Midterm Review
Linear Algebra

At least one of the following theorems will appear on the midterm

Theorem 1 A system \(Ax = b \) of \(n \) linear equations in \(n \) unknowns has a unique solution if and only if the matrix \(A \) is nonsingular.

Theorem 2 If \(A \) is a \(k \times k \) triangular matrix, then the determinant of \(A \) is the product of the diagonal entries.

Theorem 3 The nullspace \(N(A) \) of a matrix \(A \) is a subspace.

Theorem 4 Let \(V \) be a vector space and \(v_1, v_2, \ldots, v_n \in V \). Then a vector \(v \in \text{Span}\{v_1, v_2, \ldots, v_n\} \) can be written uniquely as a linear combination of the vectors \(v_1, v_2, \ldots, v_n \) if and only if \(v_1, v_2, \ldots, v_n \) are linearly independent.

Also, there will be a section of True/False questions. The best preparation for these is to work through the T/F chapter tests in the Leon book. Because not everyone has this book I am handing out copies of these questions in class. Let me know if you did not get one (or borrow the book from the math library).

Here’s a brief outline of the techniques and concepts we have covered so far

Matrix algebra
1. Denoting entries of sums and products of matrices. Also, solving matrix equations and proving properties of matrices by equating entries.
2. Different types of matrices: transpose of a matrix, symmetric matrix, upper and lower triangular matrices, diagonal matrices
3. Block form of a matrix

Principle of mathematical induction, proofs by induction

Systems of equations
1. Solutions without linear algebra (by manipulating the equation itself).
2. Using an augmented matrix and elementary row operations to solve a system of equations \(Ax = b \).
3. Using the inverse of a matrix to solve a system of equations
4. When is a system of equations consistent (for a system \(Ax = b \) a solution exists in \(b \) is a linear combination of the column vectors of \(A \)), when does it have a unique solutions, when are there infinitely many solutions.
5. Theorem: For an \(n \times n \) matrix \(A \) TFAE: a) \(A \) is nonsingular, b) \(Ax = 0 \) has a unique solution, c) \(A \) is row equivalent to \(I \).
6. Cramer’s rule

Elementary matrices
Inverse of a matrix
1. Definition of the inverse and how to show that a particular matrix is the inverse, when does an inverse exist.
2. How to find the inverse using row operations.
3. Using the adjoint of a matrix to calculate the inverse

Determinants
1. The definition of the determinant as the cofactor expansion along any row or column.
2. Determinant of A^{-1}, A^T, and the determinant of triangular matrices
3. How row operations effect the determinant
4. Calculating the determinant using row operations
5. An $n \times n$ matrix is singular if and only if its determinant is 0.
6. $\det(AB) = \det(A) \det(B)$

Vector spaces, subspaces
1. Definition of a vector space and closure properties (although you do not have to remember the eight axioms for the exam)
2. Definition of a subspace (closure properties)
3. The nullspace of a matrix

Span, linear independence
1. Definition of span and linear independence
2. Using the determinant to show that n vectors in \mathbb{R}^m are linearly independent or dependent.
3. An $n \times n$ matrix is nonsingular if and only if its column vectors are linearly independent.
4. Applications to differential equations, the Wronskian

Basis and dimension
1. Definition of a basis, how can you show that a set of vectors is a basis
2. Theorems regarding dimension (for example: if $\{v_1, ..., v_n\}$ span V then in $m > n$ and $\{u_1, ..., u_m\}$ is any other set of vectors, then they are linearly dependent)

Finding the transition matrix between two sets of basis vectors