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8. Generic representations for archimedean fields

In Sections 8 to 11, the ground field F'is R or C. We extend the results
of the previous sections to that case; however we will limit ourselves to the
minimum needed for the global applications.

In Sections 8 and 9, the integer » is arbitrary.

(8.1) Let @ be a unitary representation of G.(F') on a Hilbert space (.

Let (= be the space of C~-vectors. Denote by g the Lie-algebra of the real

Lie-group G.(F') and by U the complex enveloping algebra of g. We identify

1 with the convolution algebra of distributions on G.(F') with support

contained in {¢}. Both G.(F') and 1l operate on FH*. For instance, if X is
in g then, for v € J(=,

T(X)v = in(exp tX)v| .

dt =

0
We equip J~ with the topology defined by the semi-norms
vl = ||z(D)v]|,

where Disin 1. Let # be the character defined by (2.1.1) or more generally
any generic character of N(F'). We will denote by J(; the space of all
continuous linear forms A on K= such that
0003-486X/79/0109-2/0213/046 $ 02.30/1
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Mz (n)v] = 0(n)Mw) , forne N(F), vel™.
We shall say that « is generic if JC; is non-zero. Then by Theorem 3.1 of

[84] it is one-dimensional if 7 is irreducible.

(8.2) Suppose 7 is a generic representation of G.(F') on a Hilbert space
JC. Choose A == 0 in FC¥. We shall denote by W(r; +) the space of all funec-
tions W on G.(F') of the form

W(g) = Mx(g)v) , veK>.

We let K be the standard maximal compact subgroup of G.(F'). We denote
by I, the space of K-finite vectors in JC and by W,(7; ) the subspace of
functions W of the above form with v in J,. We note that since the
character of 7 is a function, the representation # = © contragredient to =
is equivalent to 7#'. In particular the statement analogous to (2.1.3) holds
in the present case.

(8.3) We shall need some information on the behavior of the functions
W e W,(x; ) at infinity. For g € G.(F), set
lgll = |detg| (30 gi)"
if F =R, and
gl = (det gg) """ 2> 9:i0:5
if F=C.
Clearly lgh|| = llglllihll, ligll=1Gfr>1).

LEMMA (8.3.1). There is a t = 0 and there are D, € U such that
| Wo)| = llgll* T, ||aD)W||

for all g e G(F') and W € Wy(w; ).

(]| W|| is the norm of W e Wy(x; v) = ).

Proof. Indeed, since \ is continuous, there are D; in Ul such that

| W(e)| < 325||=DyW|| -
Apply this relation to 7(g) W to obtain
| W(o)| = Xs||laDpa(@W|| = 32;||we Dsg) W1| .
Now one can find finitely many elements D, of 11 such that
97 Dig = 3 N9 Do s
where the \; . are coefficients of some finite dimensional representation of
G.(F)/Z.(F). Thus
(W) | =X, i@ || z(DIW]|
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There is a t = 0 such that
Vi) = [lgll!
and we are done.
As in Section 2, we will introduce an ad hoc notion, the notion of a
gauge. A gauge on G(F') will be any function & such that

(8.3.2) $(nak) = Ia1a2 cee a,_lj;‘gi(al, Qg =y Opy)
for ne N(F), ke K, and
a = diag (a,a, -+ a,, @+ --@a,, -+-, a,),

where ¢t is positive and ¢ = 0 is in S(F).

We note that, if ¢’ > ¢, there is a polynomial P (in the a, if F = R and
the a,, @; if F' = C) such that

Ea’laZ o ar~1l;'t = la1a2 cre ar—ll;t’P(av Ay ** =, ar—1) .

It follows that for ¢' > t, any gauge & defined by ¢ and ¢ is majorized by
another gauge &’ defined by ¢’ and a suitable ¢’. Similarly (2.3.4) and (2.3.5)
are still true in the archimedean case. The result that we have in mind is

LEMMA (8.3.3). If m is generic, for any W e Wy(x; ), there is a gauge &
which dominates W.

Proof. It will suffice to show that given a compact set Q < G,(F'), there
are an m = 0 and ¢ = 0 in S(F ") such that
1 W(ag)l = HaHm¢(au (2T ar-l) ’
for g Q and
a = diag(alaz Ayttt Ay 1) .
There is an fe C;(G(F)) such that
W=Wsxf.
Since
Wag) = W+ fxe, \(a),
it suffices to obtain a majorization of W« f(a) which is uniform for fina
bounded subset B of C;*(G(F)). Now

(8.3.4) W) = SGW W(ah)f(h)dh

Weah)dh|  0(ana)f(uhydn .

S.\‘([")\G(l-‘) N
There is a compact subset Q of N(F)\G(F) =~ A(F)K such that for fexd,

the inner integral vanishes unless 2 € Q. Moreover, let V be the derived
group of N. Let
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¢h(xv Ly *°°y (l?,_l) = SVf('vuh)dv ’
where
1 =z 0
1 x,
L)
0 1
Then ¢, belongs to S(F~~') and stays in a bounded set if 4 is in Q and f in
®. The inner integral in (8.3.4) is nothing but the Fourier transform g¢;
evaluated at (a,, @y, **+, @,_,). For heQ and fe B, it stays in a bounded set
of S(F') so that there is ¢ = 0 in S(F"") such that
lgn| =6
The total integral is, by (8.3.1), dominated by a constant times

Sgllahlltdh¢(alr Ay *° ar—l) = I|aHt¢(a1’ Qg =y ar_l)SQHthdh

and the lemma follows.
We remark that a similar result was available to Harish-Chandra
(private communication).

9. Some auxiliary integrals (archimedean fields)
In this section, the ground field is R or C.

(9.1) We establish the analogue of Theorem (3.1) for unitary repre-
sentations and archimedean fields. However we prove only the results we
need for the global theory.

We first review the results of [17]. Let 7 be an irreducible unitary
representation of G. We will again consider the integrals

9.1.1) 2D, s, f) = Sad)(x)f(x)]det sl'dx,

but now f is restricted to being a bi-K-finite coefficient of 7 and @ will be
in the subspace S(r X 7, F; ) of S(r X r, F') as defined on page 115 of [17].
That subspace is dense in the entire Schwartz space, invariant under K
acting on the right and left, invariant by the enveloping algebra of G and
also by the Fourier transform. Each integral (9.1.1) converges in a half-
space and extends to a meromorphic function of s. More precisely

Z((D, s + (’)' - 1)/2y f) = L(S, 7.5)13(8)0’r ’

where P is a polynomial in s, ¢ > 0 a constant depending on the choice of -,
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and L(s, @) a function of the form

Q(s) H¢ G.(s + s)) Hsz(s + 8;) ,
where @ is a fixed polynomial and
Gy(s) = T(s/2) ,  Gu(s) = (2m)'°T(s) .
Moreover when f and ¢ vary, the polynomials P span the ring C[s]. Finally
one has a functional equation
(9.1.2) Z(®,1—s+ (r —1)2, fYY/ LA — s, 7")
= ¢&(s, 7, V)Z((Dy s + (7' - 1)/27 f)/L(S, 7).
Here @~ and f* are as in (1.1) and &(s, 7, 4) has the form ac’ for suitable
constants a and b.
PROPOSITION (9.2). Let @ be an irreducible unitary generic representa-
tion of G.(F'), F =R or C.
1) For W in Wy(x; ) and ® in S(r X », F'), the integrals

Z(®, s, W) = S(D(w) W(z)|det e *d* @

converge absolutely in some right half-plane Res > s,.

2) They extend to the whole complex plane as meromorphic functions
of s. If s, 1s large and P is a polynomial which cancels the poles of L(s, )
in the strip 1 — s, < Re(s) < s,, then the product

Z(®, s + (r — 1)/2, W)P(s)
18 holomorphic and bounded in the same strip.
3) The functional equation (3.1.2) is satisfied.

Proof. Since each W e W, (x;+) is majorized by a gauge, the first
assertion is easily proved.

Let us prove the second assertion at first for ® in S(» X r, F;+r). Since
® is right K-finite, there is a function £ on K which is a sum of irreducible
characters of K divided by their degree (an “elementary idempotent”) such
that

O(x) = SKQ)(kx)S(k)dk )

Thus for Re(s) large
Z(®,s, W) = Z(®, s, f),
where

flg) = SK Wk g)z(k)dk .
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If N\ +0 is in 7, then W has the form W(g) = \(x(g)v) for some v in I,
(Notations of (8.1) and (8.2).) Then:

f(g) = z(g)v)
where /¢ is the linear form on J(, (or JF~) defined by
1(w) = SKx(n(lc)v)E(k")dlc .
Clearly /¢ is K-finite. Thus f is a bi-K-finite coefficient of 7. By (9.1),
Z(®, s+ (r — 12, f) = L(s, DR(s)e" ,

where R is a polynomial. Thus, by Stirling’s formula, if P cancels the poles
of L(s, m) in the strip 1 — s, < Re(s) < s,, then L(s, w) P(s) is holomorphie
and rapidly decreasing in the same strip. Thus P(s) Z (@, 5 + (r — 1)/2, W)
is also holomorphic and bounded in the same strip. We also obtain the third
assertion (for @ in S(r x r, F; +)) exactly as in Section 3.

Before extending these results to all of $(» X r, F'), we prove a lemma.

LEMMA (9.2.4). There is an s, > s, with the following property. For
any polynomial P the product

#(s) = P(s)Z(®, s, W)

18 bounded in any vertical strip of the half-plane Re(s) > s,. Moreover, if
@ approaches zero in S(r X r, F), the function ¢ approaches zero uniformly
in the same strip.

Proof. Replacing 7@ by 7 & a' if necessary, we may assume that 7 is
trivial on the subgroup R* of the center of G. Then, for Re(s) large,

Z(@, s, W) = Smt"'””H(t)d*t ,
where n = |F: R|, d*t = dt/t, and
H(t) = S D (tr) W(z)da .
Gy

Here G,={g € G||det g|=1}. Since W is dominated by a gauge, it is not hard
to see that H is of slow increase for ¢ small and rapid decrease for ¢ large.
Moreover

t—c-lc—lt—dD(tx) = @,(tx) ,

where O, is again in the Schwartz space.
An integration by parts gives, for Re(s) sufficiently large,

Z(@, s, W) = —Sf%ffl(t)dw ,
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with
Ht) = S%@l(m) W(z)dz .
By induction we get, for Re(s) large,
(s} 2@, 5, W) = (=D e Hy(0)d*¢

where H,(t) = S D, (tx) W(x)de and @, depends continuously on ®. The
G

first assertion folloows. As for the second we need only remark that if ®*—0
then |®*| < @, for some non-negative Schwartz function ®,.

The lemma being proved, we establish the second assertion of (9.2) for
an arbitrary ®. Choose a sequence ®; in S(r X 7, F'; 4) which approaches
@®. We take s, + (r — 1)/2 larger than the s, of (9.2.4). Set

o(8) = P(8)Z(®;, s + (r — 1)/2, W),

P a fixed polynomial.
By (9.2.4) applied to a vertical line, given ¢, there is an integer N, such
that for 7, j = N, and Re(s) = s,,

(9.2.5) 1p(s) —gi(s)| = ¢

Now fix P so that L(s, ) P(s) is holomorphic in the strip 1 — s, < Re(s) =< s,.
We have seen that each ¢,(s) is bounded in the strip 1 — s, < Re(s) = s,
Assume at the moment that |3,(s) — ¢;(s)| < ¢ for Re(s) =1 — s, for 4, j = N,.
Let N = max(N,, N,). We contend then, that for i, 7 = N, |4.(s) — g;(s)| =¢
throughout the strip 1 — s, < Re(s) < s,. In fact, fix 7, j = N. BEach func-
tion s(g,(s) — ¢;(s)) is bounded in the full strip. Thus if C;; is large enough
|g5) —pi)|=<e if ¢t=|Im(s)|=C;.
Thus |¢,(s) — ¢;(s)| < € on each side of the rectangle bounded by Re(s) = s,,
Re(s) =1—s,, Im(s) =C,;, Im(s) = —C,;;. Hence thus is true throughout the
rectangle. Letting C;; increase, we obtain finally |¢,(s) — ¢;(s)| =< ¢ in the
full strip.

Thus ¢, converges to a function ¢ in 1 — s, < Re(s) < s,. The convergence
being uniform, ¢ is holomorphic in the open strip, bounded in the closed
strip.

We have, taking s, larger if necessary,

$i(s) = P(S)Sq’i(x) W(x)|deta """ "d" x

if s, < Re(s) <s, Taking limits we see that ¢ is an analytic continuation
of P(s) Z(®, s + (r —1)/2, W) to1 —s, < Re(s) <s,. Finally, taking s, larger
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if necessary, we obtain the second assertion of (9.2).
It remains to show then that, for s, large enough, ¢, -» 0 uniformly on
the line Re(s) =1 — s, We have, with the above notation,

$:(s) — ;(s) = &(s, w, ¥) ' L(s, m)/L(L — s, )
X PENZ(®, 1 — s + (r — 1)/2, W) — Z(®}, 1 — s + (r — 1)/2, W)].
Suppose Re(s) =1 — s,. The last factor tends to 0 uniformly. Write

L(s, @) = ac" Q) TL,,T (L (s + a0)T(s + b))

Al
<N

Since
L(s, ®) = ac"Q® I1,,T (—;—(s + m))F(s +5)) .

Here Q is a polynomial. Since we may enlarge s,, we may assume that
Q1 — 5) in non-zero for Re(s) =1 —s,. We may also assume that the
gamma factors are holomorphic on this line. Write s = ¢ + it. Clearly
Qo + it)/Q(1 — o + t) is bounded at infinity on any line. It remains to
show say that I'(s + b)/I'(1 — s + b) is bounded on ¢ = 1 — s,, if s, is large.
In fact this follows immediately from the asymptotic expression

ID(a + it)| ~ (2m) e~ 2712 as  [t] — oo .

Finally the last assertion of (9.3) follows by continuity.

10. Problems of classifications: Archimedean case

We extend the results of Section 6 to the archimedean case. We consider
almost exclusively unitary representations. Few proofs are given.

(10.1) The analogue of Proposition (6.1.1) is somewhat weaker.

ProrosiTION (10.1.1). With the notation of (6.1.1), let o, be irreducible
unitary and & be given by Mackey’s construction. Then & admits at most one
wrreducible generic subrepresentation. Moreover if & contains such a sub-
representation then each o, 1s generic.

As in the non-archimedean case we have the notion of a strongly generic
unitary representation. Proposition (6.1.2) is still true as well as the ensuing
remarks. Every strongly generic representation is also generic. Indeed the
space of C~-vectors in 7 is contained in the space of C*~-vectors in 7 |P".
Since | P' = I(P', N;0) we may regard the former space as being contained
in the space of C>-functions on P'. The inclusion being continuous, the
proof is then the same as before.

The classification of irreducible admissible representations of G.(F') (or
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its “Hecke-algebra”) is similar to (6.2) [28]: there is a bijection ¢ — 7(o)
between these representations and the set of classes of semi-simple
r-dimensional representations of the W-group W,.

(10.2) Suppose r =2. If r is an irreducible representation (semi-
simple) of Wy of degree two, then n(z) is square-integrable (mod Z,). If
is a reducible representation of W, of degree two, 7 = t, @ t, and 7(r) =
(s, tt). This is unitary if and only if either both g, and f, are unitary or
if o, = e, ¢, = ya~* with x unitary and 0 <s < 1/2 (the complementary
series). The unitary square-integrable representations and the unitary
representations of the form m(g, f,) exhaust all of the unitary generic
representations of G,(F'). As in the non-archimedean case they are strongly
generic.

(10.3) For » = 3, we content ourselves with pointing out that (6.7) is
still true. Of course 7 cannot be square-integrable. With reference to (6.7),
© = I(G, P;0,v) is generic if and only if ¢ is and is then strongly generic.

Finally the unitary generic representations of G,(F') correspond to the
following three-dimensional representation of W,:0 = t @ ¢t where 7 is a
two-dimensional irreducible unitary and g a character, o = 1, @ 1, D 4,
where each ¢, is a character, and 0 = ya’ @ ya P ¢t where y and p are
characters and 0 < s < 1/2. The corresponding representations 7(c) of G,(F")
are I(G, P;x(c), 1), I(G, B; t, th, 1) and I(G, P; m(ya?, ya™), p) respectively.
For these representations we have (cf. [9]):

L(s, w(0)) = L(s, 0), &(s, 7(0), ¥) = &5, 0, v) L(s, #(0)) = L(s, 5) .

11. The groups GL(3, R) and GL(3, C)

We partially extend the results of Section 4 to thecaser =3, F =R
or C.

(11.1) If @ is in $(8 x 3, F'), we can still define the measure o, on
SL(3, F') as in (4.3). In general o, is not of compact support. However the
following lemma which we will need for the global theory is true (cf. (13.6)).

LEMMA (11.1.1). Let f be a continuous function on SL(3, F'). Suppose
0s(f) = 0 whenever p, has compact support. Then f(e) = 0.

Proof. We will need an auxiliary lemma which is better stated for
arbitrary . For F' = R, let K° = SO(r,R), and, for F' = C, let K° = SU(»).
Let U be the open subset of M(» — 1 x », F') consisting of the matrices of
rank »—1. Call B,-, the group of »—1 by »—1 upper triangular matrices with
positive diagonal entries. We may write an element Y in U in the form
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Y =bH

where b is in B;-, and the rows of H form an orthonormal system. There
is exactly one matrix k € K° whose last  — 1 rows are the rows of H. Thus
we may write

Y = [0, bk, beB ,, keK".
Moreover in this expression b and k& are unique. One thus obtains a
diffeomorphism of U with B,—, x K°.
Similarly let U’ be the set of + by » matrices X of the form

(5

where Ze M(1 x r, F') = F"and Y € U. Every such element may be written
uniquely in the form

Zk™!
(11.1.2) X = ( 0 b > with k, be B,",, ke K°.

With these notations we have

LEMMA (11.1.3). Let 6, € S(F'7), ¢, € C7(B, ., x K°), and P be a polynomial
on Fr. Let ¢ be the function on M(r X v, F') defined by

O(X) = ¢,(Zk™")pu(b, k)P(Z)
for X in U’ as in (11.1.2) and ®(X) =0 for Xe¢ U'. Then ® is in
Strxr, F).

Proof. Let 0 be the space of functions on F'" x B, x K° spanned by
all functions & of the form

W(Z, b, k) = ¢.(Zk™")$,(b, k)P(Z)

with ¢, 4,, and P as above. It is clear that 0 consists of smooth functions
and that ‘O is stable under the action of right invariant vector fields on the
Lie-group F'" X B, x K°. Moreover any element of "0 has support contained
in a set of the form
FrxQ,
where Q is a compact set in B,~, x K° and is majorized by any negative
power of 1 + || Z|].
Let “®© be the space of functions ® on U’ of the form

O(X) = W(Z, b, k)

as above. Each @ is smooth. By transport of structure, W is stable by any
differential operator in Z or Y with constant coefficients. Moreover each
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® has support in a set F'" x Q where Q is compact in U. Thus each ® in
T has a smooth extension to M(r X 7, F') which is zero outside U’. Thus
we may identify @ with a space of smooth functions on M(» X », F') stable
under differential operators with constant coefficients. Since
1+ | XIP=z1+ | Z|F, for X = <IZ,> ,
each @ in W is majorized by any negative power of 1 + || X|. Thus W is
contained in §(r X r, F'). Q.E.D.
To prove (11.1.1), we specialize ® as follows. We suppose » = 3. We
set, for Xe U/,
(U Ly Ly5)
(D(X) =0 ( 0 u, xza)k = ¢1(u)¢12(x12)¢13(x13)¢2(u2)¢23(x23)¢3(u3)¢0(k) )
0 0 wu,

where ¢, ¢, 61 623 € C2(F), 61y ¢, € C2(RY), and ¢, C*(K°). As before we
set ®(X) = 0 for X ¢ U’. Then by (11.1.3), ® 8§ x 3, F'); with the nota-
tions of (4.3), we readily find, for k€ K°,
Ko(x, Uy, vy Usy V5 k) = (51(—x)¢2(u2)¢3(u3)9312(1)2)&23(03)(,50(]0)9%13(0) .
Thus, with 3,,(0) = 1, we obtain for f continuous on SL (3, F),
b7'¢ 00\/1Lx0,/100
Po(f) = Sf ( 0 1 0)(0 1 0) 00b O)lc
0 01/\001/\00 ¢
X (= )pu(0)Bra(b)gs(C)Pos(c ™ )go(R) [B] | ¢ [*d*bd*cdadk
Clearly p, has compact support. It is clear that if 0,(f) = 0 for all the @
we are considering, then f(¢) = 0. This concludes the proof of (11.1.1).
(11.2) The main theorem of this section is
THEOREM (11.2). Let @ be a unitary generic representation of G,(F').
Denote by W' (; ) the space of functions of the form W p~ where W is in
W(w; ) and p is a measure of compact support of the form ft = p, on
SL (3, F'). Suppose We W(xw;). Then:
(1) The integrals
[fa 00
(s, W) = SW (0 1 0) lal'd*a
(\0 01
/a 0 0
(s, W) = SW 21 O)w' lal'd*ade
L\O 01
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converge for Re(s) sufficiently large.
(2) They extend to the complex plane as meromorphic functions of s
and as such satisfy
V(1 —s, W)/LQ — s, &) = &(s, @, ¥)W(s, W)/L(s, ) .

(8) If P(resp. P) is a polynomial which cancels the poles of L(s, )

(resp. L(s, 7)) in the strip 1 — s, < Re(s) < s,, and s, is large enough,
P(s)W(s, W)  (resp. P(s)¥(s, W))
18 holomorphic and bounded in the strip.

Proof. Recall that if £is a gauge and Q a compact set in G(F'), then
there is a gauge &, so that &(gw) < &(g) for g€ G(F), we Q. Thusif W =
W,xp”, where W, is in “@,(7; ¥) and £ is of compact support, W is bounded
by a gauge. The first assertion for ¥(s, W) follows immediately. We prove
the first assertion for ¥(s, W). Since g+ W(gw') is also majorized by a
gauge, we have only to see that

a00
85 210|||a d ade
001

is convergent for s large. Say F = R. Using the Iwasawa decomposition
this has the form

S¢(a, (1 + xz)l,’Z)la}s—-l—t(l + xz)*‘l‘”zdxadx
for suitable ¢ in S(F?) and is clearly convergent for s large. The proof is
similar for F = C.
To proceed further we need an analogue of Lemma (4.3.1).
LEMMA (11.2.4). For W,e W,(x; ), ® in &3 x 3, F'), and Re(s) large,
a00
|, Wi@o@ldetgriag = | wllo10)r|laldadon).
Gy(F) SL(3,1) JF 001

Proof. Wehaveseen that both integrals are convergent for Re(s) large.
Proceeding as in (4.3.1) we need only see that

a abv 0
SW" 0 b 0}k||labec*™|a|?b]7"Ke(v, b, b7, ¢, ¢ k)dvd ad bd*cdk
0 0 ¢

is absolutely convergent for Re(s) large. Since K, depends continuously on
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® and W is dominated by a gauge, we are reduced to the convergence of
Sg&(a, b)la bt e K(v, be, (o)™ ¢, ¢ )d ad bd cdv

for Re(s) large. (Here K e S(F™®).) This is easy.
Remark (11.2.5). Let @, be in (3 X 3, F'). As in (4.5), set

Hg) = |det g "|@,(ng)d(n)in .

As there, SH(g)d)(g)ng is convergent for any ® in S(3 x 3, F'). Moreover

a00
SH(g)(I)(g)dxg - SH 01 O)h a2 d*adps(h) -
001

As in (11.2.4), the proof reduces to the convergence of

[ lxy\/a 00
SCI)O (o 1 z)(O b 0) la|[b]F|c[ K(v, b, b, ¢, ¢

L 001/\00 ¢
X d*ad*bd*cdv dxdydz ,

with ©, €SB x 3, F') and K € S(F7).
We return to the proof of (11.2). Let ® €&(3 x 3, F'). Using (11.2.5)
and proceeding exactly as in (4.5.2), we obtain for Re(s) large,

a00
(11.2.6) SWo(g)@(wg)ldetgl”“dxg = SWO (x 1 O)W’h’]Ia]““ldxadxd,oq,(h) .
001
From (9.2.3), we have
Z@',2 —s, W) =¢€(s,m ) Z(D, s + 1, W)
for W, e Wy(x; ). Set W = W,*py. Then by (11.2.4),
Z(®,s + 1, W,) =V¥(s, W).
On the other hand, recalling that W(g) = W(wg"), we obtain from (11.2.6)
ZW@, s + 1, W,) =¥, W).
The second assertion now follows from (9.2.8). Similarly (3) follows from
(9.2.2) and the two preceding identities.
12. Fourier expansions

In the remaining sections the ground field F' is global. We first discuss
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the Fourier expansion of functions on G(A), invariant on the left under
P(F) and cuspidal along any horicycle of G contained in N. It is best to do
this for all 7.

(12.1) A gauge ¢ on G(A) is a function invariant on the left under N(A),
on the right under the standard maximal compact subgroup K, and given
on A(A) by
a) = |la,ay -+ a7t (A, @y v, @),

a =diag(a,a, - a,, ay - -a,, -, a¢_,a,a,.
Here ¢ = 0 is in S(A"7") and ¢ is positive. In particular, if ¢ has the form
¢ = [I¢., then
(12.1.2) {9 = 1I.5.(9.) »

where, for each v, the gauge £, on G, is defined by

(12.1.1)

Ev(a) = Iaqaz e ar—ll_t?’v(aly Wyy = * 2,y ar——l) .
Note that in (12.1.2) almost all factors are equal to one.
LemMMA (12.1.3). Suppose S is the gauge defined by (12.1.1) and t' >t

is given. Then there is ¢’ € S(A™™") such that the gauge &' defined by t' and
o' majorizes &.

Proof. It suffices to show that, given ¢ = 0 in S(A"™') and ¢ > 0, there
is ¢’ = 0in S(A"") such that
?5(501» Lay =y xr—l) = lxlx2 e Ty ift‘?"(% Lyy =y xr—l) .

We may assume ¢=]]¢,. Then there is a finite set of places S, containing all
archimedean places, such that, for v ¢ S, the function ¢, is the characteristic
function of R;~'. Now it is clear that

Ov(x) = lexz °cc wr—1rt,0’u(w)
for v not in S. On the other hand, for v in S, there is ¢, such that

9,(X) = [,y + @y [T O0(T)
The function
6 =1IL..00 1L
satisfies the above condition.
COROLLARY (12.1.4). The sum of two gauges is majorized by a gauge.
LEMMA (12.1.5). For any compact subset Q of G(A) and any gauge = on
G(A), there 1s a gauge &' such that

(gw) = &(g) ,
Jor g € G(A) and w € Q.



AUTOMORPHIC FORMS ON GL(3) II 227

Proof. Enlarging Q we may assume
Q=TLe.,
with
Q, = K, for all v not in S,

Q, being a compact subset of G, for all v in S. Here again S is a finite set
of places containing all the archimedean ones. We may assume that & is
given by (12.1.1) with ¢ = [[¢,, ¢, being the characteristic function of
R, for v not in S. Then ¢ is given by (12.1.2). There is, for each v in S,
a function ¢, such that the gauge &, defined by ¢ and ¢, satisfies
£,(9w) = &(9) for geG, weQ,.
On the other hand,
&, (gw) =£&,(9) for v¢S, 9,eG,, weQ,.
Hence the function
§ = Huess:’nvesév

satisfies the conditions of the lemma. Arguing as in (12.1.3), we see that
& is majorized by a gauge.

(12.2) Asin (0.4) we identify G,_,, N,_,, A,_, with subgroups G’, N’, A’
of G, =G. Weset K' = KN G'(A).

PROPOSITION (12.2). Let & be a gauge on G(A). Then the series
(12‘2‘1) ¢(g) = Z)’GN'(F)\(."(F) E(’Yg)

converges uniformly on compact subsets of G(A). Furthermore, if F is a
number field and Q is a compact subset of G(A), ¢ a positive constant, there
18 B, such that, if t = t,, then there is a constant ¢’ with the property that:

(12.2.2) plaw) < c'H1§i§ruliail—ti!~i<r—l—i) ,
for w in Q and
a = diag(a,a,++-a,_a,,0,+++a,_a,, --+, a,_,a,, a,)
satisfying
a;l=c¢c, for 1<i<r—2.
Note that there is no condition on a,_,.

Proof. Let Q be a compact subset of G(A). There is a gauge &, such
that
gw) = §.(9), 9 G(A), we Q.

So for the first assertion, it suffices to establish the convergence for g = e.
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Let V be a compact neighborhood of ¢ in G'(A) whose translates by G'(F')
do not meet it. Then there is a gauge &’ such that
&(g) = &(g2) ,
for g in G(A) and x € V. Therefore
20,8 = 2.8 (v)

and, for any real number s,
Zré(v)grmetxrdx < szrs'(mndetxmx

é S
G’ (FI\G'(A)

> & (va)|det va | da

&(x)|detx|°dx ,

SN'(F)\I}’(A)
the sum, as above, being extended over N'(F)\G'(F").

Using the Iwasawa decomposition, the last integral is found to be equal
to

Slr——l¢(al, Agy ** a’—l)ngigr—l ] a, Iis—i(r—l—i)—tdxaldxaz cee dxafr—l .

Since ¢ is in S(A"™Y), this last integral is finite for large s. Hence

EA‘/(F)\G*(F) §(7) < Foo
Assume F is a number field. To prove the second assertion, we may
take Q = {e} and choose a in a fundamental domain for A(F') in A(A). So
we may take a to be

o =diag(a,a, Ay Ay v Qy oy 0, 1), o] Zcforl=i=sr—2,
the a, being of the following form:
(a,), = 1 for v non-archimedean,
(a;), = t, t, > 0, for v archimedean.
Let V, and V, be compact neighborhoods of e in N’(A) and A’(A)
respectively. Then the set V, of elements x of the form
x = nbak,neV,beV,keK',
is a compact neighborhood of a in G’(A). Furthermore
a'x = a 'nabk
staysin a fixed compact set independent of a (but dependent on V,, V,, and
¢). So there is a gauge & such that
£(ga) = &' (g)
for all geG(A) and x in V,. Reduction theory shows that the set of
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v € G'(F') such that
YV.NV.#©
for at least one a (satisfying the above conditions) is finite. It follows there

is a constant ¢’ (independent of @) such that, for any function f= 0 on
G'(F)\G'(A),

S F(@)dx = G’S F@)dax .
Va G’ (F)\G' (A)
Hence
E)’GJ\"(F)\G'(F)E(,Y“)SV |det z|°dx =< SV ETSN’(F)\G’(F) §'(va)|detx|*da
= C,SG’(F)\G'(A) Er e vimnanm & (Y) | det va [ da

- C’S &(x)|det o |*de .
N’'(F)\G'(A)

As before if s is sufficiently large, the last integral is finite. On the other
hand,

|, ldetarde = TL,...,. la=of
So, if s is sufficiently large, we get a majorization
(@) = 20 cvime i SQ) = ¢ TT .o, a7t Q.E.D.
PROPOSITION (12.3). Let w be a character of I/F* and W a continuous
function on G(A) such that
W(zng) = 0(n)W(g)w(z)
for ne N(A), ze Z(A) = 1. If the series
$(9) = 2 v imnpim WOG)
converges absolutely, uniformly on compact subsets, its sum s continuous

on G(A), invariant under P(F) on the left, and is cuspidal along any
minimal horicycle of G contained in N.

Note that the series may be written as a sum on N'(F)\G'(F').

Proof. Only the last assertion needs to be proved. The case » = 1 being
trivial, we may assume r = 2 and our assertion proved for » — 1. We may
write, identifying P!_, c G,_, with a subgroup P of G':

(12.3.1) #(9) = Esepl'(m\a'(i‘)w(ég) ’
w(g) = Eregvl(p)\pl’(p) W(’Yg) ’

both series being absolutely convergent, uniformly on compact sets.
Since P¥(A) is the stabilizer of the character 6| U(A), the function w

|detx|*dx .
x

l'V2'
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satisfies
w(ug) = w)w(g), u € UA) .
On the other hand, the characters
u — 0(§us™), $e PY(F)\G'(F) ,

are all the non-trivial characters of U(F')\U(A). So (12.3.1) may be regarded
as the Fourier expansion of ¢ on the group U(F)\U(A). Since this Fourier
expansion has no constant term,

o(ug)du =0 .

SL'(F)\U(A)
Furthermore

(12.3.2) w(g) = S s(ug)d(w)du .

U(FN\U(A)

Now let V be the unipotent radical of a standard parabolic subgroup @ of
type (r,, 7,) where 7, > 1 and 7, + 7, = . We want to show that

SV(F)\V(A)¢(,Ug)d,v - O :
The group V is commutative and a direct product
V=V.-V,
where
Vi=VnU V' =VAN =VnG.
Moreover U is also a direct product
uv=Vv,.-V,,

where V, is contained in Q. Since V, is contained in @ it normalizes V. So
the function
(12.3.3) vy — S 5(v0,9)dw

V(F)\V(A)
on V,A) is invariant under V,(F'). To show—as we must—that this funec-
tion vanishes, it suffices to show that all its Fourier coefficients vanish. For
the constant Fourier coefficient, we obtain

(12.3.4) S(v0,0)dv =de2 Sg&(v’vlvzg)dv'dvl ,

b )
Va(\Vg(A) VIFNV(A)
where we integrate with respect to

v, e V.(F)\V(A), v e VI(F)\V'(A) .
Now
H=V'V,V,=VV,=V'U=UV'
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is a group. We claim that for any function f = 0 on H(F)\H(A),

F(hydh = Sf(v'vlvz)dv’dvldvz ,

SII(F)\H(A)
where the second integral is successively taken over
v e VI(F)\V'(A), v,e V(F)\V,(A), v, € V(F)\V,A) .
Indeed one may assume f of the form

f(h) = Ese;1(1~')fo(§h) .
Then

Fydh = SH(A)fO(h)dh .

S}'I(F)\II(A)

On the other hand,
F(h) = 22 f&a8h) ,
the sum being for ¥ ¢ V'(F), &, e V(F), & ¢ V(F). Thus

|70 dv,do, = dodv,| T a0 v

Srl(zv)\rlm) X Vo(FN\Va(A)

Since V, and V' commute, this is also

T iewwvadedy = \do| S rcovdv .

I
ValE)\Fa(A) V1A XF/(A)
Finally, since v, normalizes V, this is
Loael  Sacesd, = fiomdvdo = | - fman,

VIA) VolF N 5(A) H(A)
which proves our contention. Hence the integral (12.3.4) is nothing but

s(hg)dh = |

SV(A)XI'Z(A)

dv'S suv'g)du
UL (A)

SH(Z')\H(A) V(FNV/(A)
this time because V'’ normalizes U. The inner integral vanishes, hence
(12.3.4) vanishes as well.

In order to prove that the other Fourier-coefficients of (12.3.3) vanish,

we note that we may apply the induction hypotheses to the function
h —— w(hg)

on G'(A). In particular V' being a minimal horicycle of G’ contained in N’,
we know that

w@'g)dv’ = 0 .

SV'(F)\V’(A)

Taking (12.3.2) into account we have
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0= de'ggﬁ(uv'g)ﬁ_(u)du
= de’ Sgzs(vlvzv'g)t9_(v2)d1;1dv2 .

As before, noting that 6| U(A) extends to a representation of H(A) trivial on
V(A) and H(F'), we may also write

(12.3.5) Sﬁ(%)dvz §¢(w2g)dv —0.

Any matrix v of the form

1,00
7=(0 CO)’CGGL(Tz'—l,F),
0 01

will normalize V and V,. Replace g by 7g and note that ¢ is invariant under
v. Then (12.3.5) gives

Sa‘(vm-l)dvz Sq&(vvzg)dv —0.

Since the non-trivial characters of V,(A)\V,(F') are of the form

Vy — 0_(7’”2'7_1) ’
we are done.
(12.4) Suppose F' is a number field. Let R, denote the ring of integers
of F. Let p =[F:Q].
Let v be an infinite place of F. For g € SL(r, F',) set
lgll, = QCgin)?
if F, is real, and
gll, = Egijgij
if F, is complex (cf. (8.3)). Then |/g||, = 1. For g in

SL(T, Foo) = II SL(?" Fv) s

v € 0

set
lgll = IL,..1lg.1l. -
Again [|g]| = 1.
For x € M(» x », F..), set
(x) = (E ®,i5%,:5)"" ;
7 is a norm on M(r x r, F.) regarded as a real vector space. We have

7(g9) < r'*||g|| and || g|| < =(g)? for all g in SL(r, F.).
Let X be a finite subset of SL(», F') and Q a compact subset of SL(r, F.,).
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Let ¢ be a positive constant. A Siegel set in SL(r, F,.) is a set of elements
of the form g = &bw, where ¢ is in X, w in Q, and b varies over all elements
of the form b = diag(b, b, ---, b,), b;c F., b,/b;.,=¢, bb,---b, =1. By
reduction theory, we can choose a Siegel set & so that

SL(r, F..) = SL(r, R;)-& .

The reduction functor provides an R-algebra isomorphism p of
M(r x », F,,) into M(pr X pr, R), carrying SL(r, R;) into SL(pr, Z) and
Siegel sets in SL(r, F.,) into (standard) Siegel sets in SL(pr, Z) ([5]). By
transport of structure, there is a norm o on M(p» X pr, R) and constants
¢, >0, ¢, > 0so that

e,0(0(9) = gl = e.0(0(9))” -
Then by 4.10 in [5], if h = v&ébw with &, b, and @ as above and v € SL(», R;),
(12.4.1) [|R]]? = c"||b]]
for a suitable constant ¢’ > 0.

The following proposition will be applied in Section 13.

PROPOSITION (12.4.2). Let F be a number field. Let & be a gauge on
G,(A). Set

‘P'(g) = Ere.\”(F)\G’(F) E(7g) :
Let Q be a compact subset of G,(A). Then there is a comstant ¢ and an
integer m so that
3w, 9w,) = cllgll™
for all w, w,€Q and g€ SL(r, F.,).

Proof. Since G* and G., commute we may assume w, = {¢}. We may
also assume Q = QQ,, where Q, € G~ and Q., C G,, are compact. By (12.1.5)
we may assume Q, = {e}.

We may write g € SL(r, F.) in the form:

1., 1
o= (oo o)
0 1/\0 «

where k€ K., x € FX, me G,_,(F.). We may also assume
detm, >0, x,>0.
Writem = z-hwithze F}, z,>0,and det h, = 1. Note 27 '-2, = 1. Then,
for v real,
g, lli = 2omi; = |2, i3 k% ot lgulls = (2,11 Ay lls -
The same holds for v complex so that
(12.4.3) gl = lzlullR]] -
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Similarly
(12.4.4) lgll = Il .
Now, as above, we write

h = v5bw ,

with v in SL(» — 1, R;), & in a finite subset of SL(» — 1, F'), @ in a compact
set, b = diag(b,, b, +-+, b,_,), b, € F'.l, b,/b,,, = ¢ and [[b; = 1. Then

o bz 0\ ,
¢<g>—¢[<0 x)w]

where @’ is in a compact set in G,(A). By Proposition 12.2,

[8(9)] = e |21 @[ C70 b7 b2 - B[R
t positive. Clearly |b;|, <]|b||]. Thus by (12.4.1)

[6(g)| = e |23 | TTVHBM T S 6] 2T e [TV RV
This is also »
AL s S T [atdP et
or, since |[z|1 7'z |, = 1,
ealw [ ([ R 2]) 7

Our assertion then follows from (12.4.3) and (12.4.4).

13. The main theorem
In this section F'is an A-field and » = 3.

(13.1) We want to establish a converse to Theorem (13.8) of [17]. We
consider the following situation:

(13.1.1) w is a character (of module one) of F{/F*;

(13.1.2) For each infinite place v, 7, is an irreducible, unitary, generic
representation of G, or equivalently of the local Hecke algebra JC,;

(13.1.3) For each finite place v, 7, is an irreducible admissible represen-
tation of G,, generic or not.
Furthermore the following is assumed:

(13.1.4) For almost all v the representation x, is unramified, thus of
the form
77'.11 = TE(F‘M, 1“211) #31})
with ¢, ,=a’*. Itisassumed thatthereist > 0sothat —¢ < Re(s,,) <t, for

1 =1, 2, 3 and almost all v. This condition is automatically satisfied if we
assume the representations 7, to be unitary.
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Note also that if 7 = ), 7, is an automorphic cuspidal representation
then all the above conditions are satisfied. More precisely the representa-
tion 7, is then unitary generic for all v.

If v is finite, as in (6.6), let &, be the induced representation of G, as-
sociated to w,. Recall that 7, is always a quotient of &, (ef. § 6). As in (7.1)
we may define the space W(xw,; 4r,) which affords the representation &, of
G,, noting again that, if «, is generie, then &, = 7,. For v infinite we set
¢, =mx, Letalsonw =,7,&=,E&. We denote by W(x; 4) the space
spanned by the functions of the form

W) =11, W.(9.), W,eW(x@,; ¥) -

Here we assume that W, is, for almost all v, the element in W(7,; 4,) in-
variant under K, and equal to one on K,. If we also require that W, be,
for v infinite, in Wy(x,; ,), we obtain a subspace denoted by Wy(x; ¥). From
(2.3.7) and (8.3.3) it is clear that every element W of “W,(w; +) is majorized
by a gauge. Thus we may set (cf. (12.3))

(13.1.5) #(g) = >, W(vg), veNEFNP(F), for WeWy(x;) .

Recall from (6.2.7) and (6.6) that if v is finite and &, is the induced re-
presentation attached to z,, the induced representation attached to 7, is the
image &,7 of &, under the automorphism g — wg'w™. As we know &, is
equivalent to & and the map W, — W, (2.1.3) is a bijection of W(x,; +,) onto
W(H,; 4,). A similar remark applies to the space W,(x,; ¥,) for v infinite.
Thus in the above we may replace the triple (w, (z,), (§,)) by the triple
(07, (7,), (§))). We obtain another space W,(7; ) and the map W — W de-
fined by (2.1.8) is again a bijection of W,(; ¥) onto W,(T; ). We set

(13.1.6) $(9) =3 W(rg), veNEFNP(F), for WeW(m; ).

Each ¢ in (13.1.5) is a continuous function on G(A), invariant under P(F")
on the left and cuspidal along any proper horicycle of G contained in
P((12.2), (12.3)). Since

W) = | snginin,

the map W ¢ is bijective. Hence the space spanned by the ¢ is invariant
by convolution by elements of JC and affords the representation &.

Thus it is clear that if ¢ is invariant under G(F') on the left then ¢ is
automorphic. More precisely by (12.4), ¢ is slowly increasing and is in fact
a cusp form. Since the representation of JC on the space of cusp forms is
completely reducible each &, must be completely reducible. Then each com-



236 H. JACQUET, I. I. PIATETSKI-SHAPIRO AND J. SHALIKA

ponent of &, must be generic. Since &, has exactly one generic component,
¢, is irreducible. Thus 7, = &, and 7 = ®, 7, is a component of the space
of cusp forms.

(18.2) Again suppose ¢ is invariant under G(F'). Then the function
g — ¢(wg') is also invariant under G(F') and consequently ([29], [34]) has a
Fourier expansion in terms of the function

|,.. swnig'lienydn = | sinwgidmyin = W) .

Hence ¢(wg") = ¢(g) or ¢(g) = $(wg").

Conversely suppose ¢(g) = ¢(7g") for some v € G(F). Then ¢ is invariant
under P(F') and v'P'y*. Since for any v e G(F'), these two groups generate
G(F') we conclude that ¢ is G(F')-invariant.

In what follows we will have v = w'; so we introduce

(18.2.1) $(9) = S(w'g") ,
where, as above, ¢ is defined by (13.1.6). Recall

-1 0 O
w'=( 0 0—1),
01 O

and that ¢, is invariant on the left under Q(F') where here @ = w'P'w’)™".
In particular ¢, is still invariant under U(F') and we may set

1322) Vi =| swoiwadu,

Vi) = | swaitdu, 79) = | swoiwdn .
Of course if ¢ is G(F')-invariant then ¢ = ¢, and V = V,. The critical fact
for us is the converse.
LEMMA (13.2.8). If V = V,then ¢ = ¢, and ¢ is G(F)-invariant.

Proof. The assumption is that
|, = $0ua)iruydu = 0

forvy =1 and all ge G(A). Since P(F) N Q(F) normalizes U and leaves
¢ — ¢, invariant, we get the same relation for any v in P(F) N Q(F), in
particular for

100
7=(a BO), acF,BeF~.
001
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Thus

102

S(A/F)Z (¢ — ¢ (O 1 y) g |y(ax + By)dedy = 0
001

for all @ in F, B in F'*. This implies that

100
Sw<¢—¢l>{(o 1 y)g
001

for all B¢ F'*. Our conclusion follows from the following lemma which is
true without any assumption on 4.

LEMMA (13.2.4). With the above notations,

100 100
S ¢(le>g dx=g &, (01x)g dx .
A/F A/F |

001 001 |

0—-1 0
wlz(l 0 0).
0 01

a 00 a 00

og) =2, W (7 0 O)g +ZW{w1(0 0 O)g},aeF*,&eF*,veF.
001 001

Thus, in (13.2.4), the left side can be written as

v(By)dy = 0

Proof. Let

Then

r /a0 0
(13.2.5) EW{wl(O 0 O) }, acF~*,vyeF*.
001

On the other hand, the right side is

100
Sgg (0 1 oc)w'g’ dx
001

which is, as above,

a 00
E“’“FXW wl(O 0 O)wlgl ,
001
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or, using the definition of W,

a 00
En,&ei‘x W wl(O _1 O)g
0 0o

Because of the invariance of W under Z,(F), this is the same as (13.2.5).

(13.3) In order to formulate the relation V = V, in terms of L-fune-
tions we need the following relation between V, and V:

100
(13.3.1) Vig) = SA 1% (x 1 O)W'g’ de .
001

Again this is true without any assumption on ¢. Indeed replace ¢ by ¢ to
obtain the equivalent form

100 100
(138.3.2) S llx 1 y)g Y(—y)dxdy :S Vije 1 0)g dx .
(A/F)2 A
001 001

To show the right side of (13.3.2) is convergent, it suffices to show that the
series

100, -
(13.3.3) ..V (s 1 o)g}
001

is normally convergent for g in a compact set. Using the invariance of ¢
under P(F’) we see that this is also

1 0 %
Efepg é (0 1 v— ué)g ar(v)dvdu
(A/ )2
0 0 1
or, with a change of variables,
1 0u
EGGFS é (0 1 v)g b + uddudv .
(A/1)2
001

This is a partial Fourier series for the smooth function u — ¢(ug) on u —
U(F)\U(A). Thus the convergence is clear. Moreover the sum of the series
(13.3.3) is
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100
SH¢<0 1 v)g F)dv .

001

Writing the integral on the right of (13.3.2) as a sum over F' followed by an
integral over A/F’, we obtain our conclusion.

(13.4) Let us express the identity of functions ¥V = V, in terms of their
Mellin transforms. Since ¢ is cuspidal along the radical of the parabolic
subgroup of type (1, 2), we have (cf. (12.3.1) and (12.3.2))

a 00
(13.4.1) Vig) =X, W (o 1 o) g
001
Thus, at least formally,
a 0 O a 0 01
(13.4.2) S/ vifo 1 o) 1a|8-1an:S wllo 1 olljada.
1/F*% 1
001 001 J

The integral on the right we denote, in accordance with the local theory
(Theorem 7.4), by ¥(s, W). Since W is majorized by a gauge, we find that
the integral is dominated by one of the form

| @@, e tda,

I

with ® € S(A?. Thus for Re(s) large, the integral W(s, W) is convergent and
both sides of (13.4.2) are defined and equal. Before proceeding we prove:

LEMMA (13.4.3). Let & be a gauge on G(A). Then the integral

00
S\S. (Z 1 o) la|'d ad

001
1s convergent for s large.

Proof. Write &£ = 11z, as a product of local gauges £,. By definition
there is a finite set of places S, containing those at infinity such that, for
ve S,

z(diag(ab, b, 1)) = ®,(a, b)|ab|™*

where @, is the characteristic funetion of R? and ¢ is independent of ». Our
integral (finite or not) is a produect of local integrals of the form
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a, 0 0
Hs z, 1 0|||a,f"d*a.de, .
FJF™

0 0 1

We have already observed that for a given v this integral is finite for s
large. For v ¢ S theintegrand vanishes unless x, € R, and then is independent
of x,. Thus as above we are reduced to the convergence of

HvES S X(Dv(a’v’ 1) ia,, |3-‘t—1dxav
FT)
for s large, which is clear.

In accordance with the local theory (cf. (7.4)), we set

a 00
W(s, W):S S Wlle 1 0w |ar'd ads .
AJI
001

By the lemma just proved the integral is absolutely convergent for Re(s)
large. Thus it may be written as

aOO)aOO

S S/ e W01 0z 1 O)W' la|"'d*adx .
AJI/F
0 01/\001

Since this is absolutely convergent we may interchange the integrals to
obtain, after using (13.4.1) for W:

a 00
S X|al’”‘d*a§ Ve 1 O)w' de .
1/F A

001

This is then convergent as an iterated integral, for Re(s) large. Changing
x to ax in the inner integral and then a to a™!, we obtain

100, /a0 0
S « lal”dxag Vv (x 1 O)w'(O 1 0) dx
I/F A
001 0 o0 1
which by (13.3.1) is

a 00
| lalmaaviifo 1 o)
1/r

Thus, for Re(s) small,



AUTOMORPHIC FORMS ON GL(3) II 241

‘a 0 0

(13.4.4) T —s, W) = Sm v, (0 1 o) lalda ,
001

both sides being defined.

(18.5) Suppose that ¢ is invariant under G(F'). Let us indicate briefly
how to obtain the functional equation for L(s, ©) with the present methods.
We assume for simplicity that F is a function field. ¢ is then, as noted above,

a cusp form thus a compactly supported function mod Z(A)G(F'). It can be
shown then that

a 00 1 0 u/a 00
a—vifo 10 =S/ s1lo 1 v Olo)n;r(—v)dudv
(A/F)2
001 001/\001

is compactly supported on I/F*. Thus the left side of (13.4.2) is a poly-
nomial in @, @ and provides an analytic continuation of the right side,
i.e. of W(s, W).
Since V = V,, we have
a 0 0
S “vi{o 1 0||lafda = S
/r”
001
for Re(s) small. Thus by (13.4.2) and (13.4.4)

(s, W) =F¥(1 —s, W),

/7%

a 00
V.0 1 0}|le]*'d*a
001

in the sense of analytic continuation. The functional equation
L(s, ) = &(s, 1)L(1 — s, )
follows in the usual way from the local theory.
(18.6) We are now ready to formulate the main result of this section.

THEOREM (13.6). Let 7 be as in (13.1). Assume that for any character
1 of 1/F* the products L(s, # Q %) and L(s, T X ) extend to entire functions
of s, bounded in vertical strips if F is a number field, and satisfy
(13.6.1) Ls, 7@ =&, t Q@ DL — s, TR 1) -
Then @ 1s a component of the cusp forms and each w, is unitary and

generic.

Note that (13.6.1) is to be understood in the sense of analytic continua-
tion.
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Proof. Suppose first that F' is a function field. For ¥ = 1, the assump-
tion is equivalent to the statement that

(13.6.2) (s, W) = Tl —s, W),

both sides being polynomials in @~*, @°. By (13.4.2) and (13.4.4), this gives
a 0 0 a 0 0

(13.6.3) wa vilo 1 o)|laly@da = wa V. [[0 1 o)l y@d a
001 001

for ¥ = 1. Actually, a priori, the integrals are defined in nonAintersecting
half-spaces and it is only their analytic continuations (as polynomials in
Q7*, @) which coincide. If we replace = by = ® x we have to replace V by
V®yand V. by V,® x. Thus we get (18.6.3) for all y—an equality between
polynomials in Q°, @. Comparing coefficients in these polynomials, we
obtain

Ta 0 0 a0 0
S vilo 1 0)]x(a)d*azg V. l[o 1 ol|y@da,
1/rx 1/ rx
001 001

where I' denotes the idéles of module one. Thus V(e) = V,(e). Since re-
placing W by a right translate corresponds to translating V and V, by the
same element, we obtain ¥V = V,. Hence by (13.2.3) ¢ is a cusp form and, as
we have seen, 7 is a component of the space of cusp forms.

Assume now that F is a number field. Referring to (11.2), we let ¢ be
a measure of compact support on G, = [],.. G, of the form ¢ = ®, 4,
where ¢, = 0y, ®, € 5(3x%3, F,). Let W’ be of the form Wxp”, with We
Wy(m; ). By (12.1.5) W' is majorized by a gauge; so the integrals defining
W(s, W’) and ¥ (s, W’) are convergent for Re(s) large and each is a product
of the corresponding local integrals. Our assumptions on L(s, =) and L(s, 7)
imply that both of these functions extend to entire functions and that

(13.6.4) W, W) =91 —s, W".

In the preceding computations replace W by Wxx~. Then we must
replace ¢ by ¢+¢¢”, which is permissible because (13.1.5) converges uniformly
on compact sets. Similarly we must replace W by Wxpt and ¢ by ¢xzt. Then
¢, is replaced by ¢, " and V, V,, and V respectively by V«p~, V=g~ and
V', Again since W’ is dominated by a gauge, we find exactly as before,

a 0 0
(13.6.5) S Ve ([0 1 0] el x@d e
/P
001

4
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‘a 0 0
=\, V|0 0 o) llalmg@ia,
001
at first for y = 1, the identity being taken in the sense of analytic continu-
ation of entire functions.

We note now that ¥(s, W’) is bounded in vertical strips a < Re(s) < b.
From the integral expression this is obvious for a large. Similarly for
¥(s, W’). Hence by (13.6.4) it is true for b small. On the other hand, from
the expression of ¥ as a product, our assumption on L(s, ), and (11.2.8),
W(s, W') is moderately increasing in any strip of finite width. Our conclu-
sion follows from the Phragmen-Lindelof principle.

Replacing 7 by 7 & %, we obtain (18.6.5) for all x (recall that p has
support in SL(3, F'..)). Since both sides are entire and bounded in vertical
strips we may apply Lemma 11.3.1 of [23] to conclude that

Vep(e) = Vixpe(e)
By Lemma (11.1.1), we obtain V(e) = V,(e). Replacing W by its translates
by elements of Z(A)G” and convolutes by elements of (., we obtain
V=V. Q.E.D.
(13.7) For applications we require a somewhat stronger theorem.

THEOREM (13.7). Let 7 be as in (18.1) and S a finite set of finite places.
Assume that for any character of FX/F*, unramified at each place of S,
the funmction L(s, T K )) is entire, bounded in wvertical strips if F is a
number field, and satisfies

L(s,t Q@ %) = ce(s, t @ DL — 5, TQ X7
where ¢ # 0 is a constant independent of y. Then there is a space U of
smooth functions on G(F)\G(A) transforming under Z(A) according to @
and affording the representation &5 = Q),,s&, of HS. Moreover, if F is a
number field the elements of O are slowly increasing.

Proof. We may choose +» so that +r, is of exponent zero for each v € S.
Next for each v in S, we choose once for all ¢, = 1 and W = 0 in “W(x,; ,)

so that the conditions of Lemma (7.6) are satisfied. We let K, be the open
subgroup of G, defined in that lemma and set
Ki=1I,.. K, G = KG*®
with G* = J], ., G,. Wedenote by Wi(x; ) the subspace of W,(; ) spanned
by the functions of the form
W) = IL,.s Wo(g.) I1,.s Wg.) .
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Note that W is determined by its restriction to G°. From now on we restrict
ourselves to the functions W in that space. Note that they are all K-finite.
Clearly that space transforms like &% under J(5.

Let f be any of the functions W, ¢, V or V,. Then f depends linearly
on W and if we replace W by a right translate we must replace f by the
corresponding translate. Thus we find

(13.7.1) flgh) = w(hy,)f(g) for heKs, geG(A),
100
(13.7.2) |7 g(O 1 xﬂdm— 0 for veS, geG(A).
" 001

For the sake of clarity, let us assume F' is a number field. We leave
the function field case to the reader. From the hypothesis, we get, instead
of (13.6.5) the relation

a 0
8,.x a7 'y(a)d*a SV <0 1 )h dp(h)
" 00 |

0
0
1
(13.7.3) S

[ja 0 0
= lalz@da v, |[o 1 o)h}dy(h),
/F
001

this time for those y such that y, is unramified for v in S. But from (13.7.1)
we see that for any bin J] . Ry, ¢ in 1, heSL(3, F.),

ab 0 0 a 00 b 0 0\
|4 OlO)h =V<010>h010)J
001 001 001
a 0 0\ T
—V[(Olo)h .
001 |
The same identity is true for V,.

Thus both sides of (13.7.3) vanish if ¥, is ramified for some v in S.
Hence (13.7.3) is satisfied for all ¥ and we obtain as before V(h) = cV,(h)
for h = ¢. We may replace W by a convolute by an element of J(5 and a
translate by an element of Z(A) to obtain the same identity for z in Z(A)GS.
Finally, by (13.7.1) the same identity is true on Z(A)G’'. Otherwise said,

SU* (¢ — ca)(ug)d(vurdu = 0

for g€ Z(A)G' and v = 1. As in (18.2), we obtain the same identity for any
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ve G NPEF)NQ(F) and, in particular,

1 02
(13.7.4) S(AW (6 — ¢y Ko 1 y) g | vz + gy)dedy = 0

001
for all g in G', « € F, B € F'* satisfying
lal, =1, |Bl,=1
for ve€ S. By (13.7.1) the function of x

1 0 x
SW (¢ — cdy) KO 1 y) gJ w(BY)dy

001

is, for g € G', invariant under the subgroup JJ . s R,. Thus (13.7.4) is trivi-
ally true if, for at least one v in S, ||, > 1. Thus it is true for all @ in F'
and we get

100
(13.7.5) Sw (6 — cg,) Ko 1 x)g

001

forge G, Be F~* with |8], = 1 for all veS. Again by (13.7.1), (13.7.5) is
trivially true if for at least one v in S, |8|, > 1. Now if |8], < 1 for some
v in S, including the case 8 = 0, then

¥(Br)dx = 0

va—l dy = Sm;‘ ¥(—By)dy # 0,

and

100
|, v—sndy| =) Ko 1 w)g WBo)ds

001

10 0
- Sw“ISA/F (¢ — cy) KO Lx+ y)g}lf(ﬁx)dxdy )
’ 00 1

Now this vanishes for all g € G’. For we may assume that g € G and then

this is
100 100
|, #6ds | o — s Ko 1 x)g(o 1 y)} ay

001 001
which vanishes by (18.7.2). Thus (18.7.5) is true for all 8¢ F and we con-
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clude that on G’ or Z(A)G', ¢ = c4,. To continue we will use the following
lemma.

LEMMA (18.7.6). The group G(F)NG' is generated by P(F)N G and
QF)NG.

Proof. Every matrix in G(F') N G’ can be written as a product

1 0 /1 O O\ /x = =
01 OO 1 Off« = =],
al 1/\0 8 1/\0 0 =

the first matrix being in Q(F') N G', the last one in P(F') N G'. The middle
one is in G' N G(F'). But if we select vy € F'* with v(v) =1 at each v in S,
the middle matrix can be written as

1 00/ O 1 00/ ~vO
(010)(010) 010)010
By 0 1/\0 0 1/\—=pBy'0 1/\0 0 1

and any matrix in this expression is in P(F') N G’ or Q(F') N G'.

The lemma being proved, we see that ¢|G’ is invariant on the left under
G(F)NG'. Since G(A) = G(F')G', there is a unique function ¢, on G(F )\G(A)
which coincides with ¢ on G'. Because both ¢ and ¢, are invariant under
P(F) and

P(A) = P(F)(P(A) NG,
in fact ¢ and ¢, coincide on the larger set P(A)G'.

It is easy to see that ¢, is smooth and that W ¢, is a map commuting
with the action of J(5. Since N(A) = N(F)N' with N' = N(A) N G’ we get
W) =\ smgbmin, ge@,
N'ON(FI\N’
and the map is injective. Thus the space 0 of all the functions ¢, obtained
in this way affords the representation &5 of (5. It remains to see that such
functions ¢, are slowly increasing.
Let us derive a majorization of

t, 0 0
(18.7.7) 6 [0 t, O)g |,

0 0 ¢t
where g is in a compact Q of G(A), t,€ F%, and t,/t, = ¢, t,/t; = ¢, tit,t, = 1.
Clearly, Q is contained in a finite union |J vQ’, where v € X a (finite) set in
G(F'), Q' a compact set in G'. Writeaccordingly g = vh, ve X, heQ'. Then
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t, 0 0
6|10 & O)g | = do(uh) ,
0 0 ¢t
where
t, 0 0 t, 0 0
w=v"0 ¢t O|]v="v"{0 ¢t O)r..
0 0 ¢ 0 0 ¢t

But % is in SL(3, F..), so ¢,(uh) = ¢(uh) and, by (12.4),

|g(ul)| < ellul|™ < ee(th + 8 + D™,
where ¢, is a constant (depending on 7). Thus we have a majorization of
(13.7.7) by ¢'(t + t2 + t)™* and we see that ¢, is slowly increasing. Q.E.D.

(13.8) Let us examine in more detail the conclusion of (13.7). In parti-
cular we want to prove the following complement. As before, S is a given
finite set of finite places, and 75 = X),,s 7,.

THEOREM (13.8). Under the assumptions of (13.7) there is for each
veS a generic representation w, of JC, of central character w, with the
following property. Set ' = @,.s7, R 7 (sothatw, =, forveéS). Then
for any character ¥ of F{/F* the function L(s, ' Q) ) is meromorphic and
satisfies

Ls, 7’ @) = &5, 7 QLA — 5, T @A) -
Moreover w, is uniquely determined by this condition.

Proof. Let us show first the uniqueness of the 7}, ve€S. Suppose 7,
ve S, is another choice. Let w be a place in S. By (7.1.6) it is enough to
show that, for any character » of F7,

(13.8.1) e'(s, T ® 7, V) = e'(s, T X7, V) -
Now
L(s, m")/L(s, @"") = 1., L(s, @)/ L(s, =) ,
L(s, #)/L(s, #") = T1,., L(s, &)/ L(s, &) ,
and
&(s, )/e(s, @) = T1.. s &5, T v )/els, Ty )
Comparing functional equations, we get
Hves 5,(8’ Ty "i’/‘v) = HueS 5,<8; TC:: "1’/‘1')
or, replacing 7’ and 7"’ by 7’ ® x and 7"’ ® ¥,
I1,..665 @ Lo v) = T1,.5 (8 @ @ Loy ¥0)
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for all characters y of F',/F'*. We can select a ) such that ¥, = 7 and g, is
as ramified as we wish for v in S, v # w. Then, by (5.6),

&'(8, T, @ Yo V) = €'(8, T @ Ao V)
for ve S, v # w; and then (13.8.1) follows.
To prove the existence of the z, we will need the following proposition.
It is best to state it for all # so that G = GL(r). Since the proof is essentially
given in [23, § 10] we give only an outline here. Set J(* = ®,.s ¥ ,, as
before.

ProrosITION (13.8.2). Let F be an A-field and S a finite set of finite
places. Let ¢ be a continuous function on G(A), R an F-parabolic subgroup
of G, R = MU a Levi-decomposition of R, Z, thecenter of M. We assume
that ¢ is invariant under M(F)U(A) on the left, K-finite on the right and
that the representation of JS om o(FHS)¢ is admissible. Then ¢ 18 Z,(A)-
finite on the left.

We shall use the following lemma. Let T be a finite set of places and ¢
a continuous function on G,. We will say that ¢ is J(,-admissible if the re-
presentation of J(, on o(I(,)s is admissible.

LEMMA (13.8.3). Let T be a finite set of places. Suppose R is a parabolic
subgroup of G, R = MU, and Z, is the center of M. Let ¢ be a continuous
Sfunction on G, K,-finite on the right, invariant under U, = II,_, U, on
the left. Suppose ¢ is H -admissible. Then ¢ is (Z)~finite on the left.

We take the lemma for granted. To prove the proposition we introduce
for each finite set T of places the set Q(T') of all ideles « whose component
x,, v¢ T, has module one. We can choose T, containing the archimedean
places, so that TNS = @ and I = F*Q(T). Let K’ be an open compact sub-
group of G, such that ¢ is invariant by K’ on the right. Enlarging T if
necessary, we can write G(A) as a finite union

G(A) = UMF)UA)G9,K’

where the g; are in G;.
Now set Z,=T],., (Zx), and let Z’ denote the set of @ € Z,(A) such that
a, =1forveTand a,c K, forvg T. Then

ZM(A) = ZM(F)ZTZl .

Since G(A) = R(A)K it is clear that ¢ is Z'-finite on the left. Let {4} be a
finite basis for the space of left-translates of ¢ under Z’. It suffices to show
that each ¢; is Z,-finite. Since each ¢; is U(A)-invariant on the left and K’
invariant on the right it will suffice to show that each function + of the



AUTOMORPHIC FORMS ON GL(8) II 249

form (g) = ¢.(99;)(¢g € G(A)) has a Z,finite restriction to G,. Now each 4
is clearly J(,;-admissible, and since a quotient of an admissible representa-
tion is admissible, each of their restrictions to G, is also F(,-admissible.
Our conclusion follows from Lemma (13.8.2).

We return to the proof of the existence of the z). Let °L2(G(F NG(A), a))
denote the Hilbert space of functions on G(A) transforming like @ under
Z(A), square integrable mod G(F')Z(A), and cuspidal.

(13.8.4) Let U beasin (13.7). Suppose Vis contained in °L,(G(F)\G(A),w).
Since the representation of G(A) on the latter space is a direct sum of ir-
reducible representations, each representation £, is the direct sum of its
components. These components are generic and since ¢, has a unique generic
component we find that £, is irreducible, or &, = x, for all v¢ S. Moreover
there is an invariant irreducible subspace O of °L, and a J(5-morphism from
O to V. Call 7’ the representation of JC on “®. Then the representation of
I, on V' is a multiple of 7, for all v. Thus 7, =z, for v¢ S. Since x, is
generic for all v, our contention is obvious.

(13.8.5) Now suppose ¢ is a non-cuspidal element of V. Let R be a
horicycle in G with the property that

o1(9) = SR g(rg)dr

is non-zero, and maximal with this property. Essentially three cases remain.
Suppose first that R = N. By Proposition (13.8.2), ¢, is A(A)-finite on the
left. In particular there is a non-zero function f, on G(A) which is a linear
combination of left-translates of ¢, under A(A) and which transforms on
the left under A(A) according to a quasi-character of A(A) trivial on A(F).
Of course f, is N(A)-invariant on the left, K-finite on the right, i.e., f,
belongs to the space of an induced representation 7 = I(G(A), B(A); 0). Of
course o is trivial on N(A)A(F).

Let & be the representation of HS on o(H5)¢. There is a map of
J(S-modules &' — 7 sending ¢ to f. Choosing ¢ to correspond to an element
e of the form ¢ = ),.s e, in the factorable representation &5 = ®,.s&,, we
get &' = ®),.s5 &), Wwhere &, is the representation of J(, on &,(3C,)e, and, for
almost all v, e, is K,-fixed. Set?, = I(G,, B,; 0,) and note that 7 = ¥, 7,.
There is then, for each v ¢ S, an J(, morphism &, — 7, where in each case e,
has a non-zero image. Thus, for v¢ S, &, and 7, have a common component
¢, which contains the trivial representation of K, for almost all v. We let,
for ve S, m, be the generic component of 7, (ef. (6.1)). Then for all g,

€'(8, T, Q Aoy Vo) = €'(S, Dy @ Aoy V)
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forveS. For ve Slet n, = x,; then 7, is a component of &,; so the same is
true for v¢ S. Moreover for almost all », 7, and £, contain the trivial re-
presentation of K, so that in fact 7, = {,. Hence, given ¥, for almost all »

L(S’ ﬁ; ® Xv) = L(S, B ® Xv) .

It follows that L(s, 7’ @ )) is meromorphic. On the other hand by [17,
(Theorem 3.4)] the functions

L(S, 77) = Hv L(S’ 7]1)) s L(S, ;7) = Hv L(S, ﬁv) ’ 6(8, 7]) = I-I,, 6(8, Wy "}'/‘v) ’
satisfy

L(S’ 7]) = 8(8, 7])L(1 -8, 77) .

It follows that L(s, ") and more generally L(s, 7' Q) y) satisfy the required
equation.

(13.8.6) Suppose ¢y = 0 but that ¢, = 0. Again by Proposition (13.8.2),
oy 18 Zy(A)-finite. Here P = MU is the parabolic of type (2, 1). As before,
there is a non-zero function f;, on G(A), which is a linear combination of left
translates of ¢, by elements of Z,(A), transforming on the left under Z,(A)
according to a quasi-character g trivial on Z,(F').

Again let &’ denote the representation of J(* on o(F5)s. The represen-
tation of IS on p(J(®) f is a quotient of &'.

Now it is easy to see that, for each g ¢ K, each function m — f(mg),
fe (IS f, is slowly increasing on M(A). Moreover there is u € R so that
the functions m — f(mg) |det m|* actually belong to °L,(M(F)/M(A), z). Pro-
jecting onto an appropriate component of the latter space, we obtain a non-
zero J(S-morphism from o(J(S)f, to the space of an induced representation
7 = I(G(A), P(A); 0), o being a representation of M(A) which is automorphic
and cuspidal. Set 7, = I(G,, P,; 0,). For ve S, we take x) to be the generic
component of 7, and proceed exactly as in (13.8.5).

Finally we must consider the case when ¢, = 0 but ¢, = 0, V being the
radical of a parabolic of type (1.2). The proof is essentially as before. This
concludes the proof of (13.8).

In passing, note the following result:

PROPOSITION (13.8.7). Suppose @ and 7’ are two automorphic cuspidal
representations of GL(3, A). Suppose also that @, = 7w, for all v outside a
finite set of finite places. Then in fact w, = 7, for all v.

Proof. First if @ (resp. ®')is the central character of 7 (resp. '), then
w,=w, for almost all v. This implies that w=w®’. Then, since 7, and =, are
generic, the proof is exactly the same as the proof of the uniqueness as-
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sertion of (13.8).

(13.9) In the applications we will often use the above theorems in the
following form:

PROPOSITION (13.9.1). Let  be given as in (13.1). Let S be a finite set
of finite places. Assume that, for any character ¥ of FX/F* whose rami-
fication at each place v in S is sufficiently high, L(s, 7 Q X) is entire,
bounded in vertical strips if F is a number field, and satisfies

L(s,t @) = ce(s, t@ DL — 5, TRQ ™) ,
where ¢ is independent of . Then ¢ = 1 and the conclusions of (13.7) and
(13.8) apply.
Proof. We may apply (13.8) to the representation 7 ® 7, where 7, is
sufficiently ramified for v € S. We obtain then a representation 7’ & 7 such
that 7, = 7, for v¢ S and for which

Ls, 7’ @) = &8, 7 Q@ VLA — s, T Q1)
for all characters y of F/F*. Comparing this with the corresponding
statement for =, we obtain

cIL. €5 7@ Ao vo) = IL,.5€'(8 T @ Xow V)
whenever %, is sufficiently ramified for v S. But by taking this ramifica-
tion to be high enough and applying (5.6), we obtain ¢ = 1. Q.E.D.
We also have:

PROPOSITION (13.9.2). Suppose the conditions of (13.6) are satisfied
except that the functional equation reads

Ls, 7@ =ces, tQ LA — s, TR X »
where ¢ is a constant independent of ¥. Then ¢ = 1 and the conclusion of
(13.6) applies.

Proof. Take S = {v}, v being any finite place and apply (13.9.1) to get
¢ = 1. Then apply (13.6). Q.E.D.

In (18.9.1) it should be noted that the representations =,, v € S, which
" appear in the hypothesis really play an artificial role. More precisely,
(13.9.1) should be stated in the following way:

PROPOSITION (13.9.3). Let w be a character of F'X/F* and S a finite set
of finite places. For v ¢S let &, be an irreducible representation of IC, of
central character ®,. Assume the relevant conditions of (13.1) are satisfied.
Suppose that, for any character ¥ of sufficient ramification at each v in S,
the functions
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L(s, 7% 0) = 1L, s L, 7 @ %) »  Lls, &5, %) = TL,.s L(s, % @ %) ,
are entire, bounded in vertical strips if F is a number field and satisfy
L(s, 75, %)

=cJLcse(s 1 @ 2oy ) L, 5 (85 ooy V)8, Ao vl L(L—s, 7, 27,
where ¢ 1s a constant independent of %. Then ¢ = 1 and the conclusions of
(13.7) and (13.8) apply.

Proof. For veS, let 7, be any irreducible admissible representation of
G, with central character w,. If y is sufficiently ramified at each v € S,

L(s, 7, ® %) = L(s, T, Q 27" = 1
and
(8, Ty Q) Aoy Vo) = &(Sy Ao@ay V)E(S, Loy V)
Then the hypotheses of (13.9.1) are satisfied and our conclusion follows.

14. Applications

We give some applications to division algebra of degree 9 and 3-dimen-
sional representations of the W-group.

THEOREM (14.1). Let H be a division algebra of center F and degree 9, o
an automorphic unitary irreducible representation of HY which is not one-
dimensional. Call @ its central character.

(1) Let S be the finite set of (finite) places v where H does nmot split.
For each v in S, there is a unique unitary irreducible representation ©, of
G, whose central character is w, such that, for all characters y of F,

Lis,7,@%) = L(s, 0, %), L(s,%, Q%) = L(s,6, Q%) ,
(8, T @ Xy V) = (8, 0, @ Ay V) -
Moreover &, is generic.
(2) ForwvegsS, let @, be the representation of G, obtained from o, by
transport of structure (G, = H,*). Then w, is generic.
(3) The representation # = Q «, of G(A) is automorphic cuspidal.
Proof. Let at first «, be, for v €S, any irreducible representation of

central character w,. If y is any character of F/F* highly ramified at
each v € S, we have (cf. (5.1)), for ve S,

L(s, 7, @ %) = L(s,0,@ %,) =1, L(s, T, Q") = L(s, 6, @ 37" = 1
and
8(39 T, ® Ko "/"v) = 8(39 g, ® Xos "/"v) .

From the functional equation for L(s, 0 ® %), we have
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Ls, 7@ = &8, n@NLAL -5, Q1 ,
whenever ¥, is highly ramified for each v € S. We may apply (13.9.1) (with
¢ = 1), and in fact select 7, for v € S, generiec with central character w,, so
that the functional equation above is true for all characters y of F/F*,
both sides being only meromorphic at first.
Since the ¢ and L factors are the same for 7 Q) x and o K ¥ outside S,
we get, by comparing the functional equations for = and o,

Hu,esa’(s, T ® Xws "/fv) = Hwese’(s9 Oy ® Yws “/"w) ’
for all characters y of F;/F~*. Taking ¥, highly ramified for all but one
place v in S, we obtain
e'(8, T ® Ny ) = €'(8, 0, @0, ¥)
for all characters 7 of F',°.

If o, is not one-dimensional, by (4.4) in [17], the right side is a monomial
in¢~°. Hence by (7.5.5), 7, is supercuspidal. Therefore, the relations (14.1.1)
are satisfied in this case, the L-factors being equal to one.

If o, is one-dimensional, then o, = oy, v being the reduced norm and
{ a character of F'*. Let o, be the special representation. Reecall that it is
the generic component of I(G,, B,; 7, 1, 0;) Where 1, = a3*¢, Then

&'(s, 0, {9, ) =TI, €'(s, 7.lm, ) -
But by (5.6.3), (4.7) and (7.11) of [17], the right side is also &'(s, g, R {7, ).
Since o, is generie, comparing with the previous equality, we must have
7, = 0, L. Then, by (4.4) and (7.11) of [17], it follows that

L(s, 7, ®7n) = L(s, 0,® 1) ,
for all characters n of F',*. Hence (14.1.1) is completely established.

Taking x,, for v ¢ S, as in (14.1.2) we may apply (13.6) directly to con-
clude that 7 is automorphic cuspidal.

(14.2) We give an application to Artin-Hecke L-functions. Let W, be
the W-group attached to F' and W, the W-group attached to F',. Let o be
an irreducible unitary representation of W, and call o, the composite of ¢
with the natural homomorphism W, —» W,

THEOREM (14.2). Assume that o is of degree 3 and that, for any
character y of FJ/F >, the function L(s, 0 Q %) is entire, bounded in vertical
strips if F' is a number field. Then:

(1) For each finite place v, there is a unique irreducible unitary re-
presentation w, of central character w, = det g, such that, for any character
nof FJ,



254 H. JACQUET, I. I. PIATETSKI-SHAPIRO AND J. SHALIKA

Lis,7,&@7) = L(s,0,Q7), L(s,% Q%) = L(s,6, ®7)
and
&(s, T, &1, ) = &8, 0, ® 7, ¥) -
Moreover w, is generic. For v infinite, set &, = n(a,) ((10.3)).
(2) The representation # = Q, 7, of G(A) 1s automorphic cuspidal.

Proof. We have to use the following facts.

(14.2.3) If v is finite and o, is irreducible, then L(s,0,) =1. If
o, = det ¢, and Y, %, and ), are quasi-characters of F whose product is
@,, then as soon as 7 is sufficiently ramified,

L(s,0,@M =1, &,0,@7 %) =TI, &6 XL, 4) -
(See [9].)

Given o, a unitary representation of W,, let n(s,), when it exists, be
the unique irreducible representation of G, satisfying the relations of
(14.2.1).

There are a number of cases when the existence is easy to establish.

If o, has the form

(14.2.4) Oy = by D thy D sy ©, = iyl lls,

where /¢, is a character of W, (or F')), we may take for n(g,) the induced

representation I(G,, B,; ft,, the, ). Note that z(c,) is then generiec.
Suppose g, has the form

(14.2.5) o, =7, D,

where 7, is irreducible of degree two, ¢, is a character and w, = g, det z,.
There are a number of cases when the representation of GL(2, F',), denoted
by p, = m,(z,) is known to exist. Reecall that it is generie, its central
character is det 7,, and that, for all characters » of F",

L(s, 0,®7) = L(s, 7, ®7) , L(s, 0.Q7n) = L(s,%,®7) ,
&8, 0, Q N, ¥,) = &8, T, ® 7, v,) -
In that case we may take for n(o,) the generic representation I(G,, P,; 0., £,).
Note that either (14.2.4) or (14.2.5) applies to each infinite place (cf. (10.3)).

If we knew the existence of 7(o,) for all v, the hypotheses of (13.1)
being then automatically satisfied, we could apply (13.6) directly to conclude
that 7 = & 7(0,) is automorphic cuspidal.

In fact we proceed instead as in (14.1). Let S then be any finite set of
finite places such that forv¢ S, 7, = n(0g,) exists. First choose in any way
the representations 7,, ve€ S, with central character w,. Set 7 = &), =,.
Then, whenever ¥y is highly ramified at v in S,
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Ls, 7 ®%) = e, 7 @ NLA — 8, TQ 1) .
Here of course we use (14.2.3). Thus, by (13.9.1), we can choose the =,

anew, for v € S, so that this functional equation is satisfied for all ¥.
As before we obtain

(s, T, ® 9, ¥,) = €'(s, 0, 7, ¥,)
for any v € S, any character » of F*. If o, is irreducible, the right side is
a monomial in ¢~*. Thus 7, is supercuspidal. Since the L-factor for o, or
T, is one, we see that =, = =(g,).

If o, has the form (14.2.4) we already know the existence of 7(a,).
Finally suppose o, has the form (14.2.5). We have, for all characters » of
Fy,

L1 —s,06,817)/Ls,0,@7) = LA — s, t5'07)/L(s, t£.,7) .
The factor L(1 — s, T, ® 7")/L(s, 7, ® 1) differs from this by a unit in
Clq™, ¢°]. Checking the complete list of irreducible representations of G,
shows that 7, is necessarily of the form r, = I(G,; P,, p,, t,) Where p, is a

supercuspidal representation of G,(F',) with central character w,t;'. Thus
0, is unitary and so is 7,. Finally

L(sf Pv®7]) = L(Sv Tv®7]) = L(S) ﬁv@’?) = L(S, %v®7]) =1
for all 7. Hence:

L(s,7,®7) = L(s,0,®7) and L(s, %, ®7) = L(s,5,Q7) .
Thus again 7, = 7(0,).
Indeed 7(o,) exists for all v and we may apply (13.6) to obtain (14.2.2).
The theorem of course applies to monomial representations. More
precisely let K be a separable cubic extension of F. A character p of K
may be regarded as a one-dimensional representation of W,. The theorem
applies then to the representation o of W, induced by p,

0 = I(WFy WK; P) ’

provided ¢ is irreducible. We remark that if K/F is normal ¢ is either ir-
reducible or a direct sum of three one-dimensional representations. If
K/F is not normal it is easy to see that either o is irreducible or a sum of
a character and a monomial representation of degree two.

(14.3) Using the global theory one can derive purely local results.

PROPOSITION (14.3.1). Let F be a local field, H a division algebra of
center F and degree 9, g an irreducible unitary representation of H* of
central character @. Then there is a unique representation © of GL(3, F')
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with central character @ such that
Ls, 7@ = L8, 0 Q%) , LT®Y = L6 Q@) ,

5(37 T ® X "}”‘) = 5(8) 0@ X "/f\)
Sor all characters y of F'*. Moreover = is unitary and square integrable.

Proof. The uniqueness of 7 is clear (7.5.3). If 0 = povthenr = 0,® 7
is square-integrable. If ¢ is not one-dimensional then, by the argument
used in the proof of (14.1), & is supercuspidal and thus, square-integrable.

For the existence we may, after changing notation, assume that the
given local field is F',, where F'is global, and the given local division algebra
is H,, where H is a global division algebra. Wehave an irreducible unitary
representation o, of HY. Let f, be a matrix coefficient of the admissible
representation o, such that f,(e) 0. Extend in any way the central
character w, of o, to a character w of I/F'*. For each v # w, let f, be a
smooth function on H,* which transforms under the center Z, of H, ac-
cording to w, and is compactly supported mod Z,. Let K. be a maximal
compact subgroup of H, chosen as on page 305 of [23]. We assume that, for
almost all v, f, has support in Z,K, and is invariant under K.

Set f(g) = II, f.(9.) and let
o(9) = 22 f(¢g), $eZ(F)\H*(F).
For g in a compact set the series has only finitely many terms. By shrink-
ing the support of f at some place other than w we may assume ¢(e) = f{e).
Thus we may choose f so that ¢ 0. Thus ¢ is a smooth function on
H*(F)\H*(A) transforming under Z(A) according to @ and thus has a non-
zero projection on some irreducible component of L H*(F)\H*(A), ®). It
follows that there is an automorphic representation ¢ of H*(A) whose com-
ponent at w is ¢, and it suffices to apply (14.1). Q.E.D.

ProrosiTION (14.3.2). Let F be a local field, K a separable cubic exten-
sion, 0 a character of K* and o the representation

I(W,, Wg; 0).
Then w(o) exists and is supercuspidal if o is irreducible.

Proof. Suppose first ¢ is not irreducible. If o = g, D o, P p, where
each p; is a character of W, or F'*, then =w(o9) = I(G, B; t, tt, tt;). If
0 = 7P ¢ where ¢t is a character and t a two-dimensional irreducible re-
presentation, then 7 is monomial, the representation () of G,(A) is defined
and 7(0) = I(G, P; n(), ). Assume o is irreducible. Changing notations
we may assume that the given fields are F', and K, where F' and K are
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global, K is a cubic extension of F, w a place of F' which does not split in
K. Moreover we may assume that the given character of K has the form
0, where p is a character of K/K*. Then if

0 = I(WF) WK; p) ’

we see that o, is the given representation of W,. Certainly o is irreducible
and thus by (14.2) the representation n(s,) exists. Q.E.D.
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