

It is not clear that the left-hand limit exists. To show that it does, first set

_ exp(y1) exp (Yn) n
gy1, . yn) = (Z?:1 o) ST exp(yi)) , (y1,---,9yn) € R".

By (2.19), we have for any i,k = 1,...,n and bounded, measurable f:

jll_I)I;o —/ f o g Q(z)( dt / f o g Q(l)( )d,u( ) a.s. (92)

Suppose that f is symmetric in all variables and let p € ¥, be a permutation of {1,...,n}
such that p(j) = ¢ for some j € {1,...,n}. Since the measure y is invariant under the action
of ¥,, fog(py) = fog(y), and 195:-) (py) = 1Q’(cj)(y) for y not in the p-null set R¢ (defined
after (2.11)), we have

/fog Lo () duly /fog Loo (y) dp(y)-

It follows that the almost-sure limit on the left-hand side of (9.2) is independent of i. By
the definition of g and the symmetry of f, this limit may be expressed as

lim - /O Py (8) - 1y ()1 g0 (Y (1)

Since {QS:)} is a partition of IR™ for each fixed k, summation of the previous expres-
1<i<n

sion over i and (4.11) lead to the following refinement of (4.11):

lim —/07 f(,u(l)(t),...,u(n)(t))lgg’)(Y(t)) dt = %]E [f(Ml,...,Mn)], a.s. (4.11)

In particular, with f(y1,...,yn) = yp on the set {y € R [yy > -+ >y, > 0,> 0 v; = 1},

lim ~ / () g (V (1) di = Jlim 1 /0 b (1)L g0 (V' (1)) - = %E[Mk], as.

T—soo T T—oo T

Summation over k, (2.2), and the fact that ,_, M = 1lead to the desired result (9.1). ¢
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