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ON EULER PRODUCTS AND THE CLASSIFICATION
OF AUTOMORPHIC FORMS II*

By H. JAcQUET and J. A. SHALIKA

0. Introduction.

(0.1) Let fbe an integer > 1 and a an integer prime to f. A classical
theorem of Dirichlet asserts that there are infinitely primes in the residue
class of a mod f. This may be reformulated as follows. Let xq, x2, ..., X;

be distinct characters of (Z/f)* and ¢y, c,, ..., ¢, be complex numbers. If
L cxi(p)=0 0))

1<j=t
for all but finitely many primes p, prime to f, thenc; =c; = .- =¢, =

0. A somewhat weaker statement than Dirichlet’s theorem is the existence
of infinitely many prime powers in the class of a. This may again be for-
mulated in terms of Dirichlet characters, replacing (1) by the condition

l<§<t ijj(p") =0, (2

for all integers n = 1, and all but finitely many primes p, prime to f.
We may of course view the x; as idele-class characters or, what
amounts to the same, as automorphic representations of GL(1), regarded
as a Q-group. Then we may replace Q by any number field. The purpose
of this paper is to further extend this result to all the linear groups. In
more detail, let 7 be a automorphic cuspidal representation of GL(r, A)
where A is the ring of adeles of a global field F. We write r = deg 7. Then
« decomposes into a tensor product # = ®, 7, over all the places v of F.
Let S be a finite set of places containing all the infinite places. Suppose S
is so large that =, is unramified fot v ¢ S. For v ¢ S let A, be the semi-
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778 H. JACQUET AND J. A. SHALIKA

simple conjugacy class, the “Langlands class,” in GL(r, C) attached to =,
(c.f. (1.3) below). For n = 1 we set

w(v") = tr A"

Suppose now that ;, 1 < i < p, is a family of such automorphic repre-
sentations, possibly of varying degrees. Our main result is that, if the =,
are unramified outside S and

2 C,'7I','(V") = 0,
P

I=<i<

forallv¢ Sandalln = 1, thenc; = 0forl < i < p.

We use this result to answer a question raised by Langlands (R.P.L.
II) on the classification of automorphic representations (Theorem (4.4)),
proving, in conjunction with the theory of Eisenstein series, the existence
of the category of “isobaric forms.”

We also given an application to the strong form of Artin’s conjecture.
Here however our assertion will not have substance until further progress
has been made.

Our proof is based on properties of the L-functions L(s, # X =') at-
tached to pairs (w, 7') of automorphic, cuspidal representations. More
precisely, if 7 and 7' are unramified outside S, we consider the partial
L-functions

Lg(s, # X ©') = 45 det(1 — q,~54, ® A,")"1.

Forr =r' =1, Lg(s, # X «') is just the L-function attached to the prod-
uct ww’. For r = r' = 2 the L-functions L(s, # X 7') were first con-
sidered by R. Rankin and A. Selberg and to a great extent their work is
the inspiration for ours (cf. [R.R.] I, II and [A.S.]). In general, these
L-functions were first considered in joint work with Piatetski-Shapiro. We
hope to publish a more detailed description of their properties—with ap-
plications to the determination of the poles of Eisenstein series and the
formulation and proof of “converse theorems” similar to those in [J-L]
and [J-P-S].

Just as in the proof of Dirichlet’s Theorem our proof depends on the
existence and non-existence of poles and zeros of L-functions. Essential
use is made of a recent result of F. Shahidi [F.S.] on the non-vanishing of
these L-functions on the edge of the critical strip.
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(0.2) Upon first reading one should read Section (1), Section (2.1),
the statement of Proposition (2.6), Section (3.2), the statements of Pro-
positions (3.3), (3.6), (3.7) and finally Section (4).

(0.3) Notations are the same as in part I. We shall use standard ter-
minology concerning automorphic forms and automorphic representa-
tions. We refer the reader to [B-J], [R.P.L. I] and in general to the two
Corvallis volumes for the basic definitions and concepts. In addition we
write @, for the set of equivalence classes of (irreducible) automorphic,
cuspidal representations of G,(A) and @ for the disjoint union

@=UQ,. )

We write deg # = r if # € @,. Any 7 in @, is uniquely expressible as an in-
finite (algebraic) tensor product of representations of the G,:

T=Q,T,. )

We call 7, the local component (at v) of .

Finally, if @ is a finite group and = a (finite-dimensional) representa-
tion of @, x, will denote the character of . If f and g are two complex-
valued functions on & we write

(f,8)=[Card O] T f(x)glx) €)
for their inner product.

1. The non-archimedean case.

(1.1) In this section, F is a non-archimedean local field. For the con-
venience of the reader we recall certain definitions and results.

Let r be an integer =1 and = an irreducible admissible representa-
tion of G,(F). Let ‘V be the space of =. We say that = is generic if there ex-
ists a linear form A # 0 on V such that

Nw(n)v) = 0(n)N(V) (1)

for n € N(F), v € V. The form X\ is then unique up to a scalar factor. The
space generated by the functions of the form '
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W(g) = Nw(g)v) 2

depends only on ¥ and n. We denote it by “W(; ).

If the central character of « is unitary then any element of “W(; ) is
majorized by a gauge ([J-P-S] Prop. 2.3.6), that is to say a function £ > 0
on G,, invariant by the center, on the left by N, on the right by K, and
given on A by

£a) = ¢(a1(a)9 a2(a)’ ey ar—l(a))lalaZ cee ar—l(a)l —,

with¢t = 0and ¢ = 0in S(Fr1).

(1.2) Let f be a function on P,, transforming on the left under N, ac-
cording to 8, invariant on the right under an open compact subgroup of G,
and compactly supported mod N,. Then given w, there exists W in
W(w; ¥) whose restriction to P, coincides with f ([G-K]. (5.2)).

(1.3) Suppose that =« is unramified, that is it contains the trivial
representation of K. Suppose further that the largest ideal on which y is
trivial is . Then up to scalars there exists exactly one element W, in
W(m; ¥) invariant under K on the right. Moreover Wy(e) # 0 and we nor-
malize W, by requiring Wy(e) = 1 ([C-S], [T.S.]). We call W, the essen-
tial element of “W(w; ).

We recall that the unramified representations of G, (generic or not)
are parameterized by the semi-simple conjugacy classes in GL(r, C). More
precisely, if 7 is unramified then = is the unique unramified component of
an induced representation of the form

Ind(G,, B,; 15 p2s -5 i),

where the u; are unramified quasi-characters. The class attached to = is by
definition the class of the diagonal matrix

A = diag (uy(@), p2(@), ..., p(@)).

(1.4) Let r and r’ be two integers, r > r'. Let 7 (resp. 7') be an ir-
reducible admissible representation of G, (resp. G,). Set for W ¢
W(m; ¢), W' e W(x'; {),

g 0
Vs, W,W’') = “ W< >W’(eg)|detg|s“("")/2 dg, (1)
01

Ny \G,
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where

e = diag (1, —1,1, —1, ...) 2

is a row vector of length », and dg is an invariant measure on N, \G,.. It
follows from the majorization of W and W' by gauges that the integral
converges for Re(s) large.

We will also need the following. First if W’'(e) # 0, then by (1.2) one
can choose W so that the integrand in (1) is compactly supported.
Moreover we can even assume that the resulting integral (which then ex-
ists for all s) is then identically one. Second suppose that = and «' are
unramified, the largest ideal on which ¢ is trivial is &, and that the
measure dg is the quotient of the Haar measures of G, and N, normal-
ized so that K and K N N, have volume one. Then if W and W' are the
essential elements of “W(wr; ¢) and W(x'; ) respectively, one has

Y(s, W,W')=det(l1 —A ®A'q5)"! 3)
where A (resp. A') is the conjugacy class associated to 7 (resp. «'). In fact
referring to Section 2 of [J-S], we have in the notation of that paper

@ 0 ,
Vs, W, W)=L,W W(@’)s,~ (@) | det @7 |s= =2, (4)
0 1

the sum being over all ' -tuples of integers
J= (s Jos oo s Jr)
satisfying
Wz =z ez 0

Here 8, is the module of the group B, . As there setttJ = I j;, X = g%,
Using the explicit formulae for W and W' ((2.1) of [J-S]), we find that the
right side of (3) is also equal to

L Tr(p(r,J)A)) Tr(p(r', INA" )X TV, (S)
JET +(r')

The equality (3) then follows directly from Prop. (2.4) of [J-S]. We will
denote the Euler factor in (3) by L(s, # X «').
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Finally, if »' = 1, then =’ is a (unitary) character of F* and, up to a
constant, W'(x) = w'(x). Then the integral is simply

a 0
S w la|s~=D2 1" (a)d *a.
Fo\0 1,

(1.5) ProrosiTiON. (i) With the above notations, given W' there
is a W such that the integral (1.4.1) converges and is equal to one for all s.

(ii) Assume wand ' are unitary. Then the integral (1.4.1) converges
for Re(s) = 1, normally for Re(s) in a compact set.

(iii) If ® and ©' are unitary and unramified then L(s, ® X ©') does
not have a pole in Re(s) = 1.

Proof. The first assertion follows from (1.2). Assume 7 is unitary.
Then by Proposition (1.3) of [J-S] the restriction of any element of
W(m; ¥) to P, is square-integrable mod N,. The same is true for w'. The
proof is then similar to the proof of (2.6)(i) below, but easier; it is left to
the reader. The third assertion follows from the second one. O

2. The archimedean case.

(2.1) Let F be either R or C. We will regard G,(F) throughout as a
real Lie group.

We begin by recalling the definition of a “generic representation.”
We then study the convergence properties of the integrals, analogous to
those introduced in (1.4), associated to a pair of such representations. The
basic result is Prop. (2.6) below.

We denote by £ and U the Lie-algebra of G,(F) and the enveloping
algebra of € ® g C respectively. Let # = 1 be an integer and 7 an irreduci-
ble unitary representation of G,(F) on a separable Hilbert space 3C. Let
JC* be the space of smooth vectors in JC with its canonical topology. We
say that = is generic if there exist a non-zero continuous linear form A\ on
JC* such that

Na(n)v) = 0(n)v 1

for n € N, and v € 3JC*. That form is then unique up to scalars ([J.S.]) As
in Section 1, the space of functions of the form

Wi(g) = Mw(g)v), (2)
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where v is in JC*, is then uniquely determined by 7 and y; we denote that
space by W(m; ¢).

(2.2) We will need estimates for the elements of W(r; ¥) similar to
those in (1.1). For ¢ € C.*(G), set as usual ¢(x) = ¢(x~!), x € G. Then
all elements v in JC* are of the form

v = (),

where ¢ is in C.*(G) and v, is again in 3C*. (c.f. [D-M]). In terms of the
corresponding functions W and W, that amounts to the relation

Wig) = § W, (eh)o(h)dh.
G

By the proof of Lemma (8.3.3) in [J-P-S] we find then that W is majorized
by a gauge, the definition of a gauge for F archimedean being precisely the
same as in (1.1).

(2.3) On the other hand let 7, be the irreducible unitary representa-
tion of P, induced by the character 6, of N,. By [J-S] Prop. (3.8), there is
an A # 0 in Homp (7|P,, 7,). On the other hand one can identify the
space X, of 7, with the Hilbert space of functions on G,_; transforming on
the left under N,_,; like 6,_, and square-integrable mod N,_,. For ¢ in
this space, h € G,_(F), we have obviously

h 0
<Tr <0 1>¢)(g) = ¢(gh), g€G,_((F).

Thus, if v € 3C>, then Av, being a differentiable vector for 7, is actually a
smooth function. Thus v — Av(e) is a linear form satisfying (2.1.1). We
may then assume A\(v) = Av(e) and we deduce immediately the following
consequence:

LemMmA. (i) There exists a positive constant ¢ such that for all v €

JC> one has
g 0
| |W|2< >dgsc||v||2,
Nr—I\Gr—1 0 1

where W is the element of “W(m; ¥) defined by (2.1.2).
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(il) If v runs through a dense subset of 3C contained in IC*, then the

corresponding functions
g 0
g~ W
01

run through a dense subset of X,.

(2.4) We will also need an elementary result whose proof we give for
the convenience of the reader. Let U be a unipotent subgroup of G,; as an
algebraic variety U is isomorphic to a vector space over F. Regarding that
vector space as a real vector space, we may then speak of polynomial func-
tions, Schwartz functions, and so forth on U.

ProrosiTION. Let ™ be a unitary representation of G on a Hilbert
space 3C. Let ¢ be a Schwartz function on U. Then for all v € JC* the vec-
tor

w(P)y = S w(u)ve(u)du

U

is again in JC* and the map v — w(¢)v of JC* to itself is continuous.
Here the integral is the usual Bochner integral for Hilbert space-
valued functions.

Proof. Clearly the integral is absolutely convergent. Let ( , ) denote
the given inner product on JC. To prove the first assertion it suffices to
show that for all w € JC, g € G, x € ¥(G), the function fon R defined by

f@) = (m(exp tXg)mw(d)v, w) 1)
is smooth at t+ = 0. We have
w(g)w(d)y = w(¢')mw(g)

where ¢’ is a Schwartz function ‘on the unipotent group gUg ~!. Since the
unipotent group U is arbitrary we may assume g = e. Next we have

% w(exp tX)v = w(exp tX)w(X)v.
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Thus if
gt, u) = (w(exp tX)w(u)v, w)

we get immediately
dg
—8t_ (t, u) = {mw(exp tX)w(X)w(u)v, w). (2)

Next write ad(u ~1)X = I P;(u)X; where the P; are polynomials. Then
7(X)7(w) = L Pw)w(u)w(X;). 3
Substituting in (2) we find that u — (dg/dt)(¢, u)$(u) is integrable on U

uniformly in ¢. Thus the double integral

S: j % (t; u)p(u)dudt

is absolutely convergent and represents a differentiable function of x. In-
terchanging the order of integration we get for this integral f(x) — f(0).
Thus f is differentiable; moreover

f@= S (m(exp tX)w(X)w(u)v, w) ¢(u)du. )

Using (3) again, we find that f'(¢) is a finite sum of functions of the same
type as f. Thus fis C* everywhere and in particular at zero.
Finally evaluating (4) at ¢ = 0 we get

m(D)w(pv = S w(D)w(u)vd(u)du, 5)

at first for D € U of degree <1, but then by an easy induction for all D.
The second assertion follows. We leave the details to the reader.
Now suppose A is any continuous linear form on JC*. Then

A») = E N\p(n(D)v), v € 3=,
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(finite sum) where the A\ are continuous linear forms on J3C. It follows
from (5) applied to ad(g~!)D that

Mr(g)m(o)y) = S Nw(guv)d(u)du.

In particular if = is irreducible and generic, W an element in W(x; ¢), ¢ a
Schwartz function on U, then the integral

S W(gu)o(u)du
U

converges and the function of g it defines is again in “W(; ).

(2.5) Suppose that r and r' are two integers with 1 < r' < r, 7 (resp.
w') an irreducible (unitary) generic representation of G, (resp. G, ) on the
Hilbert space JC (resp. JC'). As in (1.4), for W € W(m; ¢) and W' in
W(n'; ¥), set

[ 0
Vs, W, W') = W<g > W'(eg)|detg|s——r'V2dg (1)
NG 1

. 0

with e and dg as before. As there the integral converges for Re(s) large.

(2.6) ProposITION. (i) With the preceding notation, one can
choose W and W' such that the integral (2.5.1) converges normally for
Re(s) = 1. Accordingly it defines a continuous function of s, holomorphic
for Re(s) > 1.

(ii) If sq is given with Re(sg) = 1, one can choose W and W' with the
additional property that ¥(sog, W, W') = 0.

Proof. Letp and m be two integers with 1 < p < m. We will use the

following integration formula:
| x 0 .
¢ h | |detx|~\m—P)dx,
Np\Gp 01

(1)

§ o(g)dg = j dh
Nm\Gm Qm.p\sm .
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where S, is the group SL(m), Q,, , is the subgroup of all matrices of the

form
g u
q= y  8€S, nEN,_,,
0 n

and the measures are the appropriate invariant measures on the respective
quotients.
For example, by Lemma (2.3), one has for all W € W(r; ) the rela-

’ 0 h 0
iwiz| (8 |detg| ~0—'~dg
Ny \G, 0 1,,_,.' O 1
N 0 2
w(®
Nr—1\Gr—1 O 1

There is of course at least one element of W (m; ) whose restriction to
G,_, is #0, i.e. the above integral is positive. Thus there exists at least
one i € S,_, for which the integral

‘ 0
\ wiz| (¢ k| |detg|' =~ dg
JNNG, 0 1,_,

is both finite and positive. Then by replacing W by a translate we obtain
the existence of an element Wy of "W (; y) for which

' 0
NG [Wol* [<f) 1 )] |detg|'~¢"dg <. (2)

-

For this W, we also have, fors = 0,

tion

s
JQr—1.,\Sr—1 .

dg < +oo.

.

0<

.

' 0
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To see this break up the integral into an integral over |det g| < 1 and one
over |det g| = 1. In the first integral we may decrease s to zero and use
(2). In the second we may take s large, integrate over all of N,.\G, and
replace W by a gauge to obtain the necessary convergence.

Next let & be a Schwartz function on F”' given any W in "W (r; y), set

1, u 0
Wi(g) = Wolg|0 10 ®(u)du 4
Fr
0 0 1r—r'—l

(u being a column of height r'). By Prop. (2.4) and the remark following
that Proposition, W, is again in “W(m; ). Moreover, for g € G,, g 'N.g
contains the group we are integrating over in (4). Changing variables we

get
0 0
W, <g > = W, <g >¢(ng) 5)
01 01

where ¢ is the Fourier transform of ® defined by
o(x) = S ®(u)Y(x-u)du, (6)

and 7 is the row-vector of length r' givén by

7=1(0,0,...,0,1). %)

Since as ® varies, ¢ represents an arbitrary Schwartz function in r’
variables, we may choose ® so that ¢ is smooth and compactly supported
with support contained in the open orbit

77Gr’ = Qr’,r’—l \Sr

\ Next with ¢ and W chosen in the above fashion, we will show that for
all W' in W(x'; y) the integral ¥(s, W, W') converges (absolutely) for
Re(s) = 1, normally for Re(s) in a compact subset of Re(s) = 1. By (5) we
are reduced to proving the convergence for s = 1 of the integral
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‘ g 0 ' —(r—r')/2
| Wo | W' |(eg) | (ng)||detg|s——r2dg,  (8)
Ny \G,’ 01

uniformly for b > s > a = 1. Breaking the integral up as before over
|detg| = 1 and |detg| = 1 we need only prove the convergence for s =
1. Then, by Cauchy-Schwartz, the integral is majorized by the square-root
of the product of the integral

/g O
| wr <‘§ 1) |detg|+ " dg ©

and the integral

j W' 2eg) | 6| 2ng) | det g | dg. (10)
Ny \G,’

By (3) the integral (9) is finite.

On the other hand there is a Schwartz function ¢; on F’" such that
|¢(x)| < ¢,. Then ¢, = ¢,2 is again a Schwartz function and (10) is ma-
jorized by the integral

S | W' | (eg)$(g) | det g |*dg,

whose convergence has been proved in [J-S] Proposition (3.17). We have
therefore proved the first part of Proposition (2.6).

We now prove the second part. We fix W, satisfying (2), and so with
Re(sg) = 1. We will prove that there is a ¢ as above with support in 3G,
and a W' € W(x'; ¥) such that

Y(sg, Wy, W') # 0.

Suppose in fact that this integral vanishes for all such ¢ and W'. Us-
ing once more the formula (1) we get:

‘ g 0 B0
@(nh)dh Wy (
Qr r —1\Sp Ny —\G, -1 0 1r—r'+l 0 lr_rr

0
X W' l:e <g > h] |detg|so~1=(=r)2gg = (. (14)
01
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Fix W'. The inner integral represents a locally integrable function f on
Q,' ,—1\S,.. That function is orthogonal to all smooth functions of com-
pact support on Q,: .- _;\S,.. Since the latter space is countable at infinity
it follows that f vanishes almost everywhere. Thus given W', there exists
a set M(W') of measure zero in Q,. . _\S, such that for all h ¢ M(W"),

the integral
0 h 0
by o[
Ne'=N\Gr -1 0 1r—r’-H 0 lr—r'

' 0
X W' l:e <g >h] Idetglso—l—l/z(r—r’)dg (15)
01

is convergent and equal to zero.
Next apply the integration formula (1) this time to (3) (with s =
2(Re(sg) — 1)). We get

‘ g 0 h 0
dh | Wy |2
Qr'r =1\’ Ner—1\Gp' -1 O 1r—r'+1 0 1’._"

X |det g|XReso=D=t¢=r) dg < oo, (16)

There exists then a set M, of measure zero in.Q, .. _\\S, such that for
h &€ M, the function

0 hoo
g-wo|(® |detg|so=1-C=r2  (17)
0 1r—r’+l 0 1r—r’

on N, \\G, _, is square-integrable. Thus for h ¢ M, each such function
is in the space X, ..

On the other hand, let 3¢’ denote the space of 7' and fix X a count-
able dense subset of JC' contained in (3C')® = W(x'; ¥). For any h €
G,, the set 7'(h)X has similar properties. Let Y denote the image of X in



EULER PRODUCTS AND CLASSIFICATION 791

W(n'; ¥). Applying Lemma (2.3), we find in particular, that, for a given
h € S, the set of functions

— g 0
g W' [e hli, W' ey,
01

is dense in X, ..

Now let M = U M(W') U M,, the countable union being over W' €
Y. We conclude that for a given & ¢ M, the inner product (15) of the func-
tion defined by (17) with the elements of a dense subset of X, is zero. Let
« be the canonical projection

a: S, — Qr’.r’—l\sr"

The same statement is true for 2 ¢ o~ !(M). Thus by the continuity of W,

we have
g 0 h 0
Wo =0, (18)
0 lr—r' +1 0 1r—r'

at first, for g € G, _;, h ¢ a~!(M), but then again by continuity for all g
inG, _yand h € §,.. Taking then & = e in (18), we conclude that

0
WO & =0
01

for g € G, in obvious contradiction to (2). [l

3. Partial L-functions.

(3.1) Let F be a global field and F, = A the associated ring of
adeles. If = is an irreducible unitary representation of G,(A) on a Hilbert
space JC, then 7 is uniquely representable as a-topological tensor product

7l':®7l'v, J'C:®vav
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where 7, is an irreducible unitary representation of G,(F,) on JC,. As
above let JC,* denote the space of smooth vectors in JC,. (If v is finite, this
is the space of K -finite vectors in JC.) Let then

3> = ® 3],*

be the algebraic tensor product of the JC,*, that is, the linear span of the
pure tensors:

w=Qw, (0))

w, being for almost all v a fixed K ,-invariant vector e, in JC, (or 3C,*). Fix
once for all a non-trivial character

v=1L1¢,

of F, trivial on F. If each w, is generic then the local spaces W (x,; ¥,)
have been defined. Let

W(m; ¢) = (>v9 W(m,; ¥,) -

be the algebraic tensor product. We have for each v an isomorphism of
3¢, > with W(r,; v,), given by (1.1.2) if v is finite and similarly (2.1.2) if v
is infinite. If 7, is unramified we normalize this isomorphism so that e,
corresponds to the essential element of W(,; ¥,). Taking tensor products
we get then an isomorphism

IC* = W(m; ¥). (2)
It is clear from (2.2) that any pure tensor w € JC™ is of the form

w = m(d)w, 3

where ¢ € C.*(G,(A)) and w, is again in JC*. A similar statement applies
to W(m; ¥).

Now suppose w is a character (unitary) of F*\F,*. Let °L,(w)
denote the space of cusp forms ([B-J]) on G,(A) transforming under Z,(A)
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according to w. Suppose that 7 is a component of °L,(w) and let @(x)
denote the corresponding irreducible subspace. Let also @*(w) denote the
image of 3C* in @(7). By (3) any function ¢ in @*() is a smooth function
of G,(A). Moreover by the general theory, if F is a number field, ¢ is
“rapidly-decreasing.”

We will need to consider the “Fourier series” of an element of @*().
For0 < m < r — 1, let N,,, be the unipotent radical of the parabolic of

type (m + 1, 1, ..., 1), that is the subgroup of N, consisting of all
matrices(ng)forwhichnij =0forl<si=sm+1l,1l<sj=m+1,i#
J- We set

Vimol8) = g o(ug)0,(u)du 3

Nr.m(F)\Np,m(A)

so that V,_; , = ¢. Note that
Vio(¥8) = Vimo(8), Y €G,(F). (4)

Moreover N, o = N, and V; 4 € W(x; ¥) (c.f. [S], Section 4). Thus in par-
ticular V) 4 is majorized by a gauge ([J-P-S], Props. (2.3.6), (2.4.1) and
Section 12).

Now we have at once

1,, u 0
g Vo 0 1 0 g
Al"/Fl"
0 0 1r—m—l

- 1, u
0 +1 <[ ]) du =V, 4(8). (8]
0 1

On the other hand, if U is the unipotent radical of a standard parabolic of
type (m, r — m), the constant term in the Fourier expansion of the func-
tion
1, « 0
u-V,s |0 1 0 g (6)

0 0 1r—m—l
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on the group A™/F™ factors through an integral of the form

.‘ o(ug)du = 0
Ur\Ua

and is therefore zero. Next any non-trivial character of A”/F™ has the
form

u ~ Ylnyyu),
where as before

7=100,0,...,0,1

is a row vector of length m, v € P,,(F)\G,,(F), and u is regarded as a col-
umn of height m. Thus if in (5) we replace u by yu and use (4) we get

vy 0
Vir.s(8) = Lp k0GP Vim—1.6 [(O . >g]- (6)

Then by recursion starting with m we get, at first formally,

v 0 |
Vin.(8) = EnpenGmE) Voo [< 01 >g}- ()

Since, as we have noted, V; 4 is majorized by a gauge, by Proposition
(1.2.2) of [J-P-S], the series in (7) is absolutely convergent. Thus the
passage from (6) to (7) by combining the various Fourier series is justified.

(3.2) Let again r and r' be integers. Let = and ' be admissible ir-
reducible representations of G,(A). Then, if S is a sufficiently large finite
set of places containing the places at infinity, the local components m, and
m,’ are unramified. Let A, and A,' be the associated conjugacy classes,
respectively in GL,(C) and GL,(C) (c.f. (1.3)). We set

L(s,m, X w,’) = det(l —q, 54, ® A,') ! 1)
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as before and then set

Le(s, 7 X 7') = %L(s, T, X ). 2)

If now 7 and 7' are unitary, then as is well known the eigenvalues A of A,
(resp. A,") are in absolute value <q,"~ 1’2 (resp. ¢, ~1/2) (c.f. [R.G.-]]
(6.12)). In fact we even have A < q,!/2 (c.f. [J-S] (2.5)). Thus in that case
the Euler product in (2) is absolutely convergent for Re(s) large.

Now suppose in addition that = and 7’ are automorphic cuspidal
representations. Then by Theorem (5.3) of [J-S] the product (2) is actually
absolutely convergent for Re(s) > 1. Thus Lg(s, # X «') is defined in the
half-plane Re(s) > 1. It follows from (5.3.2) and the uniform convergence
of the series (5.3.5) of [J-S] in compact subsets of Re(s) > 1, that
Lg(s, # X ') is also holomorphic and # 0 in Re(s) > 1.

(3.3) ProrosITION. Suppose r # r' and the unitary representa-
tions ™ and w' are automorphic and cuspidal. Then the function
Lg(s, # X «') has a continuous extension to the closed half plane Re(s) = 1.

Proof. 1st part: We note that by (1.5)(iii) we may enlarge S at will.
We may assume then that for v ¢ §, R, is the largest ideal on which ¢, is
trivial.

That being so, let for v ¢ S, W, (resp. W,') be the essential element of
W(m,; ¥,). (resp. W(x,"; ¥,)). For v finite in §, choose W, and W,’ so
that each (local) integral ¥(s, W,, W,’) converges for all s and is equal to
one (c.f. (1.5)). For v infinite choose W, and W,' so that the integral
Y(s, W,, W,") converges for Re(s) = 1 (Prop. (2.6)). Then ®, W, (resp.
®, W,') belongs to W(mr; y) (resp. W(x'; ¢)). Let ¢ and ¢’ be the cor-
responding elements of @°(w) and @*(x') respectively. Now for an ap-
propriate normalization of the measure of N,.(F)\ N,(A), by Theorem
(4.5) of [S], the isomorphism of (3.1.2) is actually given by ¢ — V, ;. Thus
in fact

Vosle) =IIW,(g,),  Viogle) = IVI W, (g,). (M

Next consider the integral

O '
S V""”[(g >]d"(g)Idetgls—"—'de. @
Gr' (FING,(A) 0 1
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Calculating formally at first, we get by (3.1.7) the equivalent expression

ve¢ 0 ,
r v, "(g)|detg|s—¢—r)2dg.
SG,V(F)\G,'(A)Nr'(F)\Gr'(F) 04 [<() 1>] ¢'(g)ldetg] & )
@3

Since ¢'(g)|det g|s~ =72 is invariant on the left under G, (F) we may
combine the integral and the sum to get

g 0 :
X Yos [( >] #'(g)|detgls =2 dg.  (4)
Nr(F)\Gr'(A) 0 1

Next Vg 4(ng) = 0,(n)Vy4(g) for n € N,(A), g € G.(A). Note that for n €

Nr’(F),
n 0
0r [< >] B Or’(n)’
0 lr—r'

Thus integrating in stages, we get

0
X |detg|s—C—r2V,, £ dg
Ny (ANG,(A) 0 1

X j o' (ng)b, (n)dn. (5)
Np (F)\Nr'(A)

But one has

X @' (ng)b, (n)dn = V4 (eg) (6)
N (F)\N;(A)

and therefore we conclude that

o\ ]
<g ) ¢'(g)|detg|s—(r—r')/2dg
0 1

X V”.Qs
Gy (FI\G, (A)

(7)

Voo

0\ ]
<g > V0‘¢(Eg)|detg|s—(r—r')/2 dg

SN,«A)\G,«A) 0 1

Here as before ¢ = diag (1, —1, 1, —1, ...).
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The calculations are justified when Re(s) is sufficiently large. In ef-
fect it suffices to prove that the integral (4) is absolutely convergent for
Re(s) large. But ¢’ is bounded and as we have noted V| , is majorized by a
gauge, say £. Thus our integral is majorized by

' 0
\ S g | detg | Re(s)—(r—r")/2 dg’
. 01

the integration being over N, (F)\G,.(A), or what amounts to the same
over N, (A)\G, (A). Since £ is invariant on the right under K, we may
calculate this as an integral over A,(A) in which case it is easily seen to be
finite.

(3.4) Proof of Proposition (3.3). 2nd part. We show first that the
integral on the left in (3.3.7) converges for all s, uniformly for Re(s) in a
compact set. This will be a consequence of the following lemma.

LEMMA. (i) Suppose F is a number field. For all N = 1 and all
compact subsets Q of G,(A) there exists a constant Cy such that

0
'V,r‘d,[<g >w] ISCNinf(ldetglN,idetgiN)
01

forall g € G,.(A) and w € Q.
(i) Suppose F is a function field. For all compact subsets Q of G,(A)
there exists a constant C > 0 such that, for w € Q, the support of the func-

tion
0
g Vr'.¢ & w
01

is contained in the set of g € G,(A) satisfying
C~! < |detg| = C.

Proof of the lemma (i).
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The unipotent group N, ,- may be described as the set of all matrices

of the form
1, u
(1)
0 v

where the first column of u € M(r' X r — r') is zero and v belongs to
N,_,. Thus this group is the semi-direct product of the groups

St (CAD) S () S

u and v being as before, N' being normal in N, ,- and N” commuting with
all matrices of the form

0
h=(% . g€G,. 3)
0 lr—r'

Denote by N¥*. the quotient N, .. (F)\N, , (A) and use a similar nota-
tion for N, N”. We have, immediately from the definition,

|V, shw)| =< S |p(nhw)|dn = E dn"g |o|(n'n"hw)dn'.
N'* N'*

%
Nrp

(4)

Now n"h = hn". Let Q' be a compact subset of N” projecting onto N"*.
Replacing 2 by Q'Q it will be sufficient to estimate the integral

|| (n' hw)dn', (5)
JN*

where w € @ and £ is of the form (3). Let 7 be the permutation matrix

defined by
1, 0 :
L= A . ©)
0 u .
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Clearly 7 commutes with any matrix of the form (3). Since in addition ¢ is
automorphic, we have

S |p|(n hw)dn' = g |o|(rn' 77 Thrw)dn'.
N'* IN'*

Now 7n'77! is contained in the group of matrices of the form

g 0
< > g€G,—_(A). (7
01

Finally, since 4 also has this form and N'* is compact, it suffices to show
that, for all N > 0, there is a Cy such that

|p(hw)| < CyInf(|deth| =N, |deth|N) (8)
for all A of the form (7) and all w € Q. By reduction theory we have
G,-1(A) = G,—1(F)A,-(A)Q
where Q, is a compact subset of G,_;(A). Thus replacing Q? by a suffi-
ciently large compact subset of G,(A), it will suffice to prove (8) when A is
a diagonal matrix of the form
a = diagla;, ay, ...,a,—, 1). 9

Next let A be the function defined on all of A, by

A= II o (10)

I=l=r—1
For a of the special form (9), note that

Aa) = deta. (11)
For a € A,(A), there exists a permutation matrix w such that a = wbw !

where b is in the positive chamber, that is to say |ai(b)| = 1forl =i <
r — 1. On the other hand by the general theory, if we set

k(b) = sup |c;(b)],
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then, for all N = 1, there is a constant Cy such that
|p(bw ~lw)| < Cyk(b)™N
for all w € Q, b in the positive chamber. Thus
|plaw)| = |pwbw™lw)| = |d(bw~'w)| = Cuk(b)™N.

On the other hand, it is easily verified that there is a constant m > 0 such
that
k(b)™m < |A(wbw™1)| < k(b)™ (12)

for all b in the positive chamber and all w. Thus one has for all a € A(A),
w € Q,

|plaw)| = C,ninf(|A(a)] N, |Ala)|Y)

and combining this with (11), the assertion (8) follows at once. This com-
pletes the proof of the first part of the lemma.

Proof of the lemma (ii). We will use the following fact due to G.
Harder ([G.H.] (1.2)). Suppose F is a function field. Let ¢ be a cusp form
on G,(A) and  a fixed compact subset of G,(A). Then there exists a cons-
tant d > 0, such that for all b in the positive chamber, w € 2, and w a per-
mutation matrix, the relation ¢(bw~'w) # 0 implies

|ai(b)| = d, l<l=<r—1.
The proof of (ii) proceeds as the proof of the first part. One is reduced
to proving that, for a given compact subset Q of G,(A), there exists a cons-
tant C > 0 such that ¢(aw) # 0, w € Q, a = diag(a,, ay, ..., a,—, 1) im-

plies C™! < |det a| = C. Again there exists a matrix w such that a =
wbw~! where b is in the positive chamber. One then has

d(aw) = ¢p(bw ™ 'w).
Thus by the result we quoted «x(b) < d, and finally by (12)
d=m < |Awbw™1)| = d™.

Since |det a| = |A(a)| = |A(wbw™!)| our assertion follows.
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(3.5) Completion of the proof of Prop. (3.3). We show first that the
integral on the left in (3.3.7) converges absolutely for all s, uniformly for s
in a vertical strip of finite width. Suppose first that F is a number field.
Since ¢’ is bounded, by the lemma the integral is, for each N, dominated
by an integral of the form

S inf(|det g |V, |det g| ~N)|det g|s— )2 dg,
G, (F)\G,'(A)

with s now real. Let G° be group of those g € G, (A) satisfying |detg| = 1.
Integrating in stages, we get for the previous integral

vol(G,(F)\G?) g inf(eN, ¢ —N)ps—(r—r)/2 g %4

R+ X%

which is convergent for s in a compact if N is sufficiently large. If finally F
is a function field ¢’ is again bounded. On the other hand since ¢ is also
bounded say by a number d, we have

|V, s(8)| = S | p(ug)|du < d vol(N¥,.).
N*

Our integral is then dominated by an integral of the form

S Idet g| Re(s)—(r—r')/2 dg.
cl<|detg| =<c

Since the integrand is bounded on the domain of integration and the latter
has finite volume, we have the same conclusion.

That being the case the left side of (3.3.7) represents an entire func-
- tion of s. Thus the right side extends to an entire function of s. Now, using
(3.3.1), we have for Re(s) sufficiently large,

g 0 ,
S Vo.e [( >] Vo' (g)|detg|s—rr)2dg
Ny (ANG, (A) 0 1

= H‘I,(S, Wv’ Wv’)’ (1)
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each integral being convergent and the infinite product being absolutely
convergent. However, with the particular choice of W, and W,” we have
made, this product is nothing other than

II-I Y(s, W,, W, )Ls(s, ®# X w'). )

The conclusion is therefore immediate if F is a function field and results
from Proposition (2.6) if F is a number field.

(3.6) ProrosiTION. Suppose that r = r' and the representations w
and ' are automorphic, cuspidal, and unitary. Let X be the set of s on
the line Re(s) = 1 such that a*~! ® m is equivalent to the contragredient
representation ©' of ©'. Then:

(i) the function Lg(s, # X w') extends to a continuous function on
the complement of X in the closed half-space Re(s) = 1;

(ii) if sgisin X, then

lim (s — s¢9)Ls(s, # X '),
§—S0

the limit taken in Re(s) = 1, s # s, exists, is finite, and is non-zero.

Proof. This follows readily from the results of [J-S, Section 4]. In
more detail, for W € W(x; ), W' € W(x'; y) and ® € S(A"), let

Vs, W, W', d) = g W(g)W'(eg)®(ng)|detg|* dg. 1)
NG,

The integral converges for Re(s) sufficiently large and extends to a
meromorphic function of s in the half plane Re(s) > 0, holomorphic in
Re(s) > 1. Moreover, except for notation, Lemma (4.6) (loc. cit.) implies
that if ¥(s, W, W', &) has a pole at s = 1, then that pole is simple and #
is equivalent to w'. An application of the identity

V(s + io, W, W', &) = ¥(s, W ® oi°, W', )

(o real) then shows that the poles of ¥(s, W, W', &) are simple and con-
tained in X.

Now choose again a finite set S of places (containing the places at in-
finity) such that w, and =,’ are unramified outside S. Assume also that,
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for v ¢ S, the largest ideal on which y, is trivial is ®,. Suppose also that
w=I10w, W =1I,W,, and ® =11, $,, where forv ¢ S, W, (resp.
W,’") is the essential vector of W(w,; ¥,) (resp. ‘W(m,’; ¥,)) and &, the
characteristic function of ®R,”. Then we have, as in (4.7) (loc. cit.), for
Re(s) large,

Vs, W, W', &) =11¥(s, W,, W,”, &),

the local factor being defined by analogy with (3.2.1). Moreover, for v ¢ S,
Vs, W,,W,",®) = L(s, 7, X 7,")
(Section 2 loc. cit.). Thus for Re(s) sufficiently large,

Y, W, W', @) = HS Y(s, W,, W,/, ® )Ls(s, m X 7).
VE

By Proposition (1.5) and (3.17) of [J-S] each of the functions
Y(s, W,, W,’, &,) is continuous in the closed half-plane Re(s) = 1.
Moreover for such an s, we may choose W,, W,’, and &, such that
Y(s, W,, W,", ®,) # 0. The first assertion follows.

To prove the second assertion, let sy € X. Replacing 7 by a! =50 ® =
we may assume so = 1. Let ¢ (resp. ¢') be the element of @* () (resp.
@*=(w')) corresponding to W (resp. W'). Then combining (4.5.5) and
(4.3.2) of [J-S] we find

lim (s — ¥, W, W', &) = cd(0) j 3(2)9' (g)de,
s—1 ZAGF\GA

where ¢ is a non-zero constant. Choosing W,, W,’, and &, once more so
that ¥ (1, W,, W,’, &,) # 0for v € S we see that

linll (s — DLg(s, # X w')

exists (and is finite). Call « this limit. Then we have, for any choice of W,
W, ,and &, (v € S)

K I£ Y1, w,, w,’, o)
vE
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= ¢$(0) j ?(g)¢'(g)dg

=c {Is $,(0) j o(g)o' (g)dg.

Since 7' is the representation contragredient to 7, we may take W,'(g) =
W,(eg). Then by (3.3.1), ¢'(g) = ¢(cg) = #(g). We may also assume
¢ is non-zero. Then for any choice of the ¢, we have

I W1, W, W', &) = c H&»v«»j |6(2)| 2de.
veS veS ZAGF\Ga

Since we may choose ®, so that, for all v € S, $,(0) # 0, we see that
k #0. O

(3.7) A TueoreM oF SHAHIDI. Let § be any finite set of places con-
taining the places at infinity and those places for which =, and =,’ are
ramified. By (3.2), Lg(s, 7 X =') has no zeros in Re(s) > 1.

By abuse of language we shall call the points s, in Re(s) = 1 for which

lim (s —so)Lg(s, # X7')#0
s—s0,Re(s) =1

the poles of Lg(s, # X w') in Re(s) = 1. These poles of course lie on
Re(s) = 1. Thus the function Lg(s, # X =') is defined and continuous
outside the set of poles in Re(s) = 1.

THEOREM. With the hypotheses of (3.3) or (3.6), the function
Lg(s, # X w') is not zero in Re(s) = 1.

We have already observed the validity of our assertion for Re(s) > 1.
The non-vanishing on Re(s) = 1 is due to F. Shahidi [F.S.] and is based
on the general theory of Eisenstein series. Shahidi’s proof is similar in
spirit to that of [J-S].

Remark (3.8). One can actually prove, either by our methods or
those of Shahidi, that Lg(s, # X ') is globally meromorphic. However,
we shall not need this in what follows.

4. Classification Theorems.
(4.1) As before F is an A-field and § is a large finite set of places



EULER PRODUCTS AND CLASSIFICATION 805

containing those at infinity. Our results will not change if we replace S by
a larger set; in particular we may assume that any representation (or finite
set of representations) is unramified outside of S.

Let # = ®, m, (resp. 7' = ®, 7,') be an automorphic, cuspidal,
unitary representation of GL, (resp. GL,.). As in [J-S], we set

w(v?) = tr(4,") (1)

if A, is, as before, the class associated to w,. Similarly for 7’. Next for ¢
real, 0 = 1, consider the double series

(vl H(ph
lo.xXx)=L T 7r(v)7r(v).
veS n=1 nq,"’

(2

In [J-S, Section 4] we proved that this series is absolutely convergent for
o > 1. Clearly it is then uniformly convergent for ¢ > 1 + ¢ and hence
represents a continuous function in the half-line ¢ > 1. Moreover,

Lg(o, 7 X ') =expllo, 7 X '), 3)

also for o > 1.
Finally let 6, .- = 1if 7 = 7’ and = 0 otherwise.

THEOREM. As o tends to 1 through values =1, we have

-1
lim <log > loym# X m') =064,
o—1 o— 1

Proof. Suppose first that # # «'. Then by Prop. (3.3), Ls(o, # X 7')
has a continuous extension to the half line ¢ = 1. Moreover by Theorem
3.7), Lg(1, # X ') # 0. Thus there is a determination of the logarithm
(principal or otherwise) for which log Lg (o, # X 7') is continuous in an in-

terval 1 < o < a. Next from (3) we get
logLg(o, # X w') = lo, ® X 7') + 27k(0) 4)

where k takes integral values and now 1 < ¢ < a. But then k(o) being the
difference of two continuous functions must be constant in 1 < ¢ < a.
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Thus

lim /o, m, X 7') exists, 5)
o—1,0>1

which is more than is required for the proof of the theorem.
The proof for # = =’ is similar. In fact by Prop. (3.6)

lim] (6 — DLg(o,m X7) =k # 0. (6)

In this case Lg(o, # X w) > 0 for ¢ > 1. Thus from (3) we get (with real
logarithms)

log(o — 1) + log Lg(a, # X ) = log(lc — 1) + lo, # X 7) (7)
which tends to log « as ¢ — 1. Our assertion follows at once. [

(4.2) We shall prove as a corollary to Theorem (4.1) that any finite
set of distinct automorphic cuspidal representations is linearly indepen-
dent.

Suppose p is an automorphic cuspidal representation of GL,(A).
Then p may be written uniquely in the form

p=71QR® 8B, (1)

where 7 is unitary and 3 is a positive quasi-character (3 = o/, ¢ real). We
have locally p, = w, ® (,; thus if A, is the class of 7, then B, = A,9,™'
is the class of p. As before we set

o(v") = tr(B,"). (2)

Next let @, denote the set of all equivalence classes of automorphic
cuspidal representations of G,(A). Let @ = U, @, (disjoint union). The
precise form of our result is as follows:

THEOREM. Let py, p3, ..., p, € Q. Let S be a finite set of places
containing the infinite places. Suppose that the representations p;, p,,
.+., pp are unramified outside of S. Let ¢y, ¢y, ..., Cp be complex
numbers. Suppose that we have a relation

L cipi(v) =0 3
Isj=p
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which holds for all v ¢ S and all integers n = 1. Then
c]=02=oo._c =0‘

Proof. We may assume that all of the c;’s are non-zero. Write p; =
m; @ o' where m; is unitary and ¢; is real. We may assume that¢; < ¢, <
- = t,. From (2) we have

p;(v") = m;i(v")q, ™. @)

Thus multiplying (3) through by q,"1 one may also assume ¢; = 0. Then
from (3), (4) and (4.1.2) we get immediately

L cillo+t,m X ) =0. )

Isj=<p

If a given ¢ is positive, then the function /(o + tj, my X ;) is continuous
in o near 0 = 1 (c.f. (4.1)). Suppose then that¢; =¢, = --- =¢, = 0 and
that ¢,4; > 0. We get then from (5) and Theorem (4.1)

1 -1
. i X w)=0.
I eitm (log ) o m X ) =0 ©

But by the same theorem this sum is also

L ¢jbryn- 7

1<j=<!

Here m; = p; is inequivalent to m; = p, unless j = 1. Thus combining (6)
and (7) we get ¢; = 0. This contradiction completes the proof of the
theorem. O

(4.3) We shall obtain a classification theorem for automorphic
forms on GL, which is a precise analogue for this group of the known
results for local groups.

Accordingly let P be a standard parabolic subgroup of G, of type (r,,
ry, ..., r,). The quotient of P by its unipotent radical U = Up is isomor-
phic to the group

M=G, XG,, X --- XG,,. )
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For each j, 1 < j < u, let o; be an automorphic cuspidal representation
of GL(m;, A). For each place v the representation ¢, = ®); 0j, of the group
M, can be regarded as a representation of P, trivial on U,; it mduces an
admissible representation of G, which we will denote by

¢, = Ind(G,, P,; 9,). (2)

One obtains then a family of irreducible admissible representations of
G,(A) by taking for each v an irreducible component w, of the representa-
tion £, and forming the *“tensor product” 7 = &, m,. On the other hand,
with 0 = 0y ® 0, ® -+ ® og,, one can define globally an induced
representation

¢ = Ind(G,(A), P(A); ). 3

Of course ¢ = ®, &,. The irreducible representations = which we have
described are exactly the components of £. In fact the restriction of ¢ to
the (local) Hecke algebra at v is a discrete multiple of £,. In this way one
obtains all of the automorphic representations of G,(A) [RPL I].

Let Q be another standard parabolic say of type (s, s, ..., s,) and
7; an automorphic cuspidal representation of GL(s;, A). As before let 7, =

®j Tjvs
= Ind(G,, Q,; 7,), 4
and

n = Ind(G,(A), Q(A); 7), 5)

wherer =7, ® 7, ® -+ ® 7,. We may ask whether £ and » have a com-
mon constituent. Suppose P and Q are associate (in which case u = w)
and that there is a permutation ¢ of {1, 2, ..., u} such thats; = ry(;).
Suppose moreover that 7; = g4;). We will say in this situation that the
pairs (o, P) and (7, Q) are associate. When this is so the representations £,
and 7, have the same character and therefore the same components; in
particular if both £, and 5, are unramified then their unique unramified
components are the same. In other words the irreducible components of £
and 7 are the same.
The following theorem will imply that the converse is also true.
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(4.4) THEOREM. Let P, Q, g; and 7 be as above. Let S be a finite
set of places containing all the places at infinity. Suppose that for v ¢ S the
representations d;, and 7y, are unramified and that the representations §,
and 0, of G, they induce have the same unramified component. Then the
pairs (o, P) and (7, Q) are associate.

Proof. The proof follows directly from Theorem (4.2). In fact, for
v ¢S, let A;, (resp. By,) be the semi-simple conjugacy class in GL(r;, C)
(resp. GL(s, C)) associated to iy (resp. 74,). The class associated to the
unramified component of £, (resp. 5,) is nothing other than ®; A;, (resp.
@« Byi,). The hypothesis is equivalent to the assertion

C'iDAjv = C'PBkv (1)

(equality as conjugacy classes in GL,(C)). From (1) we deduce immedi-
ately the equality
) aj(v”)= 1<§< Te(v") 2)

I<j<u

which holds for all v ¢ § and all integers n = 1. We regard the o;
and 7, as elements of @. Let then @ = {p;, py, ..., p,} (resp. ®' =
{o1', 2", ..., pp'}) be the set of distinct elements of @ among the o;
(resp. 7). Then (2) may be rewritten as

L mapo(v)= L my'pa (") (3)

I<a<a

where m,, (resp. m,') is the number of times p, (resp. p,') occurs in the
left (resp. right) side of (2).

But by Theorem (4.2) ®, regarded as a set of functions on the set of
vi, v ¢S, n = 1, is linearly independent. Similarly &' is linearly indepen-
dent. Thus we get atonce 8 = ®',a = bandm, =m, forl < a < a.
In particular

u=Xmy=YXm, =w, 4)
and we also see that the maps
J= 0T

of {1, 2, ..., u} into @ differ only by a permutation. O
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(4.5) As we have seen in (4.4) any automorphic representation 7 of
G,(A) is a subquotient of an essentially unique induced representation

Ind(G,(A), P(A); o) 1)

where 0 = 0y ® --- ® o0, is an automorphic cuspidal representation of
M(A). Thus it is natural to associate to = the (formal) sum

L g, )

1<sj<u
or, if m, is the multiplicity of a given element p of @ in (2), the formal sum

Xz = ,Ea m,p. 3)

If we define deg m = r, we clearly have

degm = Lm,degp. “
Conversely the theory of Eisenstein series allows us, at least when the m,
are positive and integral, to attach to a formal sum (3) an automorphic
representation of some group G,(A). More generally we shall refer to a
sum (3) where the coefficients m, are allowed to be positive or negative in-
tegers or zero as a virtual form. Of course we require m, = 0 for all but

finitely many p. If x is a virtual form we call the p which actually appear
(m, # 0) in x the components of x, and define

degx = L'm, degp. Q)
The contragredient % of x is the virtual form
X =Xmyp. (6)

If x = I m,’ p is another virtual form we define the inner product
(x, x") to be

O x') = fa mym,’. @)
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If S is a finite set of places (containing those at infinity) outside of which
the components of x and x' are unramified, we may also define the
L-function

Lg(s,x X x') = HQLS(s,p X g)memiz (8)
p,TE

If then we set, forv ¢ S, n = 1,
x() =X mp("),  x' (") =Lm, p(), 9

we get at once

X(V”)X'(v")
, X "y = E E T s
Lg(s, x X x') = exp veS n=1 nq,"

(10
at least if Re(s) is large.

Suppose now that the components of x and x' are unitary; then (8) is
defined for Re(s) = 1. Then by Prop. (3.3), Prop. (3.6), and Theorem
(3.7), Lg(s, x X x') has a pole at s = 1 exactly of order (x, x'). More
precisely the limit :

lim (s — DOxX) Lg(s, x X x') 11

s—1,5=1

exists and is non-zero. In what follows we shall apply this to give a
criterion for a Galois representation to be ‘“‘automorphic.” We can only
hope that an eventual application will be found.

(4.6) We recall the ‘“strong form” of Artin’s conjecture due to
Langlands and Weil.

Suppose K is a finite Galois extension of the global field F with Galois
group ®. If v, a place of F, is unramified in K, let Fr, denote the cor-
responding (Frobenius) conjugacy class in ®. If o is a representation, it-
reducible or not, of & of degree d, then o(Fr,) is a well-defined conjugacy
class in GL,(C). We shall say that o.is automorphic (or satisfies the strong
form of Artin’s conjecture) if there is an automorphic representation & of
GL4(A), 6 = ®, 6,, such that, at each place v of F which is unramified in
K, 6, is unramified and

o(Fr,) =A,, (1)
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where A, is the (Langlands) class associated to 6,. Let x, denote the
character (trace) of 0. An equivalent form of (1) is

x,(Fr,n) = a(v"), (2)

with v as above and n = 1. Note then that by Theorem (4.2), the virtual
form

X; = Lmyp €))

associated to 6 is then uniquely determined. It is easy to see that any com-
ponent p of x, is unitary. In fact let w = ®, w, be the central quasi-
character of p, and for v outside of a sufficiently large finite set S of places
of F, let B, be the class of p,. Then the eigenvalues of B, are among those
of A, and thus by (1) have absolute value one. Then

|w,(@,)] =1, vES, 4)

and by Dirichlet’s theorem (or (4.2)) w itself is unitary. Since p is a cusp
form it must be unitary. We remark that even though a representation o of
® may be automorphic it is not clear that the same is true for the irreduci-
ble components of 0. We can however establish the following theorem.

(4.7) TueoreM. Let F be a global field, and K be a finite Galois
extension of F. Suppose w is an irreducible representation of Gal(K/F)
and that as a virtual representation

T=0—T, (1)

where o and T are both automorphic. Then = is automorphic and
cuspidal.

Proof. Let deg 0 = a, deg 7 = b. By hypothesis there are automor-
phic representations 6 and 7 of GL,(A) and GL,(A) respectively, and a
finite set of places S of F such that

x,(Fr,”) = x,(v"), x,(Fr,”) = x,;(v"), 2)
forallv ¢ S and alln = 1. Let x be the virtual form

X = X5~ X;- 3)
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Then
x,(Fr,”) = x (Fr,”) — x(Fr,”) = x,(v") — x;(v) = x(v"), ©)
and consequently

n)|2 ns — n)|2 ns
L L Ix(Frn|/nge = B B [x(m)|*/ng,. 5)

Exponentiating both sides and using (4.5.8), we get at once
Lg(s, m X &) = Lg(s, x X X), (6)

the left side being the product of the local Artin L-functions L,(s, 7 X #)
over the places v of F not in S. Similarly

Lg(s, 0 X &) = Lg(s, x; X X;), Lg(s, 7 X 7) = Lg(s, x; X x,). (7)

There is a well-known analogue of (4.5.11) for Artin L-functions: if £
is a (unitary) representation of & then Lg(s, £) has a pole at s = 1 of order
exactly equal to the multiplicity of the trivial representation in £. In par-
ticular, Lg(s, ¢ ® f) has a pole of order (xg, XE) at s = 1, the inner prod-
uct normalized to be 1 if £ is irreducible. Thus from (6), (7) and (4.5.11)
we have at once

Xsr X5) = KXo Xy o Xx3) = (o X)), (ex)=1. 8

In particular x = Z,cq m,p, with L m,2 = 1. The m, being integers
all but one of them, say m,,, must be zero and x = =+py is, up to sign, a
cuspidal representation. If x = p, we are done, noting that, by (3), deg p,
= deg 6 — deg 7 = deg 0 — deg 7 = deg w. Suppose then that x = —p,
with pg an automorphic cuspidal representation. Then from (3) we get

X; = X; T po- )

Since ¢ and p, are actually automorphic representations and not merely
virtual, we get at once from (9) '

(X3 x:) = (x5 x;5) + (0o, p0) > (X450 X;5)- (10)
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But in an analogous way we get from (1),

Xy X4) > (X, X,)- (11)

The obvious contradiction which results from combining (8), (10) and (11)
shows in fact that x is automorphic cuspidal and we are done. O

(4.8) Remark. With the above notation, if 7 is a representation of
Gal(K/F), we may always use Brauer’s Theorem to write 7 = ¢ — 7
where the representations ¢ and 7 are sums of monomial representations.
Thus the construction of forms on GL(r) attached to arbitrary extensions
of the ground field combined with the theory of Eisenstein series [R.P.L.
I] would lead to a proof of (the strong form of) Artin’s conjecture. Unfor-
tunately except in the case of normal cyclic extensions there does not seem
to be much hope in proving the existence of these forms in the near future.
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