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0. Introduction and notations

(0.1) Let F' be an A-field. In [17], it was shown how to attach to any
(unitary) irreducible representation 7 of GL(», F',) an infinite Euler-product
L(s, ), which is absolutely convergent in some right half-space. If =
occurs as a discrete component of the space of cusp-forms or, as we shall
say, is automorphic cuspidal, then L(s, ©) extends to a holomorphic function
of s and satisfies a functional equation:

(0.1.1) L(s, ) = e(s, )L(1 — 8, &)

where 7 is the representation contragredient to . If » =1, then 7 is a
character of the idele-class group F'X/F*, i.e., a “grossencharacter” of the
field F', L(s, ) is nothing but the Dirichlet series attached to 7 times the
appropriate gamma-factor and this result is due to Hecke. If » = 2 and
say F' = Q, then giving # amounts to giving a new form (holomorphic or
“a la Maass”) and L(s, ) is, apart from a translation, the Dirichlet series
attached to that form, times the appropriate factor, so that the result is
again classical.

In general, it is important to keep in mind how L(s, w) is defined in the
first place. The representation being written as an “infinite tensor product”
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n = ® =, where x, is, for each place v, an irreducible representation of
G, = GL(», F,), we have:
(0.1.2) L(s, ) = I1I, L(s, m,) ,

&(s, ) = I1, &(s, woy ¥ »
(see notations below) where the factors L(s, «,) and &(s, «,, 4,) are defined
in terms of the local representation «, (cf . [17]). Thié definition is repeated,
for v non-archimedean in Section 1.

Let us recall also that, for » non-archimedean, L(s, w,) = P,(¢"*)"* where
P,e(C[X] and P,(0) = 1. In particular, if =, contains the trivial represen-
tation of the maximal compact subgroup, which happens for almost all v,
then 7, determines a semi-simple conjugacy class a, in GL(», C) and

P(X)=det(1l —a,X).

For v archimedean, L(s, w,) is a product of gamma-factors. Finally, the
factor &(s, «,, 4r,) is an exponential function of s equal to one for almost all v.

We will not recall the proof given in [17] of the properties of L(s, ).
It suffices to say that it generalizes in a straightforward manner Hecke’s
proof for » = 1.

This being so, it is natural to ask whether the converse theorem is true.
So, assume 7 =2 and let © be a unitary irreducible representation of
GL(r, A) which is trivial on the center of GL(r, F'). Assume that L(s, )
has the above properties. Is w automorphic cuspidal? Except in the most
simple cases, this assumption is not enough. For » = 2, Weil was the first
to propose the correct strengthening of the assumptions; in our language,
we have to assume the above conditions not only for z but also for all the
representations 7 ® % where y is a grossencharacter (see notations (0.5.7)
below). One might say that the given Euler-product L(s, x) is “twisted” by
all grossencharacters . Indeed, if at a place v, %,(a) = |a |, then

L(s,7,®%,) = L(s + t, m,) .
Under those strengthened assumptions (and a simple technical hypothesis),
the representation « is indeed automorphic cuspidal ([23], [43]).

It is the purpose of this paper to show that the same is true for r = 3
(Theorem (13.6)). This result, sufficiently refined, can in fact be used to
construct automorphic forms on the group GL(3). In other words, roughly
speaking, all infinite Euler-products of degree 3 having a suitable analytic
behavior are attached to automorphic representations of GL(3).

We hasten to add that this result cannot be true for » = 4. Indeed, in
order to have a characterization of automorphic representations, one must
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“twist” the given Euler-product L(s, 7) by all automorphic cuspidal repre-
sentations of the groups GL(j) with 1 < j < — 2. This, of course, de-
pends on the theory of the corresponding Euler-products, a theory which
is still in progress.

In order to prove the converse theorem, one needs, first of all, a proof
of the direct theorem which, so to speak, can be “inverted,” in contrast to
the proof given in [17]. This new proof depends on the notion of Mellin
transformation of a cusp-form . For » = 2 this is simply the integral

S a 0 8—1/2,J%

(0.1.3) £ P 01 a2 d>a .

For » = 3, this is the integral
a0 u

(0.1.4) m;o 0 1 vl|lal~"y(—v) dudvi*a,
000

where u, v, € F,/F and a € F'}/F'*. Then one needs to relate integral (0.1.4)
to the Euler-product L(s, ) and this requires some lengthy local prepara-
tions, in fact, a new definition of the local L and ¢ factors (cf. §4). Once
this is done, the converse theorem is easily established.

A detailed description of the contents of the paper follows. Sections 1
to 7 are published in this issue. There, the ground field F' is local non-archi-
medean and the integer r is arbitrary in Sections 1 to 4. In (1.1) we review
the definition of the local L and ¢ factors given in [17] and, in (1.2), add
appropriate remarks of a rather technical nature. In (2.1) we introduce the
notion of “generic representation” and attach to such a representation 7 a
certain space of functions noted W(r;+); this is an essential notion. In
(2.2) to (2.5) we give or recall some technical properties of the funections in
this space. In Section 3 we introduce some integrals which are, in a way,
intermediate between the integrals of Sections 1 and 4; the results (Prop.
(8.1) and Prop. (3.2)) are mere preparation for Section 4 and should not be
taken too seriously. Then comes the crucial Section 4, where a new defini-
tion of L and ¢ is given for generic representations. The main results,
Theorems (4.3) and (4.4), are, for the convenience of the reader, repeated for
r = 3 in Section 7 (Theorem (7.4)). Section 5 is an exceptional section; we
needed a technical result on the e-factor. This result is stated without
proof, and is only used in Sections 13 and 14. A proof appears in [24]. In
Section 6 we are primarily interested in classifying the irreducible repre-
sentations of GL(3, F'). This is a rather technical matter and we had to
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content ourselves, most of the time, with a description of the results
needed, even though the results are not all already in the literature. This
section can be skipped to a large extent. Finally, in Section 7, we complete
our results for » = 3. We show how to attach to every representation,
generic or not, a space W(r; ), and how the results of Section 4 extend to
this space. This is a highly technical refinement which can and should be
ignored at first reading. In (7.5), we give some local results special to » = 3
(and 2). They are interesting in their own right. (7.6) contains a technical
lemma needed for the global theory.

Sections 8 to 11 mimie Sections 1 to 7 for the archimedean case. More
precisely, Section 8 mimics Section 2, Section 9 mimies Seetion 3, Section 10
mimics Section 6 and Section 11 mimies both Sections 4 and 7. Unfortunately,
our results there are not as good as in the non-archimedean case, but they
are sufficient for our purposes. In any case, the reader is advised to restrict
himself to the function field case at first and therefore skip these sections—
especially since no new ideas occur here.

Finally, the global theory is taken up in Sections 12, 18, 14. Section 12
contains preliminary material, namely the convergence of certain “Fourier
series.” It need not be read at first, but should be referred to whenever
necessary. The main theorems are given in Section 13. The principal ideas
are expounded in (13.1) to (13.6), the other numbers containing more technical
material. Here again, the reader is advised to assume at first the ground
field F to be a function field and all representations to be generic. Finally,
applications are given in Section 14. The first application (Theorem (14.1))
is superceded by the more precise results of [10]. The most interesting one
is (14.2): we show how to attach to every cubic extension of the ground
field a family of automorphic representations.

Finally, a word about the organization of this paper. Each section is
divided into subsections such as (1.1), (1.2), --- . In principle, every sub-
section presents a new idea. Generally speaking, theorems are to be re-
garded as more important than propositions and always carry the number
of a subsection. Lemmas are merely auxiliary results.

We now give a list of our most frequently used notations.

(0.2) Local fields. In this paper, we denote by F' a “ground field,”
which, depending on the section may be local or global. If F is local we
denote by 4 or simply + a non-trivial additive character of F. Then the
additive Haar-measure on F, denoted dzx, dy, - - -, is always assumed to be
self-dual. The Haar-measure on the multiplicative group F'*, denoted d*x, is
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normalized in various ways. The topological module of F is denoted Qp O
« and we also write a(x) = |2 | or |2|. Thus d(mz) = |m|de and |z|; = 2Z.

If F' is non-archimedean we denote by ¢, or ¢, v, or v the cardinality
of the residual field and the normalized valuation respectively. Thus
|| = ¢™**. The ring of integers, the group of units, and the maximal ideal
of F' are denoted R;, N3, By or simply R, R*, and P. Often we assume that
the character +, has exponent zero, i.e., that the largest ideal on which P
is trivial is R. We denote by @ a uniformizer for the field F.

If F' is local, we denote by S(F~) the space of Schwartz-Bruhat fune-
tions on F'*. We also denote by S(pxgq, F) the corresponding space on
M(pxq, F) (matrices with p rows and q columns). The Fourier transform
of a function @ of this type is the function ® on the same space defined by

(@) = |owp(erCym)ay .

(In §5 however a different convention is used.) Here again the Haar-
measure is self-dual.

R will denote the multiplicative group of positive real numbers.

If G is an algebraic F-group we often write G instead of G(F').

(0.3) A-fields. If F is an A-field, i.e., a number field or a function field
over a finite field, then we denote by F, or simply A the ring of adéles of
F and by F5 or simply I the group of idéles. If vis a place of F then F,
denotes the corresponding (class of) local field. We then abbreviate
@ry | |y @y o BY @, | |,y @o-++. If x is an idéle, we denote by a.(x) or
a(x) or |x| its module so that a(x) = ], |2.[,. We also write |x], for |z,|,.
We fix a non-trivial character 4 of A/F and denote by +, its local component
at the place v. Thus y(x) = ], ¥.(®,). If x is a quasi-character of F'}, i.e.,
an homomorphism from F’; to C* then we write similarly y(z) = II, x.(2,).
Observe that for us a character has module one.

If G is an F-algebraic group then we denote G(F,) or simply G(A) the
group of points of G with values in F',. We set also:

(0.3.1) G* = G(F)/G(A)

when this does not create confusion. For any place v we write G, = G(F)).
If S is a finite set of places, we set

(0.3.2) Gs=11,.,G. ,
(0.3.3) G°=1I,..G, (restricted product) .

We can apply this to the set of infinite places, that we denote by the symbol
co, Thus
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(0.3.4) G.=]IG, (vinfinite),
(0.3.5) G~ =TI G, (v finite, restricted product) .

(0.4) Linear groups. We denote by G, the general linear group GL(7),
regarded as an algebraic group over the ground field F. We denote by
Z,=GL(1) the center of G,, by B, the subgroup of upper-triangular
matrices, by A, the subgroup of diagonal matrices and by N, the subgroup
of matrices in B, with unit diagonal. In general, by a parabolic subgroup
R of G,, we mean an F-parabolic subgroup. The unipotent radical of R is
denoted U,. If R = G we say that Uy is a horicycle of R. Every parabolic
subgroup is F-conjugate to an (upper) standard parabolic subgroup, i.e., to
one which contains B,. The type of such a parabolic is an s-tuple of integers
(Mg, Ny, + -+, m,) With Zn, = r. In particular we call P, the parabolic of type
(r — 1, 1). It consists of all matrices

(0.4.1) p=<g “) 9eG, ., acG,.
0 a

We let U, be its unipotent radical and P! the subgroup of p € P, for which
a =1. We often drop the index » (equal to 8 in most of the paper) if this
does not create confusion.

Similarly we identify G,_, with the subgroup G’ of pe P, such that
a =1landu = 0. Thenthesubgroups P,_,, P:_, N,_,, B,_,, A,_, are identified
with the subgroups P’, P", N’, B’, A’ of P,.

The diagonal matrix with entries (a, a,, -+, @,) is often denoted
diag (a,, a, -+, a,). We also set

(=1 0 -+ 0
0 oo 0 1 0 0 ...(_1)7-2
0 ... —1 0 .. i
(0.4.2) w = . A O :
. _ . . . 0 0_1...0
(=D --- 00 0 1 0 0

If g is a matrix then g,; is the entry in the i-* row and j-* column. If g is
a square invertible matrix, we also set

(0.4.3) g =49 =(Cg)".
If R is a parabolic subgroup, then we set
(0.4.4) R='R=R'.

Thus if R is standard then R is a lower standard subgroup.

(0.5) Representations of local groups. We shall use various notions of
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representations. The reader must be able to pass unaided from one point
of view to another. In particular if G is a locally compact group and H a
closed subgroup, then every “representation” ¢ of H induces a representa-
tion 7= of G denoted

(0.5.1) n = I(G, H; o) .

Its space consists of functions f on G with values in the space of ¢ and
transforming on the left according to

(0.5.2) S(hg) = o(h)oiF(h)oa(h)™*f(g) .
Here d¢, 0, are the modules of G and H respectively. (Thus if d,g is a left-
Haar measure on G then d,g = d4(g)d.g is a right-Haar measure.)

The precise definition of the space of = depends on the context. In any
case

(0.5.3) (z(h)f)(g) = flgh) .

In general if ¢ is a measure (or more generally a distribution) of compact
support say, and f a function, then we set

(0.5.4) o) f = fft .
Here /¢ is the image of £ under the anti-automorphism g+ g~'. Thus
(0.5.5) ounfta) = | fadpm) .

If ¢ = 9, then we write p(h) for p(5,).
If F' is local, then we select a maximal compact K in the usual way:

(0.5.6) K=0(r,R)if F=R,K=U(r)if F=C, K=GL(r, R) if F=R, C.

Unless otherwise specified K,, denotes the subgroup of k¢ K, k = 1 mod .
Then the Hecke-algebra J(r or JC of the group G,(F) is defined as in [23].
If F is non-archimedean, then admissible representations of the group
G.(F) can be also interpreted as representations of JC. There is something
similar for topological representations of G,(F') when F' is archimedean; at
any rate, in this case, we consider almost exclusively unitary representa-
tions of G,(F'). Of course, even in the non-archimedean case we can con-
sider unitary representations of G,(F); again a unitary irreducible repre-
sentation determines an admissible irreducible representation.

If = is a representation of G,(F") on U, then we can define the repre-
sentation % contragredient to z. If O is the space imaginary conjugate to
0 then 7(g) defines also an operator 7(g) on VO and so we get a representa-
tion T which is said to be conjugate to #. We can also define representations
n', and 7 @ x if X is a quasi-character of F'*, on the same space 0 by:
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(0.5.7) w'(g) = w(g"), * @ A(9) = w(g)x(det g) .
If fis a function on G,(F') we shall also set

(0.5.8) fHg) = fg", f7(9) = flg™), F ® A9) = flg)x(det g) .

If R is a standard parabolic subgroup of type (n,, n,, --+, n,) in G, then
R/Up = M is isomorphic to J] GL(n,). Thus if o, is a representation of
GL(n;, F') on U; we can form a representation o= x g, of M(F') on ®0, and
regard it as a representation of R(F') trivial on U,(F). The representation
of G(F") it induces will be denoted

(0°5'9) I(G(F)’ R(F)s Gy Oy * 2y ar) .

Let 7 be a representation of G,(F). Suppose 7(z), z € Z, is a scalar. Then
there is a quasi-character @ of F* such that

(0.5.10) n(z) = w(z):l if zeF*=Z(F).
We say that w is the ecentral quasi-character of .

(0.6) Representations of global groups. Suppose F' is an A-field. For
each place v of F'let w, be a representationof G,. If v is finite let us assume
that x, is admissible (but perhaps not irreducible) and contains the trivial
representation of K, the standard maximal compact subgroup of G, with
multiplicity one for almost all v. If v is infinite let us assume that z, is
unitary. Then one can form an infinite tensor representation

(0.6.1) T=Q,n,

as in [23]. It can be interpreted as a representation of the global Hecke-
algebra JC which, in a sense, is the tensor product of the local Hecke-
algebras JC, = J(, . If each «, is unitary then one can think of = as being
a unitary representation. Note that all unitary irreducible representations
of G,(A) have the form (0.6.1) where the 7, are unitary irreducible.

Those considerations may be extended to the group G§, where S is a
finite set of places. The corresponding Hecke-algebra is denoted (3, while
I(s is the Hecke-algebra of Gs. When « has the form (0.6.1) we often set

(0.6.2) Ts = Qyes W, (finite tensor product) ,

(0.6.3) T = Ques Ty

which are representations of G, s and G¥ respectively (or JCg and JC*).
Notations and definitions introduced in (0.5.2), (0.5.3), and (0.5.5) extend

to global groups.
We also set

(0.6.4) K=]I K., K*=1],,s K., Ks = I1,., K. .
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Here for each place v, K, denotes the standard maximal compact subgroup
of G,.

1. Local zeta-integrals

In Sections 1 to 7 the ground field F is local, non-archimedean. We first
review the results of [17, Theorem (3.3)] adding the material required for
our present purposes.

(1.1) Let 7 be an admissible irreducible representation of the group
G = GL(r, F') on a complex vector space V. In [L7] we have defined the
representation 7% contragredient to x. It is admissible and operates on a
space 0. On the product O x 0 there is a non-degenerate bilinear form
denoted ¢, which is invariant under G. Every function f of the form

f(g)=(ﬂ(g)v,27>, 7)6"\0,176@6,
is called a matrix coefficient of #. The function f defined by f~(g) = f(g™)
is a matrix coefficient of #. Since the representation #* of G, on U defined
by
©'(g) = n(g")
is actually equivalent to # ([13]) we see that the function f* defined by
fYg) = f(¢g") is a matrix coefficient of 7.
For @ in §(r x r, F') and any matrix coefficient f of &, we set

L.1.1) 2D, s, f) = Sad)(x)f(x) |det z|* d*a .

Then the integral Z(®,s + (r — 1)/2, f ) converges in some half-space
Re(s) > s, and is, as a function of ¢*, a rational fraction of ¢~*. When @
and f vary, these fractions span a fractional ideal of the ring C[q~*, ¢*]. It
admits a unique generator of the form 1/Q(¢™*) with @ e C[X], Q(0) = 1.
All those facts are expressed by saying that the integrals admit 1/Q(¢™*)
for “g.c.d.” The same terminology will be used later for other integrals.
We denote 1/Q(¢™*) by L(s, ), as in [17].

If we replace © by # = n', then we get a factor L(s, #) = L(s, ©*) and a
functional equation

112)  Z(®1—s+ (r — 12, FYLL — s, )
= &(s, T, “#)Z(q)r s+(r — 1)/2, f)/L(S, ) .

Here 4 is a non-trivial additive character and @ is obtained from the
Fourier-transform of (3.3) in [17] by changing x into ‘x; that is,

() = [O@WH{Trw )y -
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This explains the presence of f’ rather than the function /™ of [17].
We also set:

(1.1.3) &s, 7, ) = E& T VLA — 5, 7

L(s, )
(1.2) We shall need the fact that L(s, ) is equal to onme of the integrals
Z(®, s, f). A prioriitisonly a sum of such integrals. This will require
some results for which no convenient reference could be found.

Consider for one moment the following situation. Let G be a topological
group with a fundamental system of neighborhoods of {¢} which are open
compact subgroups. Let H be an open normal subgroup of finite index
such that G/H is abelian. Finally let # be an admissible irreducible repre-
sentation of G on V. Call X, the group of characters ) of G/H such that

T=TQY -
Also let H' bethe intersection of the kernel of the characters ¥ in X,. Then
the following lemma will easily be obtained by the reader:

LEMMA (1.2.1). The representation w|H is a finite direct sum of t ir-
reducible representations o, of H. The commuting algebra of n|H is
identical with the commuting algebra of #|H'. If moreover G/H is cyclic,
this algebra is commutative (i.e., the o, are pairwise inequivalent) and

t =[G: H'].
Coming back to our main course, for any integer d, we let G¢ be:
(1.2.2) G*={geG(F)|v(det g)cZd}.
In particular
G' = GF), G" = {g||det g| =1}, G = G°Z(F) .

We shall apply the previous lemma to the group G = G* and the subgroup
H = G*. A character of G'/H has the form

gr——x(det g),
where J is an unramified character of F'* whose order divides ». On the
other hand, if y is an unramified character such that
TETQL,

where 7 is irreducible and admissible, then the two representations must
agree on the center and therefore y” = 1.

For any integer d, let X, denote the group of unramified characters ¥
of F'* such that ¥ = 1. Then:

LEMMA (1.2.8). Let m be an admissible irreducible representation of
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G(F') on 0. Let d be the integer such that
LeXy =—m =T QY (X unramified) .
Then
V=70V, 0=t=d-—1),
where each V; is invariant under G and irreducible under G° (or equi-
valently G*). Moreover:
V; = 7(a)0,
if v(det @) = 1. Finally the representations of G° on the 0, are imequi-
valent.

Proof. Since X, is cyclie, any subgroup of it is of the form X, with
d|r. SoLemma (1.2.3) is just a reformulation of (1.2.1) in the present case.

Now let ¢ be the representation of G¢on 0,. Then one can also express
(1.2.3) as

r = I(G, G% o).

In particular if we call @, (resp. @) the space spanned by the coefficients of
o (resp. w), we see that the elements of @, may be regarded as functions on
G which vanish outside G¢. Assuch, they are matrix coefficients of #. Now
by the previous lemma every f€ @ can be written as

(1.2.4) flg) = X fuildiga), fi;€Q, 0=i,j<d—1.
Moreover, @, is invariant under right and left translations by G? or G°.
Since U, is irreducible under G°, the space @, is irreducible under G°x G°.
Then:

PROPOSITION (1.2.5). With the above notations,
L(s, ) =1/Q(g™") , QeC[X7],
and given f = 0 in Q,, there 18 ® € S(r X r, F') such that
Z(®,s + (r —1)/2, f) = L(s, ) .
Proof. We recall that the functions fe @, have support in G¢. It fol-
lows that the integrals
Z(®,s+(r —1)/2, f), fe@,,
are fractions in ¢~ and in fact span an ideal I, of the ring
Clg™, ¢"] .
From relation (1.2.4) it follows that, if I is the ideal spanned by the in-
tegrals :
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Z(®,s + (r — 1)/2, f), fe@,
we have
I=1IClqg" ¢ .
Now I, contains 1 and admits a generator of the form
1/R(q*), ReC[X], R0O)=1.

It is also a generator of I, that is, identical to L(s, 7). Therefore there are
fi€ @, and @, such that

3 Z(®y s + (r —1)/2, f)) = L(s, ) .
On the other hand, there are h, ; and k,, in G° such that
fdg) = Ej,z N g (e 59k4)
It suffices to take for ® the function
D(g) = D2, ;.0 M @R gk50)
to get the required results. Q.E.D.

2. Generic representations

In this section, the ground field F' is local and non-archimedean.
(2.1) Let 6 be the character of N(F') defined by

(2.1.1) on) = [Ivni), 1Si<r—1.
If = is any admissible representation of G on a complex vector space 0V, we
denote by “OF or w; the space of linear forms \ on “0 such that
Mz(n)v] = (n)v for veV, neN.
If 7 is irreducible, we say that it is generic if x} is non-trivial. In that

case the dimension of that space is actually one ([13], [34]). Suppose = is

irreducible and generic; select & = 0 in V. We denote by W(x; +) the space
spanned by the functions

(2.1.2) W(g) = M=r(gw], ve0.

Clearly W(x; 4) is invariant on the right under G and the representation
of G on that space equivalent to #. Each W in W(x; +r) satisfies

W(ng) = 6(n)W(g) .
These properties characterize the space W(x; ).

If 7 is irreducible and generic, then the same is true of the representa-
tion % contragredient to #. For the automorphism g wg'w™ transforms
7 into a representation equivalent to 7 ([13]) and, on the other hand, fixes
N and 4. Ina precise way if W is in W(x; ) then the function W defined by
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(2.1.8) W(g) = W(wg

is in the space W(T; ¥)(=TW(x"; v)). If « is irreducible and generic, then
for any quasi-character 3 of F'* the representation = ® x is still generic.
More precisely if W is in W(x; 4) then the function W ) y defined by

W ® x(g9) = W(g)x(det g)
is in Wz Q x; ).
Note that we could replace # by any generic character of N, that is, by
any character of the form

én) = II (@M i), @ #0.
For such a, & has the form
&(n) = 6(ana™)
with some a € A. Inparticular the property of being generic does not depend
on the choice of + although the space W(x; ) does.

Finally observe that for » = 1 the condition of being generic is empty
and all quasi-characters of F'* are “generic representations.” The space
W(x; 4r) consists of all scalar multiples of 7, regarded as a funetion on F'*.

(2.2) The functions in W(x; 4) have a very simple form. Recall that a
finite function on a locally compact abelian group is a continuous function
whose translates span a finite dimensional vector space (cf. [23, § 8]).

PROPOSITION (2.2). Let @ be a gemeric representation of G(F). Then
one can select finite-functions N, on (F*), 1 <1 < t, with the following
property: for any W in W(x; ), there are t functions ¢, in S(F™") such
that:

(2'2'1) W(a) = E,gigt 7\'i(av Ay *° ar—1)¢t<a1v Agy * 0y ar—l)
Jor
(2'2'2) a = diag (a1a2 Oy Ayt Uy vy Ay 1) .

Proof. We begin with some simple remarks on representations. Sup-
pose ¢ is a smooth representation of F'* on a complex vector space “0; sup-
pose that the algebra @ spanned by the operators o(a), with a € F', is finite
dimensional. Then there are a finite set X of finite functions on F* and for
each y € X an element A, of @ such that

o(a) =3, .y X(a)A;, forevery acF*.

The set X depends only on the isomorphism class of @. Moreover every
element of (@ satisfies a polynomial equation. Thus @ is spanned, as a vector
space, by the operators ¢(a), |a| < 1. Next we prove the following lemma:
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LEMMA (2.2.1). Let "0 be a space of smooth functions on the group
H=T1], H, H=F".

Assume 0 invariant under translations. Suppose each ¢ in O vanishes o1
a when |a,| is sufficiently large for each i. Omn the other hand let O, be the
space of ¢ € O which vanish for |a,| small enough and o, the representatior
of H, on 0/0,;. Supposethealgebra @, spanned by the operators o,(a), a € H,
18 finite dimensional for each i. Then there is a finite set X of finite func
tions on H such that every ¢ € O can be written

sa) =3 xa)g(a), ¢, €S(F™), reX.

Proof of Lemma (2.2.1). The assertion is trivial for » = 0; assume
n > 0 and the assertion true for » — 1. We may then apply the above
remarks to the representation o, and obtain the existence of a finite set Y
of finite functions on H,=F'*, and for each 7 € Y an operator A4, belonging
to the linear span of the set {o(d)|be H, = F'*, |b| < 1} so that for any ¢ €V

o) =3, .. Nb)A¢ modV, .
Thus for a given ¢ € © we may find ¢ so small that

¢(av Ayy = v 2y Qpyy bc) = E 77(b) (Av¢)(au Qgy * 2y Qyyy c)

for any b with |b] < 1, any a,’s. From there we conclude at once that given
¢ there are b;’s on F'* and ¢; in S(F') so that

Ay gy * o0y Aoy @) = Eq,j N(0)pH( @)@y gy =+ 2y Qyeyy by)

Now fix be F'*. Let V' be the space of functions a +— ¢(a, b) on the group
H'=TI;- H,.. It is invariant under translations; for 1 <7 <n — 1let U;
and o, be the analogues of U, and o,. If ¢ is in 7, then the function
a > ¢(a, b) on H' is in ;. Thus o7 is a quotient of ¢,. Therefore the space
UV’ satisfies the assumptions of the lemma; applying the induction hypo-
thesis we find a set X’ of finite functions on H’'. But that set depends only
on the equivalence classes of the ¢; thus also of the o,; in particular it may
be chosen independently of b. The lemma follows then at once.

Going back to the proof of (2.2) we let P, be the standard parabolic
subgroup of type (4, — 1), V; its unipotent radical. We shall apply the

lemma with n =+ — 1, the group H being identified with the group of
matrices of the form

diag (axaz et Uy Ay ot Ay 20y Ay 1) .

Then H, is contained in the center of P,. Let W, be the space spanned by
the vectors w(u)W — W with we V,. By [7, (3.3.1)] or [2, (8.14)] the repre-
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sentation 7, of H, on W(r; )/ W, satisfies the above condition. Now let O
be the space spanned by the restrictions of the functions in W(x; ) to H.
Introduce, as in the lemma, U, and o,. If W is in W, its restriction is in
;. Thus o, is a quotent of z; and all the assumptions of Lemma (2.2.1) are
satisfied. This concludes the proof of (2.2).

Remark (2.2.5). Later (see after 7.2) we shall encounter the following
situation. Let @ be a space of functions W on G, smooth on the right and
satisfying

W(ng) = 0(n)W(g) (meN).

Suppose W is stable by right translations. Let 7 denote the corresponding
smooth representation of G. Suppose « is finitely generated and admissible.

Then with W replacing “W(x; 4») the conclusion of Proposition (2.2) is still
valid.

(2.3) Finally it will be necessary to obtain a majorization of the elements
of W(rx; ) in a form suitable for the global theory. We define a gauge on
G(F') to be a function ¢ invariant on the left under N(F'), on the right under
K and which on A(F') has the form:

(2.3.1) &a) = laya, « - a, | 7'P(ay, @y -0y apy)
if
(2.3.2) a = diag (a0, -+ a,, 0y *++ @y + -+, @, 0, Q) ,

where £ is real = 0 and ¢ = 0 is a Schwartz-Bruhat function on F*'. In
particular & is invariant under Z(F'). We prove a few elementary pro-
perties of gauges:

LEMMA (2.8.8). Let & be the gauge defined by (2.3.1). If t' > tisanother
number, there is ¢' € S(F"') such that the gauge &', defined by (2.3.1) with
t' and ¢’ instead of t and o, majorizes &.

This is clear.
LEMMA (2.8.4). The sum of two gauges s majorized by a gauge.
This follows from (2.3.3).

LEMMA (2.3.5). If Q is a compact subset of G(F') and & a gauge, there
s a gauge & such that

§gw) = €'(9) ,
for g in G(F) and w in Q.

Proof. Write the Iwasawa decompositions of g and gw:
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g = nak, go = n'a'k' .
Then (a)7'(n')'na‘(a’)'a ¢ KQ'K. Since A(F)N(F') is closed in G and
topologically isomorphic to A(F')x N(F'), it follows that a(a')™ is restricted
to a compact subset of A(F').
Write

a = diag(a,a, *+- @,y Qy ** Q,y *++, a,), ' = ab
and

b = diag(bb, ++- b,, by +-- b, -+, b,) .
Then

&gw) = &a') = |abazb, - -+ a,_b,_ | "é(a,b,, aby <+, a,_b,_,) .
Since the b,’s vary in a compact set, this is majorized by
la.a@; -+« @, | 70 (ay, @y v 0y @)

with a suitable ¢' = 0 in S(F' ") and we are done.

From (2.2) and (2.3.3) we have

PROPOSITION (2.3.6). Let & be a generic representation of G.(F) and w
its central quasi-character. Let |@w| = a'. Then for any W € W(w; ) there
18 a gauge & such that

lW®a-t/rl é& .

(2.4) As usual more information is needed in the unramified situation.
Assume +r has exponent zero—i.e., the largest ideal on which 4 is trivial is
R. Suppose © is a generic irreducible representation which contains the
trivial representation of K = GL(r, R) (necessarily with multiplicity one).
Then there is an r-tuple of unramified quasi-characters g, of F'* such that
7 is a component of the induced representation:

T = I(G: B; Ly Loy <02y #r) .
In general if the g, are unramified then there is exactly one irreducible
component of 7’ which contains the trivial representation of K. We denote
this representation by 7(g, o, <, t4).

Thus the given 7 has the form w(g,, tt,, ---, £t.). Note that the central
quasi-character w of 7 is g, <+ - ..

Clearly the space of K-fixed vectors in W(x; ¥) has dimension one. In
[35], it is proved that if W is in that space then W(e) = 0. Let W, be the
element of that space such that W(e) = 1. From [35], we have an explicit
formula for W,. Let a = diag(®™, @™, ---, @™). Then W(a) = 0 unless
m,=m,= -+ =m,. If on the contrary m,=m,= --- =m, then let p, be the
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rational representation of GL,(C) whose highest weight is
diag (@, ay * -+, @,) — al(@,0,)™ + - - (0,0, - -+ @)™ .
Then

Wya) = 65%(a)Tr 0,(C) where C = diag(p,(®), t(®), « -+, pA@)) .

Suppose now that || = 1 and that m, = 0. Write ¢, = &’* and suppose
—8, = Re(s;) < s,. Then p, is a subrepresentation of ®"o, where p, is the
standard representation of GL,(C). Here n = m, + m,+ +++ +m,_,. It fol-
lows that every weight » of p, has the form

N(E) =t - 677 with Zm, =n if ¢ =diag(t, t, -+, t,) .
Thus
I7(C)| = ¢°" = |deta|™.
On the other hand deg o, < »". Thus if ¢ = r we get deg p, < |det | and
|Wy(a)| < 645%a) |det a| ™" .

From this we obtain:

PROPOSITION (2.4.1). Suppose F' is such that q =r. Suppose that the
central quasi-character of = has module one and that, with the above nota-
tions, —s, < Re(s;) <8, (1 <1 < 7). Let ® be the characteristic function of
Rt in Fr*. Then there is t > 0 which depends on s, but not on F nor w
such that the gauge (2.8.1) majorizes W,.

(2.5) Finally recall the following result of [13, (5.2)]: if ¢ is any func-
tion on P!, transforming on the left according to 6, smooth and of compact
support mod N, for any non-zero P-invariant subspace 0 of W(x; +), there
is W e 0 such that W|P' = 4. In fact this is true under the assumptions
of (2.2.5).

3. Some auxiliary integrals
Again F'is local and non-archimedean.
(8.1) If m is irreducible generic, we may regard the elements of “W(r; +)

as “generalized” matrix coefficients. Thus it is natural to introduce the
integrals

Z(®, s, W) = S(I)(x) W(x)|det 2 |'de .

PROPOSITION (3.1). Assume © is irreducible generic.
(1) The integrals Z(®, s + (r — 1)/2, W) admit L(s, ©) for “g.c.d.”
(2) They satisfy the functional equation:
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Z(®', 1—s+(r—1)/2, W)/L(1—s, ®)=¢(s, &, ) Z(®, s+(r—1)/2, W)/L(s, ) ,
where ®'(g) = D(wg).

Proof. Replacing W by a gauge (cf. (2.3.6)), we see that the integrals
converge in some half-space. For a given ® there is a compact open sub-
group Q of G such that O(wx) = ®(x) for w € Q.

With dw normalized, the linear form

Wi SQ W(w)dw

on “W(r; 4r) is smooth and thus belongs to the space of the representation
contragredient to . It follows that the function f defined by

(3.1.3) fo) = | Wwgdo

is a matrix-coefficient of 7, in the usual sense. For Re(s) sufficiently large
it is clear that

Z®, 3, W) = | W(g) | det g a9 @(@g)de
= |do {@@o) W(o)ldet gag
= {do [0 W@tg) det gag

(g) [det g 'd*g| W(wg)do ,
so that
(3.1.4) Z(®,8, W)= Z(D,s, f).
It follows that the integrals

Z(®,s + (r —1)/2, W)

span an ideal of C[g~*, ¢°] which is contained in C[q~*, ¢*]L(s, #). To complete
the proof of the first assertion we shall use the following lemma:

LEMMA (3.1.5). Notations being as in (1.2.3), suppose w generic. Let
W, be the space of W’s in W(w; ) such that W vanishes outside G°. Then
W, s 1rreducible under G° and if v(deta) =1,

W(m; y) = Br(@)W,, O=i=d—1).

Proof. If W isin W(w; ) and 7 is a character of F'*, then W ® 7 is in
W @ N; ). If moreover 7 is in X,;, then W Q) 7 is in W(x; 4). So the sum

E W ® 7] ’ (77 € Xd)
is still in W(x; 4). It vanishes outside G* but not on G? if W(e) = 0. Hence
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W, is a non-zero G’-invariant subspace such that
W, v) = Pr@dHW, 0=i1sd—-1).
By (1.2.3), ‘W, must be irreducible under G¢ and G°. Q.E.D.

The lemma being proved, select W e W, with W(e) = 0. Let also Q be a
compact open subgroup which fixes W. Then the function f defined by
(8.1.3) is actually in @, (notations of (1.2.5)). Since f(e) = W(e)+ 0 it is
non-zero. By (1.2.5) there is a @ in S(r X r) so that

Z(®, s + (r — 1)/2, f) = L(s, «) .
We may assume that ®(wg) = ®(g) for w € Q. Then from (3.1.4) we get
Z(®, s + (r — 1)/2, W) = L(s, ),

which concludes the proof of the first assertion of (3.1).
For the second assertion we let Q, ®, W, and f be as before. Then

O (w'g) = D(g) for weQ,

and
fi9) = | Wiwgpe .
Thus we get
[0 (W) det glarg = 2@, 5, £

Changing ¢ to wg we get on the left
Z(', s, W)
and now we apply (1.1.2). Q.E.D.

(3.2). In the unramified situation, we have the following supplemen-
tary information:

PROPOSITION (3.2). Let + have exponent zero and w contain the trivial
representation of K. Let W, be as in (2.4.1). Call ®, the characteristic
function of M(r xr, R). Then:

Z(®,, 8 + (r — 1)/2, W,) = L(s, @) ,
the Haar-measure on G being normalized by the condition that meas(K) be
one.

Proof. If we take in (8.1.3) W = W,and Q = K, the corresponding
function f is bi-invariant under K and f(¢) = 1. Thus it is the spherical
function attached to 7 and our assertion follows from (3.1.4) and [17, Pro-
position (6.1.2)]. Q.E.D.
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4. A new definition of ¢ and L
Here again the ground field F'is a p-field.

(4.1) Let 7 be a generic representation of G. By Section 3, we may
define L(s, 7) as the g.c.d. of the rational functions
Z(®,8 + (r — 1)/2, W), ®eS(rxr, F), WeW(x; ) .

The factor L(s, #) will also be the g.c.d. of other integrals which we now
introduce.

For WeW(x; ), 057 < r — 2, set
a0 0
(4.1.1) W, W;j) = SSW (x 1,0 ) laj*~ " d*adx (a€F*, xecFY),
001, ;.

For j = 0, this is, by an obvious convention,

a0
(4.1.9) (s, W;0) = | W[(O X ﬂlal’""‘”“d*a .
Furthermore, for 0 < j <7 — 3 and @ in S(F'), we define

(4.1.8) W(s, W; 4, ®)
[fa 0 00
1,00
= SSW v la|* = d* adx®D(y)dy (aeF*,xeFi,yecF).
y010
0001,,,
From (2.2), it is clear that (4.1.2) converges for Re(s) large and repre-
sents a rational funetion in ¢—* whose denominator can be taken independent
of W. Thus the fractions (4.1.2) form a fractional ideal of C[¢™* ¢*]. By

(25), it contains the constants and thus admits a unique generator of the
form Q7'(¢7*), Q e C[X], Q(0) = 1.

PROPOSITION (4.1.4). For a given j, the integrals (4.1.1) and (4.1.3) also
admit @ q™*) for a “g.c.d.”

Proof. We shall use the following lemma repeatedly:

LEMMA (4.1.5). Let H be a function on G, smooth on the right, and
satisfying

H(ng) = 6(n)H(g), (neN,geG).
Then the support of the function
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a 0 0
c— Hllz 1, 0) (xe F7%)
00 1

18 contained in a compact set independent of ac F*. For 1< j<r — 2
and © in S(F'), set

1 0 2z O
0 1, 0 0
H :SH d O (—2)dz .
(9) 9o 0 1 o0 (—2)dz
000 1,_,,
Then
a0 00 |\ a0 00
b 1,.,0 0 b 1..,00
H i~ d :SH i da .
L P v 0 10 |0
00 01,,, 00 01,,,
10 O
Proof. Lett' = diag(a, 1, ---, 1) andﬁ=<x 1,.,0). Write 7 = ntk
00 1

according to the Iwasawa decomposition. From the assumptions on H, if
H(t'n) = 6(t'n(t")")H({'tk) # 0, t = diag (¢, ts -+, t,—y, 1), there is a constant
¢ so that |t.t;Y <e¢, ---, [t,_,] < c. Sincet'n™'n € K, we find ¢;, ---, t;1, € R.
Hence t,, + -+, t,_, vary in a compact set in F'*. Since |det t| =1, ¢, also does.
Hence ¢ varies in a compact set independent of a. Thus n~'# has bounded
entries. It follows that %, and thus #, varies in a compact set independent
of ac F'*.

Thus in the second assertion, the left hand side is convergent and
equal to

S da Sdztf)(—z)H[huh‘lh] ,

where
a0 00 AL 0 2z 0
hzbl,-_loo u:OIjOO
x0 10 ’ 0010
00 01, ,, 0001,

But then huh™ is in N and 6(huh™) = 4r(zx). Thus our assertion follows
from the Fourier inversion formula.

This being so, the first part of the lemma shows that (4.1.1) and (4.1.3)
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are really finite sums of integrals (4.1.2) where W is replaced by suitable
translates. It easily follows that (4.1.1) and (4.1.8) admit a g.c.d.
The proposition will be proved as soon as we have the following in-
clusions of ideals of C[¢g™, ¢*], for 1< j < » — 2:
[W(s, W; D] < [T, W; 5 — 1, D)]

c W, W5 — D] <[, W; 5 — 1, D)]

S [, W5 )] .
By the first part of (4.1.5), given W, we may choose for ® the characteristic
function @,, of some fractional ideal ™ so that

W, W;3) =¥, W; 5 —1,0,).
Hence the first inclusion. Since W is smooth, we have the second. For the
third, we note again since W is smooth, that
Vs, W, 3 —1) =¥, W;5 — 1, ®,)[vol P]*

for m sufficiently large. Finally, we apply the lemma to H = W. Then
H'=W"'is in W(z; y) and ¥(s, W;5 — 1, ®) = ¥(s, W'; 7). The last in-
clusion and Proposition (4.1.4) follow.

(4.2) We remark the following. Suppose W® is a space of functions
satisfying the conditions of Remark (2.2.5). Then with W@ replacing W(x; +)
the conclusions of (4.1.4) hold (ef. (7.2)). Similarly the following theorem is
also true, the factor L(s, 7) being replaced by the “g.c.d.” of the integrals
Z(®, s + (r — 1)/2, W).

THEOREM (4.3). The integrals (4.1.1) and (4.1.8) admit L(s, ) for their
g.c.d.

We introduce first certain complex measures which play a role in what
follows.
For ®ecSnxn, F),u € F, Uy, ¥y, +++, U,, v, € F, ke K, set
Oo(Uy Uy Vsy * 22y Uyy V5 K)
U Xy o Ty

u . \
= Sd) ’. . E lyx,+-+v,2,_,,)Qdr;, .

r—1,r
U,
6, depends only on the class of k¥ modulo some open compact subgroup and
is, for each k, a Schwartz-Bruhat function of (u, u, v,, -+, u,, v,). We
denote by K, the partial co-Fourier-transform:

Oo(Uy Uy Vyy ===y Uy V,3 k) = qua(x, Ugy Vay ** 2y Uy V,5 K)Y(u)da .
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Then K, is a function of the same type. We then define a complex measure
©¢ on SL(r, F) by

[Fdo.m

= SF diag(a, -+ a, L,--, 07O 1 diag@, ay -+, a)l
. .
Kov, 0 a5, -+, a,, ;5 ) @ |a, [ d*a,dvdk .
Here k ranges over K* = SL(r, R).
Clearly o, has compact support. We will use the following lemma:

LEMMA (4.3.1). Let O be the space of all functions H on G, smooth on
the right, satisfying

H(ng) = 6(n)H(g) (neN, geG)
and such that for all ® in S(n xXn, F) the integral

|E@0)dg

18 convergent. Then given ® there is a compactly supported measure ply on
SL(», F') such that

“H[diag(a, 1, -+, DA] |~ d"adpta(h)

18 convergent and equal to the above integral, for all H e 0.

Proof. Note that O is stable by right translations. By Iwasawa, the
first integral is

@, Ty e Ty,
(4.3.2) S(H-CI)) @ b |® ladda, @ dudk .

. .
Here k varies in K'. Since H and ® are smooth on the right, we find, by

Fubini, that the analogous integral over B is also convergent. Taking a
suitable ®, we find that the integral

(4.3.3) SH[diag (a,1, «--, l)h] la|~vdxq

is convergent for all h e G.
By the hypotheses on H, we may write (4.8.2) as the absolutely con-
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vergent integral
SH[diag (au Ay *° ar)k]adb(au 125 a;]y cecy Ay, a:l; k) ®lai l—(r-—i)dxaidk ’
i=1

which we may accordingly rewrite as the iterated integral

[ 1 v
Vv | Hldiag@, 1,0 1 diag(t, @ oo 0
(F*) xKLJF .
1
Ko(v, @, a3, <+, a,, a7 B)dv @ lad~"~"d"a.dk .

Since K, is a Schwartz-Bruhat function and H is smooth on the right, this
integral is dominated by a finite sum of integrals of the form (4.3.3). Hence
we may change a, to a,(a, --- a,)”! to find

SH[diag (@, 1, -+, DE]|al"""d*adps(h) -

Thus in fact we may take o, = ps.
For m = 1, let K,, be the subgroup of k< K', congruent to 1 mod .

LEMMA (4.3.4). Suppose the exponent to + is zero. Then we can choose
D e S(rxr, F) so that (4.3.1) is true with M, equal to the normalized Haar-
measure of K,,.

Proof. Let S be the set of » X  matrices (x;) such that x,, e B, x;; €
1+ %P forj=2 2,;eR fori< g, x,;€P" for 1 > j. Of course S is right
invariant under K,.. We take for @ the characteristic function of S. Clear-
ly ®ed(rxr, F).

We also make a simple remark. Let A be any commutative ring. Let
e, €, *++, ¢, be the canonical basis of C = A" (column vectors). In each
module AC,1<j <7 —1, we have the natural basis e, A e,A --- Ney;
(b, < k, <++-<k;) ordered lexicographically. Then the upper triangular
matrices ¢ in GL(r, A) are characterized by the fact that each matrix At
has a last row of the form (0, 0, -- -, a) with a € A*.

Now we claim that be B, ke K, bk = se S imply that ke (BN K)K,.
Let R be the last row of K. Then b,, R has integral entries. The elements
of R being relatively prime, we see that b,, is integral. Since s,, is a unit,
in fact so is b,,. It then follows that k, is in P~ for1 <1 <r — 1. We
contend that for =2, the last row of A”~#*!(s) has the form (0,0, - -,a) mod ™
with a a unit. Letcbethe coefficientof e; A e;,, A -+ - - Ae,inse, Ase, A - - - Asey,
where k, <k,<---<k,and l =7» — j + 1. Then ¢ has the form
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c=>,. E8niirky* Sati kg *** Sxiriky »
where 7 runs over the permutations of {j,  + 1, ---, »}. Since w(n) #1,
the elements 8.y, Szi41ky ** s 8z, are integral. Moreover the correspond-
ing contribution to ¢ is in P, unless z(j) <k, n(f + 1)< ks, - -+, w(r) < k.
But then we must have j =k, 5 + 1=k, -+, r = k; and 7 is trivial. Our
contention follows.

As above, it follows that the last row of A"9*(k)(j = 2) has the same

form. By the remark, K is upper triangular mod ™ or equivalently is in
(BN K)K,,.
Now let H € V¥ and ® be the characteristic funetion of S. Then

S H(g)®(g)d*g = SSBXKH(bk)CI)(bk)d,bdk

ngBﬂKme

H(bb,k)D(bb,k)d,bdb,dk = S . H(bk)D(bk)d,bdk ,
BXK,,

since in fact the left Haar-measure of B is B K-invariant on the right.
This is also

chI)(b)d,b SK Hbk)dk .
Let f(b) = SK H(bk)dk. Then as before,
FOLIO

= Sf[diag (@ @y * =+, @)]0s(ay, a5 a5ty -+, a,, a7’ &) @ |a;| """ d*a, .
But here we find that, for an appropriate normalization of measures,
Oo(Uy Uy Vg =+, Uy, V,5€) =1

ifueP™ u,el + P, v, €N, and is zero otherwise. Thus our integral is,
up to a non-zero constant,

SB“"‘ f[dlag (ay 1) ) 1)] Ial_"‘“dxa .

Since the support of f[diag(a, 1, ---, 1)] is actually contained in P, we
can write this as

S _ H[diag (a, 1, -~ -, Dk]ja|"""d*adk ,
FXXEKp

and we are done.

We pass to the proof of (4.3). We may assume the exponent of 4 is
zero. L(s, ) is the g.c.d. of the integrals
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[W@)00) det glr+-axg = 2(@, s + (r = D2, W)
(W eW(m; v), ®eSrxr, F)).
If we apply Lemma (4.3.1) to
H(g) = W(g)|det g[**" /"
(for Re(s) large), we get that
Z(®, s+ (r —1)/2,8 W) ="¥s, W;0)
where W'(g) = XW(gh)d;zq,(h). Thus L(s, =) belongs to [@*(¢™")]. By (4.3.4),

we can choose @ so that g, is the Haar measure of K,,. Then for appropriate
m, W' = W. Thus Q (¢g”*) belongs to [L(s, =)] and we are done.

(4.4). We will now prove an analogous result for the e-factor. By (3.1),
we have

@41) Z(@,1—s+ @ —1)2, W) =¢(s, 7, NZ(®, s+ (r —1)2, W).
We may accordingly take this as a definition of €'(s, 7, 4»). Note that if we
assume (4.4.1) for the space W of Remark (4.2), the factor &’ being replaced
by the appropriate factor, then the following theorem is truein this greater
generality (cf. (7.3)).

Note that in Theorem (4.5) m(w’)W stands for the right translate of
W: z(w")W(h) = W(hw'). It will be interpreted in a similar way in the
situation of Remark (4.2).

THEOREM (4.5). Suppose j +k=7r —2,5=0,k=0. Then

V(1 — s, (T(W)W)™; k) = €(s, @, ¥)¥(s, W; J) .
Suppose j <r — 2 and ® is in S(F'); then
Y — s, (rW)W); k — 1, @) = &'(s, T, v)v(s, W54, @),

where ®'(u) = <i>[(—1)"+"1u].

We shall use the following lemmas.

LEMMA (4.5.1). Let ® belong to S(rx »; F'). Then, for all h € SL(», F'),

a 0
. 0 ] ]
S@[n‘w“ (g . >ﬂ\ d(m)dnda = Scp n(x 1, o) Wk |Gm)dndads ,
r—1 - 0 0 1

both integrals absolutely convergent.

Proof. Clearly the integrals are convergent. Since the Fourier trans-
form interchanges h and h', we may assume that » = (w’)™'. In that case
w'h' = e. Recall that w and w’ have been defined in (0.4.2). Thus:
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fa 0 ,_1_< 0 —1,_1>
v <0 1> @ =\ e 0 )

After a simple change of variables, the formula reads

{0 —1 0 «- 0 7
0 =z, -1 e+ 0

@0 @0 s Tl 0 M g =0, | @ des @ da
. 9
Lla Lyr Lor o Ly [
Ty Xy Tyy vt Wy B
& 1 Xz *o*  Xop
= ol & 0 1 D e — g =0 Jd0®dE @ das
§.0 0 ol
Lo 0 0 ..o 1 .

This in fact follows directly from the Fourier inversion formula.

LEMMA (4.5.2). With the notations of (4.3.1), for each ® in S(rxr, F),
there is a compactly supported (complex) measure vy on SL(r, F') such that,
for any H in 0,

SH(g)di‘(wg)ng = SSH[diag (@, 1, ---Di]|a|""""d" advs(h) .

In addition, for any H in 0,

0 0
I

(4.5.3) 00 1
Ay ol

all integrals being absolutely convergent. Here the measure o 18 any
measure satisfying the condition of (4.3.1).

Proof. Indeed if ®"(g) = $(wg), we may take v, = tty.. Then conver-
gence of the left side of (4.5.3) follows from (4.1.5) and (4.3.1); similarly
for the right side. Hence by applying the dominated convergence theorem,
we may assume in proving (4.5.8) that H has compact support mod N. Then
H can be represented by an integral



196 AUTOMORPHIC FORMS ON GL(3) I

(4.5.4) H(g) = |det gl'gd)l(ng)ﬁ(n)dn

with @, in C2(G).
We note that for ® and @, in §(» X r, F') the double integral

S Sclh(ng)@(g) |det g["d*gdn

is convergent. In fact, taking ®, = 0, ® = 0 and using the Iwasawa decom-
position, this follows easily. Thus we might as well take @, in §(» x r, F'),
define an element of O by (4.5.4) and establish (4.5.3) for that funection.

On the right side of (4.5.3) we have

[E@dwaag = |dgdwe)|omgiman = (Fnin|dwoomady
or, by Fourier inversion,
= {omin| @)d, w9y = (00K (@9 ,
where
(4.5.5) K(g) = |det gl'still(n‘w‘lg)ﬁ(n)dn .
K is again in 0. Thus choosing f; as in (4.3.1), the previous integral is
SK[diag(a, 1, -+, Di]lal " d*adpto(h) ,

or, by Lemma 4.5.1,

a 0 O
SH{(ac 1., O)u)’h’}]al“"““dxadacdp@(h) .
00 1

The identity (4.5.3) follows.
We pass to the proof of (4.5). We remark that (z(w") W)~(g) = W(gw').
Set again @"(g) = ®(wg). Choose Re(s) so small that the integral

Z(@",1—s+ @ -2, W)= SVT’(g)@(wgndet gl

is convergent. By Lemma (4.5.2) applied to H(g) = W(g)|det g|*—**+r—1/2,

this is
- 0
“ 1% |:<a ) h}laI‘”‘“"“””dxadv@(h)

0 1.,
a 0 O

=SSSW (x 1., O)w'h’ a1 ad pro(h)das
00 1
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On the other hand if we choose Re(s) so large that the integral
Z((I), s+ (r —1)/2, W) = SW(g)(I)(g) Idet gt vrdxg

is convergent, we obtain by (4.3.1),

a O

Z(0, s + (r — /2, W) = “W [(0 1

)h }Ia]“"“’"”“dxady@(h) .
-1
Finally suppose W (and hence W) is K,-invariant (m = 1). Choosing ® and
Ue as in (4.8.4), we arrive at
Z(®, s + (r — 1)/2, W) = ¥(s, W;0)
and similarly
Z(@",1 — s + (r — 1)/2, W) =1 — s, (W) r — 2) .

Thus for 7 = 0 the first assertion of (4.5) follows from (3.1).
Assume it is true for j, where 0 < j <7 — 2. Then, if ® is in S(F'),
we can write

\I,(S’ w; j, q)) = \P(S’ W’; j) ’
where W' is the element of “W(x; 4) defined by

10 0 0
01, 0 0

wo =\ Wlal, o 10 |e@dy.
00 0 1,,,

By hypothesis, we have then
W(s, W; g, ©'(s, @, ¥) = V(1 — s, (a(w)W'); k) .

The last integral reads

a 0 O
[lap=s=r=a-a {owy- (ac L 0 )w dz .
0 O 1r—k—-1

The inner integral however is

e 0 0 1 0 —y O
“W (ac 1, O )w' 01, 00 O(y)dydax
0 0 10
00 el 0 0 L,
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1 0 (—=Ly+'y 0
|fe 00 0L 0 0
=SSW (x 1, 0 )0 0 1 0 w' [ O(y)dydx .
00 Lolly o o Lo
Since W(ng) = 0(n)W(g), ne N, g € G,, this is (see (4.1.5)),
a 0 00
_ilz 1., 0 0 .
SW o 10 |wB((-vFu)duds
00 0 1,,,

Thus if ®'(w) = O((—1)7*""'u), we obtain

V(1 — s, (zwW')5 k) =¥ — s, (W) k — 1, @),
and

W(s, W; 3, ®)'(s, w, ¥) = ¥(1 — s, (r(wW')" b — 1, @) .
Now let ® be the characteristic function of ™ with m so large that
(s, W; 4, ®) =¥(s, W7 +1).

@’ is the characteristic function of PB™ times (vol B™). If m is large,
(m(w")W)~ is invariant by K,,. Hence, for such m, we find

Y1 — s, ()W) bk —1, @) =¥(1 —s, (z(w)W);5 k —1).
Combining, we obtain
(s, Wi 5 + (s, w, 4) = ¥l — s, (a(w)W)5 bk —1).
This is the first assertion of (4.5) for j +1,0< 7 <r — 2. Hence by

induction that assertion is true for all j,0 < j <+ — 1. The second asser-
tion follows from the proof.

(4.6). In the unramified situation, we have the following supplementary
information:

PROPOSITION (4.6). Let the motations be as in (3.2) and let ®, be the
characteristic function of R in F. Then:

‘I’(S, Wo; .7) = \I’(s’ Wo; j9 q)x) = L(S, 77) .

Proof. If ® = @, (notations of (3.2)), then p, is the normalized Haar-
measure on the group SL(3, R). Then:

Z((I)o, 8, Wo) = ¥(s, Wo; 0)

and the assertion for ¥(s, W,; 0) follows directly from (3.2). The functional
equation (4.5) implies then the assertion for ¥(s, W, r — 2). We leave the
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remaining assertions to the reader.

5. Complements on ““Local zeta-functions’’: the e-factor

(5.1) In this section the ground field F' is a p-field. We let H be a
simple algebra of dimension 7* over F. We denote by v the reduced norm
of H. If zisanirreducible admissible representation of H*, the multiplica-
tive group of H, the factors L(s, w) and &(s, «, 4) have been defined in [17],
just as in the case H = M(» X r, F') recalled in Section 1. If ¥ is a quasi-
character of F'*, we denote, just as before, by 7= ¥ % the representation

g — w(g)x(¥(g)). For the applications we have in mind (cf. § 14) the follow-
ing result is essential:

PRrROPOSITION (5.1). Suppose 7 is an irreducible admissible representa-
tion of H* whose central quasi-character is ®w. Lety,l1<i1=r, be r
quasi-characters of F* whose product is w. If k is a sufficiently large
integer and ¥ a quasi-character of F'* of conductor P} then

(5.1.1) Ls,7r®y) =1,
(5.1.2) &8, TRY ¥) = HlSiSr (s, AXir V) -
A proof is given in [25]. We simply observe here that in view of (3.5)

in [17], it suffices to prove the proposition when 7 is supercuspidal. Then
L(s, #) = 1 unless H is a division algebra and 7 has the form

(5.1.3) m(g) = |v(9)|" .

Thus the assertion about the L-factor is clear. The assertion about the
e-factor is similar to some well known assertions on Gauss-sums; the proof
is also similar.

6. Problems of classification

In this section, the ground field F is again a p-field. We shall be
primarily interested in classifying the irreducible admissible representations
of GL(3, F'). We first state without proof some general results having a
bearing on classification; they are or will soon be in the literature.

(6.1) In (6.1) and (6.2) the integer » is arbitrary. We need some results
on induced representations.

PROPOSITION (6.1.1). Let R be a standard parabolic subgroup of
G = GL(r, F). Identify R/Uy with the group M = I],..., M, where M,=
GL(r,). Let o, be an irreducible admissible representation of M, 1=i=k)
and

&= I(G’ R; Oy ** %y O'k) .
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Then if & admits a generic irreducible component, each o, is generic. Con-
versely, if each o, is generic, then in any composition series for & there is
exactly one irreducible quotient which is generic.

There is an analogous result in the context of unitary representations.
Indeed by Mackey’s theory the representation of P!,

Tz = I(P*, N; 0),

is irreducible unitary. We shall say that an irreducible unitary representa-
tion 7 of GL(r, F') is strongly generic if w|P' is equivalent to 7.

PROPOSITION (6.1.2). With the notation of (6.1.1), let the o, be irreduc-
1ble and strongly generic representations. Let & be the unitarily induced
representation. Then & is irreducible and strongly generic.

For proofs and detailed discussions we refer, for instance, to [18]. For
example, if 7 is irreducible unitary and square-integrable mod Z, then x is
strongly generic (loc. cit.). Note that this applies trivially to » = 1, that is
to all characters of FF*. We may then apply (6.1.2) when the o, are unitary
and square-integrable mod Z,,. The irreducible induced representations we
obtain are by definition the tempered representations. They are strongly
generic. The essentially tempered representations are those of the form
7w Q ¢ where 7 is tempered and # a quasi-character.

The relation between the notions of generic and strongly generie re-
presentations is as follows. Recall first that if # is unitary and (topologic-
ally) irreducible then = determines an irreducible admissible representation
T,: T, is the restriction of « to the space of smooth vectors. Of course =, is
pre-unitary. Conversely every admissible irreducible pre-unitary represen-
tation is of the form x, for a unique irreducible representation «.

Now suppose 7 is strongly generic. Every G-smooth vector is also
P'-smooth and thus defines a smooth function on P'. Evaluation at ¢ is then
a non-zero element of (7,);. Thus 7, is generic. We conjecture that the
converse is also true. It is so, in any case, for » = 2 or 3.

From now on, for notational purposes, we disregard the distinction
between = and 7,. For instance we will say that 7, rather than r is unitary
(or strongly generic).

(6.2) We recall the “Langlands’ classification” of the representations
of GL(», F'). This has been obtained by Silberger ([36]) and Wallach for
arbitrary reductive groups.

Let R be a standard upper parabolic subgroup of G, (including G,
itself) and let M and the M, be as in (6.1.1). Let D(R) be the set of positive
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valued quasi-characters of B/U,. They have the form

(6.2.1) x(m) = T1,<,c, |det m,|§i, me M, s,cR .
Let D*(R) be the subset of these for which
(6.2.2) 8§, >8> e >8,.

Let o, be a tempered (unitary) representation of M and y € D*(R). Then if
0 = 0,& Y%, the induced representation

(6.2.3) ¢ = I(G, R; o)

admits a unique irreducible quotient that we shall denote by wz(o) or, if

(6.2.4) 0 =0,X0,X---X0,,
by
(6-2-5) 753(0'1, Oy *°°y Uk) .

Remark (6.2.6). The outer automorphism g — wg'w™ takes R to another
upper standard parabolic subgroup R”, y € D*(R) to " € D*(R™), ¢ = 0, X
too” =0, ® )7, the representation & = I(G, B; 0) to & = I(G, R, ¢”) and
hence 7,(0) to 7z-(67). In particular

Tp(0)” = mwp(07) .
However in general we can only say that &~ and & have the same semi-
simplification.

PROPOSITION (6.2.7). To every irreducible admissible representation
of G,(F') there corresponds exactly one upper parabolic subgroup R and one
representation of the form o = o, Q ) with o, tempered and 3 € D*(R) such
that

T = wy(o) .

(6.3) If 7 = my(0) and & = I(G, P; 0) witho = 0,X0,X +++ X 0,, then we
recall ([22]) that L(s, &), L(s, &) and (s, &, ) are defined even when ¢ is
reducible and that

L(s, ) = L(s, §) =[], L(s, 0,) ,
Les, 7) = I1, L(s, 5)) ,
&(s, w, 4) = &(s, &, V) = H‘ (s, 04y ¥) «

(6.4) We now apply the above results to » =2 and » = 3. Suppose
first » = 2. Let o, be the Steinberg representation of G,, that is, the square-
integrable component of

I(G,, B,; a*?, a™?) .

Recall that ¢,=0,. The essentially tempered representations are the super-
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cuspidal ones, those of the form g, ® ¢t with £ a quasi-character, and those
of the form

I(G2’ BZ; #l’ #2)

where 4,07 is a character (the principal series). The latter are denoted
also by m(g,, tt,). The other representations are of the form

TL'B(#I’ p2)

where (t, = y,a", p, = y,a s, >s, and ¥, is a character. These are also
denoted by (g4, f£,). Actually unless p4,14;' = « the representation

&= I(Gzy Bz; Py /“2)

is irreducible and therefore equivalent to m,(z, ). If on the other hand
st = o then we have an exact sequence

0—o0,® PO —— & —— 77-'B(/~‘u L) — 0

and m(ge, ) is just p,at/?odet.

By (6.1.1) we see that the infinite dimensional representations are
generic. The unitary representations are the tempered representations,
those of the form ) -det with x a character, and those of the form m(xe,
Xe™") with x a character and 0 < s < 1/2 (the complementary series). Since
the representations of the complementary series are known to be strongly
generic ([16], Chap. II, Appendix 2), we see that any unitary irreducible
generic representation is also strongly generiec.

(6.5) We now apply the results of (6.1) to (6.3) to the case » = 3. Let
Pand Q be the upper parabolic subgroups of type (2, 1) and (1, 2) respec-
tively. Let g, be the Steinberg representation of G,(F'), that is, the square-
integrable component of

IG, B e, 1, ™) .

Then the essentially tempered representations are the supercuspidals, those
of the form o; ® ¢t with g a quasi-character, and those of the form

I(Gy P; T #3) = I(G, Q; sy 7-1) ’

wheret, = 7 ® p, ¢4, = %P, T isa tempered unitary representaion of G,(F'), X
a character, and o a quasi-character of F*. The latter are denoted by
(T ) or w(y, 7). If 7, = w(p, 1) is in the principal series then z(z,, 1) is
equivalent to

I(G, B; tu, o 125)

(for any order of the triple (z,, I %)) We now describe the representa-
tions of the form
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T = 7x(0)
(R proper). As before we set
& =IG, R;0) .

The case when ¢ is irreducible, that is, £=x,(c), will be especially important.

(6.5.1) The case R = Q. Then ¢ = I(G, Q; ya*, t Q@ a*) with x a char-
acter of F'*, 7 a tempered representation of G,(F) and s, > s,.

If 7 is supercuspidal ¢ is irreducible.

If ¢ = 0, ® ¢t with ¢ a character then £ is irreducible unless s, — s, = 3/2
and ¥ = p. In that case we have an exact sequence

0— 0, Q pa™? — & — mo(ga, T @ @) — 0

and o, @ patt'/? is generic (as an essentially tempered representation).

If 7 = m(y, 1,) where g, and g, are characters, then £ is irreducible
unless s, —s, =1 and ) = ¢, or f,. Assume then s, =s,+ 1 and = g,
(o217 trivial or not). We then have an exact sequence

00— & 3 T—0, ¢ = IG, P; 0, Q@ pa™*', pa) .
Applying the automorphism g+— wg'w™ we see from the preceding case
that &' is irreducible. It is generic by (6.1.1). The case ¥ = f, is similar.

(6.5.2) The case R = P. Since g +— wg'w™ carries P to Q we are im-
mediately reduced to the previous case by Remark (6.2.6).

(6.5.3) The case R = B. Then
&= I(G: B; X1» Xo» Xs)

with ¥, = g, p; a character and s, > s, > s,. & is irreducible unless one of
the following holds:

L' =a, Lli'=a, LW'=a.
If xx:' = a but x.x' # a, we have again an exact sequence

0—¢——r—0, =16 Qpaso®pat".

By (6.5.1), &'~ is irreducible and is a w,. Thus by (6.2.6), &’ is a 7, again
generic by (6.1.1). The irreducible representation 7 is equivalent to

IG, Q; psas, prurs/? o det) .

If Lx:'=ea, px:'+# e, then in a similar fashion & = I(G, Q; pa™,
0, ® p'?) is a wy and 7 is equivalent to I(G, Q; p,a, p,atsi/? o det).
Suppose 1,%;! = @. Again we have a composition series

0 > & g T >0, ¢ = I(G, Q; ta, g, Q .ot ,
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The irreducible representation & has been described earlier as either a
Mg TpOr Te. As for x, it is equivalent to

I(G, Q; p., possti/?odet) .

Note for later purposes, that if s, = 0, s,=—1/2, then this representation
is irreducible and unitary.

Finally suppose Y. X:' = X.x5' = a. After replacing & by £¢® ¢ for a
suitable 2 we may assume ¥, = @, X, = 1, ¥; = a@”'. For any parabolic sub-
group R of Gy (F), let V, be the space of smooth functions on G4(F') in-
variant on the left under B. Then V; is the space of & and contains V, and
Ve- The space V of & contains the respective annihilators V} and V§ and
admits a composition series

) CVENViCVECVE + VicV.

The representation on VN V§ is g, that on V§/ViN Vi is me(a, 0, @ a™/?),
that on V3/ViN Vi is nx(0, ® a4 a™') and V/V3 + V§ affords the trivial
representation. Note that V§ is equivalent to Ind(G, @; @, 0, ® a™"/*) and
V# to Ind(G, P; 0, ® a'?, a™).

To a large extent the proofs of these facts can be derived from [2], [4],
[44], [45].

(6.6) According to (6.2.7), any irreducible admissible representation ©
of G4(F') is the unique irreducible quotient of an induced representation

¢ =1IG, R;0),

where R is an upper standard parabolic subgroup and ¢ an essentially
tempered representation. The pair (R, ¢) is uniquely determined. We call
¢ the induced representation attached to #. The automorphism g +— wg'w™
takes 7 to # and the pair (R, ¢) to the pair (R”, ¢7). Thus the induced re-
presentation attached to 7 is

& =IR,R;07).
In any case & admits a unique generic component by (6.1.1). From the

explicit composition series for & given in (6.5), it follows that if & # «, then
7 is not generic. Otherwise said, ¢ = & if and only if 7 is generic.

(6.7) The irreducible unitary representations of G,(F') are described in
the following:

PROPOSITION (6.7). Let & be any irreducible unitary representation of
Gy(F'). Then either mw is square-integrable, or ome-dimensional, or of the
form
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n = I(G, P; 0,v),

where o 18 an irreducible unitary representation of G,(F') and v a character
of F'*.

Proof. First note that g — wg'w™ carries nton” = I(G, Q; v, ¢"). If
o is one-dimensional we have noted in (6.5.3) that »~, and hence 7, is ir-
reducible. Otherwise ¢ is strongly generic. Thus, in this case, by (6.1),
7 is also irreducible. Conversely let 7 be an irreducible unitary representa-
tion of G4(F'). Suppose 7 is not tempered. Then 7 = wy(0) and 7T = wx-(07)
(see 6.2.6) where R is proper. On the other hand, 7 = 7,(d) as is easy to
see. Thus R = R~ by (6.2.7). Thus R = B and ¢ = ¢~ . Hence 7 is the ir-
reducible quotient of

§ = I(G, B; %1 Xo» Xs)
with x, = pe®, y, = pa™, s > 0, ¥, p¢ characters. Then either x,):' = @or
LAzt = Yaxst = a or £ is irreducible. In the first case 7 = I(G, Q; X, ftodet)
and in the second = = podet.
Assuming then that & is irreducible we have 7= = ¢ = I(G, P; g, t,),
0 = mp,(pe’, pa~*). Clearly 6 = & so there is an essentially unique invariant
Hermitian form 8 # 0 on the space of . Then the integral

B, 1) = || _Bl#9), 7ho)Mg

defines a non-zero invariant Hermitian form on the space of 7. Since 7 is
unitary, B is proportional to a positive-definite form. We may then assume
B so chosen that B(f, f) = 0 for f in the space of n. Since G = PK, this
implies B(v, v) = 0 for any v in the space of 6. Hence ¢ is unitary. Q.E.D.

(6.8) Let us denote by m(X, X X:) the irreducible representations of
G,(F) of the following form:

TR, 107 (at) 8> 8> 8y,
T(pe’, T @ @), T =y M) , 8.> 5, ,
(T Q @, (), T = T(fly, ) 5 8.2 8,
I(G, B; pat, po, 1,0 S, =8, =8,

with g, unitary and y, = p,at.

The irreducible admissible representations of G,(F') having a K-fixed
vector are then the representations m(¥,, Y., X:) Where g, is unramified. Of
course our notation is consistent with that of (2.4).

7. Complements on GL(3)
In this section the ground field F' is a p-field and » = 3.
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(7.1) Our main task will be the extension of the results of Section 4 to
all irreducible representations of G = G,, generiec or not. Accordingly let =
be any irreducible, admissible representation of G,.

Write 7 in the form 7,(¢). Then it is the unique irreducible quotient
of the attached induced representation & = I(G, R; o) (6.7). By (6.1),
dim & = 1. Choose A\ = 0 in & and for each f in the space of & set Wi(g)=
Mz(g)f). If @ is generic then 7 = ¢ (6.6) and f — W, is a bijection of the
space of & onto W(w; 4). Accordingly we may define “W(x; 4) in all cases to

be the space of all functions W,. Then in all cases we have the following
result:

LEMMA (7.1.1). The map f +— W, is injective.

Proof. We may assume R = G and « is not generic. Then & has length
2 or 4 (cf. (6.5)). If it has length 2, then we have an exact sequence

0 T & T 0 ’

where 7 is the space of the unique generic component of . Sincedim 7 =1,
the exactness of the functor shows that the restriction of N to 7 is == 0.
Thus if K is the kernel of the map (7.1.1) we find K N7 = {0}. Since 7 is
the unique irreducible quotient of & we find K <z and so K = {0}.

Assume ¢ has length 4. Replacing 7 by a suitable 7 ® p, we may
assume 7 = wy(, 1, @™') (trivial representation) and & = I(G, B; a, 1, a™).
Then we have the composition series (notations of (6.5)):

0cVinVicVic Vs + Vicé.

Recall that in fact Vi is the space of the induced representation attached
to the irreducible representation of G on V§/Vin V§ while Vi Vi is the
space of special representation. Again the restriction of \ to V4 is non-zero.
So if K is the kernel of the map (7.1.1) wefind KN V} = {0} by the previous
case. On the other hand we have K C Vi + V§, again because 7 is the
unique irreducible quotient of &. Suppose K+{0}. Then the representation
of G on K is equivalent to a subrepresentation of the representation of G on
Vi + Vi§/Vgor V§/Vin V. Similarly it is equivalent to a subrepresenta-
tion of the representation of G on Vi/ViN V4. Thus we find that the ir-
reducible representations of G on V;/ViN V¢ and Vi/ViN V§ are equiva-
lent. This is not so however and so K = {0}. Q.E.D.

(7.2) Returning to the general case, we note that £ is finitely generated.
Since by (7.1.1) we may regard & as the representation of G on W(x; +r) by
right translations, we see we are in the conditions of applications of Remark
(4.2). In particular the fractional ideals [Z(®, s+1,W)] and [Z(®, s+1, f)],
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where WeW(x; ¥), f is a matrix coefficient of &, and ®eS(r x r, F),
coincide. Indeed, as in (3.1) we have the inclusion [Z(®, s + 1, W)]<

[Z(®, s+1, f)]. To obtain the reverse inclusion we first prove the following
lemma:

LEMMA (7.2.3). Let { be a cubic, unramified, non-trivial character of
F*. Suppose © and © @ { are inequivalent. Then the spaces W(r; ¥,
Wr R & ), and W(w Q ;) are linearly independent.

Proof. Let t be the unique generic component of £. We may regard &
as acting by right translations on W(x; v). Hence every invariant irredu-
cible subspace of ¢ is generic. Thus 7 is the unique minimal component of &
and 7 @ {* the unique minimal component of &® (. Assume the three
spaces are not linearly independent. Then two of them must share an ir-
reducible minimal component and we find that 7 =7 ® {. Write = in the
form ¢ = m4(0) (Proposition 6.2.7). Then t ®{ = (0 ® ). If 7 is not
tempered, that is R+#G, then ¢ = 6 ® {. This gives { = 1, a contradiction.
If 7 is tempered and equal to & then in fact 7 = 7w and again we get a con-
tradiction. So we may assume 7 == & Then from 6.5, = is either of the form

=0, 17 =1I1G, Po,Qupa, par) or t=IG,Q;pma,o,Q pa),

where p, ¢, and g, are characters and s, and s, real. In any case we have
L(s, 7 @ p) = L(s, @ p{) for all quasi-characters p. Using Theorems 3.4
and 7.11 of [17] to compute both sides in the three cases, we arrive again at
a contradiction. For example, if 7 =g, ® p, taking p = ¢, we obtain
L(s, 0;) = L(8, 0, Q) from which we get immediately { = 1.

The lemma being proved, let us assume that 7 =7 ® {. Then if we
write 7 = m,(0) we shall find by the same argument that R = G. Then
7 = & and the equality of the ideals has been proved in (3.1).

So we may assume that 7 and 7= ® { are inequivalent. Let G° be as
before the set of g with |det g| =1 and K,, the set of k€ K, k=1 mod $".
We contend then that the linear forms

W»——»S W(oh)dw , (m=0,heG
Km

on & = W(x, ¥) span £. For if W is annihilated by these forms it vanishes
on G°Z. But then W(g)(1 + {(g) + {¥(g)) = 0 for all g€ G. Thus by the pre-
ceding, W = 0. Hence our claim. Hence if

Sun(g) = SK W(whg)dw ,

the functions f,, ,(m =0, h € G° span the space of coefficients of &. The
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equality of ideals follows immediately.

We note that by (6.3), L(s, ) = L(s, &) and hence that (see 4.2), for
r =8, L(s, @) is also the g.c.d. of the integrals (4.1.1) and (4.1.3), for
W e W(m; 4.

(7.8) We turn to the functional equation. We want to prove (4.4.1) for
the representation £ on “W(x; 4). In fact this is very simple. As in Section
3, given W e W(r; +r) and @, choose m large and let, for dw normalized,

fo) = Wegdo.

Then f is a coefficient of £&. For m large, we have

Z(®, s, W) = Z(®, s, f)
and

Z(V', s, W) = Z(®, s, f1) .
By [17], with

(s, & 9) =€(s, m, v)
we have
Z(@ 1 —s+ (r—1)/2 f1)=¢(s, & V4D, s + (r —1)/2, f).

Referring to (4.4), we thus have (4.5) for any irreducible admissible repre-

sentation = of GL(8, F). Before stating this formally, we abbreviate our
earlier notations.

Given 7 an irreducible admissible representation of GL(8, F'), set for
W e W(x, ¥) and Re(s) large,

f/ja 0 0

(7.3.1) (s, W):XW (o 1 o)}m['*dm,
N0 o0 1
fja 0 0

(7.3.2) T(s, W)=SW (x 1 O)W’}lal‘"‘dxadx.
o o0 1

As before W is defined by (2.1.3). It follows from (6.2.6) and (6.6) that
W +— W is a bijection of W(r; ¥) onto “W(7; ), the latter space affording the
representation &, equivalent to the induced representation £~ attached to 7.
Also set, as before, for ® € S(F'),

a 0 O
(7.3.3) W(s, W; ®) = SW (ac 0 1)}®(x)lal"‘dxadx,
0 0 1,
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and finally
100

(1.3.4) (s, W; @):SW (x 1 O)w’ ()| a [ 'd*ade .
0 0 1

(7.4) With the above definitions, we have:

THEOREM (7.4). Let  be an irreducible admissible representation of
G. Then:

(7.4.1) L(s, ) is the g.c.d. of the integrals ¥(s, W) and ¥(s, W, ®). L(s, %)
i8 the g.c.d. of the integrals ¥(s, W) and ¥(s, W, ©).

(7.4.2) TA —s, W) =¢'(s, w, v)¥(s, W),

(7.4.3) V(1 — s, W; @) =€'(s, m, )¥(s, W; D) ,

for all W in “W(w; ) and ®© € S(F).

We also observe that results similar to the ones in (4.6) are true in
this extended result.

(7.5) For r = 3, we can draw the following consequences.
PROPOSITION (7.5.1). The map Wi W|P' is injective.

Proof. Let O (resp. G@) be the space of W in W(x; ) (resp. W, )
whose restriction to P! vanishes. Clearly 0 is P-invariant. On the other
hand, if we apply the functional equation (7.4.3) (to = ® x for all %), we see
that W vanishes on all matrices of the form

a 0 O
(m b 0)
0 0 ¢

if and only if (&(w") W)~ does. Now the images of these matrices form a dense -
subset of N\P. Hence

WeV — (&w)W)eD.
Suppose W is in 0 and p’ is in the group
P = w' P (w)™.
Then, setting W, = £&(»" )W, we see clearly that (§w")W,)~ is in ©O. Thus
W,€ 0. In other words 0 is stable by both P and P’. Since they generate
G, the space U is stable under G and therefore trivial.
Suppose now that 7 is generic. If 7w = 7,(0), then as we have seen (6.6),

n = I(G, R;0) = &. Thus 7 is realized as right translations acting on
W(z; ¥). By (7.5.1) we may think of 7= as acting on a space 0 of functions
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on P! transforming under N like 6 on the left. Of course P! operates by
right translations. Also ‘0 contains the space 7, of all smooth functions on
P! which transform under N like 4 on the left and are of compact support
modulo N (2.4).

PROPOSITION (7.5.2). Let 7, and 7, be generic representations of G, with
the same central quasi-character w. If for all %, all s, and some +,

g'(s, T, QA P) = ¢'(s, m, @A),
then , and 7, are equivalent.

Proof. Let T be the direct sum

W7y ¥) D W7y ) -
Let S be the subspace of those pairs (W,, W,) such that W,|P' = W,|P! o1
equivalently W,|P = W,|P. By the preceding remarks, S contains at least
the pairs (W,, W,) for which W,|P* and W,|P' are in 0, and agree. Thus
S = {0}. Denote by S and 7' the analogous spaces for the representations 7,
and %,. G operates on T (and T) by sending (W, W,) to (m(g) W, T (g) W,).
Again by (7.1.4) applied to # ®Q ¥, x arbitrary, we find that

(W, Wp)eS — (Rw"W,, #w)W,)eS.
As before P’ and hence G leave S stable. Hence for (W,, W,)in S, W, =W,.
Since G acts irreducibly on W(x,; 4) and W(x,; ), these two spaces, having

an element in common, must coincide.
Using this we have

LEMMA (7.5.3). Let w, and «, be irreducible admissible representations
of G, with the same central quasi-character. Lf for all %, all s, and some r,
&S TQRQU ¥) =8, T QR Y ¥) and L(s, 7, @ ) = L(s, 7, Q %), then w, and
T, are equivalent.

Proof. Write n; = n,(0,) according to Proposition (6.2.7). Let & =
I(G, R;; 0,) and let 7, be the unique minimal component of £,. Then

G T Q@Y =6 Q% V) -

Since 7, and 7, are generice, by (7.5.2), 7, and 7, are equivalent. One argues
then as in (6.5).

Remark (7.5.4). Proposition (7.5.1) is valid for all » > 2 (Bernstein [2]).
One can give a proof similar to the one given here which involves generic
representations of GL,_,(F") [29].

On the contrary (7.5.2) is true for » = 2, 3 but false for » > 4. Let us
give a counterexample for » = 4. Let ¢ be a unitary supercuspidal represen-
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tation of G,. Set ¢, = ¢ ® @’ where t is purely imaginary. Set
r, = 1(G, Q;0,0_),

where @ is the standard parabolic subgroup of G, of type (2, 2). Each =z, is
irreducible generic. We have

Ls, 7. ®Y) = L(s, &, @ Y) L(s,a_, Q1) =1,
&S T QU V) =68, 0,Q U V) e, 0. QU ¥) -

But there is an » (dependent on ) so that (s, o, ® %, ¥) = ¢ (s, ¢ Q %, V).
Thus &(s, T, Q %, ¥) = &(8, 0 @ Y, v)*. Hence all the 7, have the same central
quasi-character and the same ¢’-factor. However x, = «; implies [2] that o,
is equivalent to either o; or ¢”,. This in turn implies a®**~*? or az+" =1,
Hence a non-countable infinity of the z, are inequivalent and we have a
counterexample to (7.5.2).

Another property special to » = 2 or 3 is the following:

PROPOSITION (7.5.5). Suppose r = 207 3 and 7 is an irreducible, admis-
sible representation of G.(F') such that €'(s, # Q ¥, ¥) is a monomial for all
X. Then 7 is supercuspidal.

For if 7w is not, it is a component of an induced representation. The
¢’-factor can thus be computed and is found not to be a monomial for all ¥.

(7.6) Finally we shall also require, for the global theory, the following
technical lemma:

LEMMA (7.6). Let  be an 1rreducible, admissible representation of G,
of central quasi-character .
Suppose i has exponent zero. For a =1, let K® be the subgroup of h
in GL(8, R) such that:
by €%, by € P, hyy € Pt

Then there is an a =1 and a W in W(x; ) such that
(1) W(gh) = () W(g) for g€ G, he K°,

(2) W) =1,
/L 0 0
(8) S Wlig(O 1 x)]dszforaldeGg.
Bt 0 01

Proof. By (2.4), there is a W in “W(x; +») such that

wilo o] =ve o= 000

with
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(ff q) e GL(E, M), g€

S

W[(g O):] =0 otherwise .
01

Then W satisfies (1) if a is so large that W is invariant under K,,,. In fact,
by (7.5.1), it is enough to check (1) for g of the form <9(§ g) with xz € G,. Then
since W is K,,,-invariant we may assume he K* P'. In that case since
the exponent of + is zero our assertion is clear. To prove (3), one may

assume again by (7.5.1) that
p g 0
g=\r s O).
0 0 1

|, en)de - W) .

Sinece W(g) = 0 unless s € R*, our assertion is clear.
g

Then the integral is just

(To be continued in the next issue)



