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The present manuscript is the fourth draft of a project begun in the summer
of 1996, to apply the methods of [TW] to Galois representations of dimension
> 2. We show that a (mod `) representation ρ of dimension n that ”comes from”
automorphic forms on certain unitary groups has the property that every lifting of
ρ to characteristic zero also comes from automorphic forms. In the language of [W]
and [TW], we are constructing isomorphisms between `-adic Hecke algebras and
`-adic deformation rings. The precise statements are Theorems V.1.6 and V.1.7.

Let E be a totally real field, K0 an imaginary quadratic field, and K = E · K0.
We consider automorphic representations π of the unitary similitude group G of a
division algebra D over K of dimension n2 with involutions “of the second kind”;
i.e., which restrict to complex conjugation on K. To such data we can attach
Shimura varieties Sh which are uniformized by the unit ball in Cn−1, and which
admit canonical models over K. The automorphic representations of interest to
us are those that contribute to middle-dimensional (singular or `-adic) cohomology
with coefficients in group-theoretic local systems over Sh; in the present article only
the trivial local system is considered, but this is mainly for convenience. The Galois
representation on the piece of the `-adic cohomology cut out by π is rather well
understood, both at (most) unramified places [K1, C1] and at places of K split over
E and where π is supercuspidal [H1, H2]. Via base change, π can be associated
to an automorphic representation Π of GL(n,K), and, up to normalization, the
L-function of the corresponding Galois representation, denoted rρ(π), coincides
with that of Π. In particular, rρ(π) is n-dimensional and enjoys a number of
arithmetically interesting properties; e.g., it is crystalline at primes dividing `. Let
O be an `-adic integer ring over which rρ(π) can be realized, and let k be its residue
field.

We assume that the only ramification of π comes at a finite set SC of places
that split in K/E, and that πv is full induced from supercuspidals for v ∈ SC.
When D is not split at v we assume the representation of GL(n) corresponding to
π is supercuspidal. We also assume ` is prime to the order of GL(n, k(v)) for all
v such that πv is ramified; here k(v) is the residue field. In Vignéras’ terminology,
` is banal for such v. This implies that ` > n. It thus follows from `-adic Hodge
theory [FM, F1] that the residual representation rρ(π) over k is also crystalline, i.e.
it can be obtained by the construction of Fontaine-Laffaille [FL]. It can be shown
that rρ(π) restricts to an absolutely irreducible representation of the decomposition
group Zv at any v ∈ SC. Using these facts, we can define a universal ring R(π)
classifying deformations of rρ(π) to crystalline representations of Gal(K/K), via the
theory developed by Mazur and Ramakrishna (cf. [DDT]). For technical reasons,
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rρ(π) is replaced in the deformation theory by the representation ρ(π)of Gal(E/E)
induced from rρ(π), which we view as a homomorphism to a disconnected group
with identity component GL(n).

The goal is to construct a natural isomorphism between R(π) and an appro-
priate Hecke algebra. The Hecke algebra acts on the space of functions on the
zero-dimensional Shimura variety Sh′ attached to an inner form J of G. The cor-
respondence between functions on Sh′ and cohomology of Sh, analogous to the
Jacquet-Langlands correspondence for inner forms of GL(2), is established in most
cases in [H1], and in general in [HL]. It is relatively easy to study congruences for
Hecke algebras acting on zero-dimensional Shimura varieties. Thus we can hope
to apply the techniques of [TW]. The possibility of extending these techniques to
groups other than GL(2,Q) is based on the crucial fact, observed simultaneously
and independently by Diamond and Fujiwara [D, Fu], that one can work directly
with Hecke algebra modules, rather than with the Hecke algebras themselves.

Few general techniques are available for studying the images of Galois represen-
tations of dimension > 3. In order to carry out the sorts of calculations of Galois
cohomology familiar to readers of [W], [TW], and [DDT], we need to impose several
hypotheses to guarantee that the image of ρ is not too small (Hypotheses IV.5.2),
in addition to the conditions on ` already mentioned. Our hypotheses on ρ are
certainly not optimal, but they have the advantage of economy. We hope to relax
some of them before completing the definitive version. For this reason, the present
draft develops techniques in greater generality than is immediately necessary.

The article is divided into five sections. Section I introduces the unitary groups
and the associated Shimura varieties, and summarizes results on the spaces of auto-
morphic forms on these groups that are derived from the trace formula. Section II is
mainly concerned with applications of Vignéras’ theory of modular representations
of p-adic reductive groups, especially GL(n). Vignéras’ results replace some of the
theory of the U -operator, familiar from work on GL(2). Section III describes the
Shimura varieties attached to unitary groups as moduli spaces of abelian varieties of
PEL type, and develops the properties of the Galois representations realized in the
`-adic cohomology of these Shimura varieties. Section IV is concerned with defor-
mations of Galois representations, and extends the Galois-cohomological techniques
of [W] and (especially) [TW] to dimension > 2. Finally, section V generalizes the
arguments and the main result of [TW]. At the end of V we indicate how the main
theorems can be applied to construct automorphic tensor products.

The authors would like to thank the University of Durham (Harris and Tay-
lor), Harvard University (Harris), the Institut Henri Poincaré (Taylor), and RIMS
and Kyoto University (Harris) for providing a hospitable working environment
at different stages of the project. We also thank the many colleagues who have
answered questions during the last 18 months. They include: Blasius, Carayol,
Clozel, Colmez, de Jong, Diamond, Fontaine, Fujiwara, Gabber, Henniart, Kot-
twitz, Labesse, Laumon, Niziol, Rapoport, Rogawski, Vignéras, Zink. This list is
incomplete and will be amended in future versions of the manuscript.
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I. Automorphic forms on unitary groups

I.1. Cohomological automorphic forms.

Let E be a totally real number field of degree d over Q and let K be a to-
tally imaginary quadratic extension of E; let c ∈ Gal(K/E) denote the non-trivial
automorphism. We assume K contains an imaginary quadratic field K0, so that
K = K0 · E. We denote by ΣE and ΣK the sets of complex embeddings of E and
K. Let D be a central simple algebra of dimension n2 over K, endowed with an
involution, denoted c̃, that induces the Galois automorphism c on K; i.e., c̃ is an
involution of the second kind. We will generally make the hypothesis

(D) At every finite place v of K, Dv is either split or a division algebra.

We define algebraic groups U(D) = U(D, c̃) and GU(D) = GU(D, c̃) over Q
such that, for any Q-algebra R,

U(D)(R) = {g ∈ Dopp ⊗Q R | g · c̃(g) = 1};

GU(D)(R) = {g ∈ Dopp ⊗Q R | g · c̃(g) = ν(g) for some ν(g) ∈ R×}.
Thus GU(D) admits a homomorphism ν : GU(D)→ Gm with kernel U(D). There

is an algebraic group UE(D) over E such that U(D)
∼−→ RE/QUE(D), where RE/Q

denotes Weil’s restriction of scalars functor. This isomorphism identifies automor-
phic representations of U(D) and UE(D).

The groups U(D) (resp. GU(D)) are all inner forms of the same quasi-split
unitary group (resp. unitary similitude group), denoted U0 (resp. GU0). The
group U0 is of the form U(D0, χ̃(∗)0) where D0 is the matrix algebra and χ̃(∗)0
is an appropriate involution. Then U0,∞

∼= U(n
2
, n

2
)[E:Q] if n is even, U0,∞

∼=
U(n+1

2
, n−1

2
)[E:Q] if n is odd.

Let G be a reductive algebraic group over the number field F . If v is a place
of F we let Gv = G(Qv); if v is archimedean we let gv = Lie(Gv)C. We let
G∞ denote

∏

v|∞Gv, the product taken over all archimedean places of F , and let

g∞ =
∏

v|∞ gv. Let π be an irreducible automorphic representation of G; i.e., an

irreducible (g∞, K∞) × G(Af )-module that embeds as a submodule of the space
of automorphic forms relative to the maximal compact subgroup K∞. We write
π = π∞ ⊗ πf as usual, and say π is cohomological if π is cuspidal and if the
relative Lie algebra cohomology H•(g∞, K∞;π∞ ⊗ V ) 6= 0 for some finite dimen-
sional representation V of g∞. We let Coh(G) denote the set of cohomological
cuspidal automorphic representations of G, Coh(G, V ) ⊂ Coh(G) the subset of
π for which H•(g∞, K∞;π∞ ⊗ V ) 6= 0, with V fixed. If K ⊂ G(Af ) is a com-
pact open subgroup, σ a finite-dimensional irreducible representation of K, we
let Coh(G,K, σ) ⊂ Coh(G) denote the subset of π such that HomK(σ, π) 6= 0,
Coh(G,K, σ, V ) = Coh(G,K, σ) ∩ Coh(G, V ). If σ = 1 we just write Coh(G,K)
and Coh(G,K, V ).

Let A0(G) denote the space of cusp forms on G. Let Rep(G) denote the set of
equivalence classes of irreducible (g∞, K∞) × G(Af )-modules. If π ∈ Rep(G), we
let m(π) = dimHom(π,A0(G)), where Hom denotes the space of homomorphisms
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of (g∞, K∞) × G(Af )-modules. More generally, let S be a finite set of places of
F , containing the archimedean places (for simplicity) and let Rep(G)S denote the
set of equivalence classes of irreducible G(Af,S)-modules, where G(Af,S) ⊂ G(Af )
is the subgroup with trivial entry at every place in S. We say πS ∈ Rep(G)S is
automorphic if

HomG(Af,S)(π
S,A0(G)) 6= 0;

i.e., if πS can be extended to a cuspidal automorphic representation of G. We say
πS is cohomological if it can be extended to a cohomological cuspidal automorphic
representation of G.

We now choose a central simple algebra D, over K satisfying (D). Let c̃ be an
involution of the second kind of D and define J = GU(D, c̃), J ′ = U(D, c̃), and
view J ′ alternatively as a group over Q or E. We assume that

(I.1.1) J ′∞
∼= U(n)[E:Q] (compact inner form);

Moreover, if v is a finite prime, we assume that

(I.1.3) J ′v
∼= U0,v if v does not split in K/F.

We will be working with a variant, denoted G̃, of the Langlands L-group of J
over E. Let

(I.1.4) G̃0 = {g = (g1, g2) ∈ GL(n)×GL(n) | ∃a ∈ GL(1) such that g2 = a·tg−1
1 }.

We let

(I.1.5) G̃ = G̃0 nGal(E/E),

where the action of Gal(E/E) on GL(n) factors through Gal(K/E), and the non-
trivial element c acts by

(I.1.6) c((g1, g2)) = (g2, g1).

We regard G̃ as a group scheme over Spec(Z), in order to work with its points over
finite fields. The map that to g associates the element a in the definition (I.1.4)

defines a homomorphism of group schemes G̃0→GL(1), and one verifies that it

extends to a homomorphism ν : G̃→GL(1) by setting ν(c) = (−1)n−1.

In the applications to Galois representations, we need to work with G̃, rather
than the L-group of J ′ or G′, because Galois representations of geometric origin are
generally polarized but rarely self-dual. Moreover, G̃ does not incorporate the usual
conjugation by a symmetric or anti-symmetric form. This simplifies our arguments.
In Remark V.2.5, we reformulate our results in terms of the usual Langlands L-
group.

I.2. Automorphic forms on a totally definite unitary group.

Let K ⊂ J(Af) be a compact open subgroup,

KS(J) = J(Q)\J(A)/J∞ ×K.
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More generally, if U ⊂ J(Af ) is any closed subgroup, we let

US(J) = lim←−
K⊃U

KS(J),

the limit over open compact subgroups K containing U . We define certain spaces
of functions on J(A). In what follows, K as above is always assumed to be of the
form

∏

vKv, the product taken over finite places of Q, with Kv open compact in

Jv. We fix a rational prime number ` and let K` = K ∩ JAf,`

(finite adeles of J
trivial at `). All functions are taken to be continuous.

Let (ρ,W ) denote a finite-dimensional algebraic representation of J , rational
over the number field L = L(ρ). For any place v of Q we use the same letter ρ
to designate the representation of Jv on W (Lv), where Lv = L ⊗Q Qv. For each
place v we choose a finite-dimensional representation σv of Kv with coefficients in
L, factoring through a finite quotient of Kv, so that σv is trivial for all v dividing
` and for almost all v. We let σ = ⊗vσv, and let Wσ = W ⊗ σ, on which J∞ ×K
acts via ρ⊗ σ.

Let
(I.2.1)
A0(J, ρ, σ,K) = {f ∈ C∞(J(Q)\J(A),Wσ(C))|f(g·g∞k) = (ρ⊗ σ)(g∞×k)−1f(g)},

where g ∈ J(A), g∞ ∈ J∞, k ∈ K.
For any L-algebra L′, we let

(I.2.2)
Af (J, ρ, σ,K)(L′) = {f : J(Af )→W (L′)|f(γ · gk) = (ρ⊗ σ)(γ × k−1)f(g)},

where now g ∈ J(A), γ ∈ J(Q), k ∈ K. If L′ is an L` algebra, we define
(I.2.3)
A`(J, ρ, σ,K)(L′) = {f : K`S(J)→W (L′`)|f(gk) = (ρ⊗ σ)(k` × k)−1f(g)},

for g ∈ J(A), k ∈ K, k` its J`-component. Here the standing continuity hypothesis
needs to be specified: we assume f ∈ A`(J, ρ,K)(L′) to be locally constant on
J(Af,`). Continuity of f in G` in the `-adic topology is guaranteed by the functional
equation.

For any L-algebra L′, there is a canonical isomorphism

(I.2.4) Af (J, ρ,K)(L′) = Af (J, ρ,K)(L)⊗L L′.

Restriction to J(Af ) defines a natural isomorphism

res : A0(J, ρ, σ,K)
∼−→ Af (J, ρ, σ,K)(C)

and hence, via (I.2.4), a canonical L-structure on A0(J, ρ, σ,K). Similarly, for any
L`-algebra L′ we have an isomorphism

(I.2.5) res` : A`(J, ρ, σ,K)(L′)
∼−→ Af (J, ρ, σ,K)(L′),

given by
f 7→ {g 7→ ρ(g`)

−1 · f(g), g ∈ J(Af )}.
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Letting K vary, it is clear that these isomorphisms commute with the action of the
prime-to-` finite adeles of J .

When ρ or σ is the trivial one-dimensional representation, we drop it from the
notation.

In what follows, we assume K` is sufficiently small so that

(I.2.6) K` acts without fixed points on J(Q)\J(A)/K∞ ·K`.

Let O denote the ring of integers of L`, and let ΛWσ
be a K`-stable O-lattice in

Wσ(L). We can define

(I.2.7) A`(J,ΛWσ
, K)

= {f : K`S(J)→ ΛWσ
|f(gk) = (ρ⊗ σ)(k` × k)−1f(g), g ∈ J(A), k ∈ K},

with the continuity hypothesis as above. Then there is a natural isomorphism

A`(J,ΛWσ
, K)⊗O L` ∼= A`(J, ρ, σ,K)(L`).

When ρ and σ are trivial, we take the lattice O ⊂ L` and write A`(J,K)(O).
I.2.8. Now we will make specific choices of (Kv, σv). We choose disjoint finite sets
SC, Q, and {r} of finite places of E dividing disjoint sets of rational primes that
split in K0; {r} is a single prime. The set SC is assumed to include all primes
divisible by primes of K at which D is not split. For any rational prime q that
splits in K0, we choose a maximal compact subgroup of Jq in the form

(I.2.8.1) Z×q ×
∏

v | q

Jv,

the product being taken over divisors v of q in E. Here if w is a divisor of q in K0

lying above v and if Dw is isomorphic to GL(a,Bw) for some factorization n = ab
and some division algebra Bw of degree b2 over Kw, then Jv can be taken in the
form GL(a,OBw

), where OBw
is the maximal order of Bw.

To define the (Kv, σv) at ramified places, we assume D satisfies hypothesis (D) of
§I.1. For w ∈ SC, we fix an irreducible admissible representation πw of GL(n,Ew).
We assume there is a (not necessarily proper) parabolic subgroup P of G, with Levi
quotient LP , such that πw can be realized as the full induced representation from a
supercuspidal representation of LP , inflated to P . Equivalently, πw is associated to
a fully decomposable representation of the Weil-Deligne group of Ew – i.e., a repre-
sentation of the Weil group WEw

of Ew – under the local Langlands correspondence
π 7→ L(π) [HT1, He]. Such representations will be called non-monodromic. If the
algebra D is split at w we let (Kw, σw) be a semisimple type of πw in the sense
of Bushnell and Kutzko [BK]. Thus any irreducible admissible representation π′ of
GL(n,Ew) whose restriction to Kw contains σw is inertially equivalent to πw [BK,
Theorem 8.2]. In other words, if L(πw) is the representation rw = ⊕ri=1ri,w of WEw

,
with each ri,w irreducible, and if π′ contains the type (Kw, σw), then L(π′) is of the
form ⊕ri=1ri,w ⊗ χi, where each χi is an unramified character of WEw

.
If Dw is a division algebra we assume πw is supercuspidal, and let JL(πw) be

the irreducible representation of D×
w associated to πw by the Jacquet-Langlands
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correspondence [DKV,R]. We let Kw be the maximal compact subgroup of D×
w

and let σw be any irreducible component of the restriction of JL(πw) to Kw (since
JL(πw) is irreducible, all choices of σw are conjugate under D×

w . If q is a rational
prime divisible by some w ∈ SC, let

Kq = Z×q ×
∏

w/∈SC

GL(n,Ow)×
∏

w∈SC

Kw,

the products running only over divisors of q. We also take

σq = ξq ⊗
⊗

w∈SC

σw,

where ξq is a character of Z×q and
∏

w/∈SC GL(n,Ow) acts trivially.
Primes q ∈ Q are assumed to have the property that, if q is the rational prime

divisible by q, then q splits completely in E. We let Q(Q) denote the set of rational
primes divisible by primes in Q, and assume each q ∈ Q(Q) is divisible by a unique
q ∈ Q. For q ∈ Q we define

Γ0,q = {k ∈ GL(n,Zq) | k ≡
(

∗1 ∗
0 ∗n−1

)

(mod q)}

Γ1,q = {k ∈ GL(n,Zq) | k ≡
(

1 ∗
0 ∗n−1

)

(mod q)}

as subgroups of the q-factor of I.2.8.1. Then we let

K0,q = Z×q ×
∏

v 6=q,v|q

GL(n,Ov)× Γ0,q;

K1,q = Z×q ×
∏

v 6=q,v|q

GL(n,Ov)× Γ1,q,

viewed as subgroups of Jq.
Let q(r) denote the residue characteristic of r. LetN0 denote the upper triangular

unipotent subgroup of GL(n) and let

I1(r) = {k · n ∈ GL(n,Or) | k ≡ 1 (mod r), n ∈ N0(Or)};
I(r) = Z×q(r) ×

∏

v 6=r,v|q(r)

GL(n,Ow)× I1(r).

We let

(I.2.8.2) Kq(r) = Ir.

Finally, for the remaining primes q, we take maximal compact subgroups Kq

that are very special in the sense of [L]. In particular, Kq is hyperspecial whenever
Jq contains a hyperspecial maximal compact subgroup; i.e., if q is unramified in
K0. If q is ramified in K0 and n is odd, there are two conjugacy classes of special
maximal compact subgroups, only one of which is very special. Here we are using
the hypothesis (I.1.3). We let

K0,Q =
∏

q/∈Q(Q)

Kq ×
∏

q∈Q(Q)

K0,q;

K1,Q =
∏

q/∈Q(Q)

Kq ×
∏

q∈Q(Q)

K1,q.
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Lemma I.2.9. For q(r) sufficiently large, the subgroups K0,Q and K1,Q satisfy
(I.2.6). Moreover, for any s ∈ J(Af ) the groups s−1J(Q)s∩K0,Q and s−1J(Q)s∩
K1,Q are trivial.

Proof. The first assertion follows from the second. Let K = K0,Q or K1,Q. Let
x ∈ s−1J(Q)s ∩ K for some s ∈ J(Af ). The subgroup of J(A) generated by x
is both discrete and compact, hence finite. The group Ir is pro-q(r) and it follows
that x is a root of unity of order a power of q(r), lying in some extension field
K′ of K that admits an embedding in D. The degree of K′ over Q is bounded by
n[K : Q], hence for q(r) sufficiently large we must have x = 1. Condition (I.2.6) is
now immediate.

Let π be an automorphic representation of J . The restriction of π to the unitary
group J ′, which can be viewed as an algebraic group over E, decomposes as a direct
sum of irreducible automorphic representations. Any two summands have the same
local components at any finite place w dividing a rational prime q that splits in K0,
since at such places the similitude map splits as a product J(Qq) ' J ′(Qq)× Q×

q .
For such a place w, we say π is non-monodromic at w if one component (hence
every component) of the restriction of π to the unitary group J ′ is non-monodromic
at w (if Jw is split) or corresponds to a supercuspidal representation of GL(n,Ew)
by the Jacquet-Langlands correspondence (if Jw is the multiplicative group of a
division algebra).

Proposition I.2.10. Let π be an automorphic representation such that
HomK1,Q

(σ, π) 6= 0. Then πw is non-monodromic for all w ∈ SC and, for ev-
ery w ∈ Q, πw is either (a) unramified; (b) principal series attached to an n-tuple
(α, β1, . . . , βn−1) of characters of E×w , with α tamely ramified and each βi unrami-
fied; or (c) the Langlands sum of a special representation of GL(2) and an unram-
ified representation of GL(n− 2). In cases (a) and (c), but not in case (b), πw has
a Γ0,w-fixed vector.

Moreover, if SC is non-empty, then πq is generic for every q that splits in K0.

Proof. The assertion regarding w ∈ SC is a consequence of the properties of
Bushnell-Kutzko types. The first assertion regarding w ∈ Q follows easily from
the Bernstein-Zelevinsky classification of admissible irreducible representations of
GL(n) and from the theory of the conductor [JPSS]. The second assertion follows
from the existence of base change of π to JK0

' GL(n)K × GL(1)K0
[CL], cf.

[HT1,VI.2]. Let Π denote the base change. Then Π is cuspidal, hence globally
generic by Shalika’s theorem. The second assertion of (I.2.10) then follows from
the properties of base change, especially [L, Proposition IV.4.1].

Let K =
∏

v Kv be a subgroup of finite index inK1,Q, contained in the kernel of σ
and normal in K0,Q. Let ΛW = ΛWσ

with σ replaced by the trivial representation.
We can write

(I.2.11) J(Af ) =

r
∐

i=1

J(Q)giK,

for some finite set Ξ = {g1, . . . , gr} of elements of J(Af ). Then the map f 7→ (f(gi))
defines an injection

(I.2.12) A`(J,ΛW ,K) ↪→ ⊕ri=1ΛW .
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As in [DT,p. 442], this is an isomorphism provided g−1
i J(Q)gi ∩K is trivial for all

i. In particular, this is true when q(r) is sufficiently large, by Lemma I.2.9, even
when SC is empty. We assume q(r) to be sufficiently large from now on.

Now K1,Q satisfies the same properties as K above, hence A`(J,ΛW , K1,Q) has
the decomposition (I.2.12). If Ξ′ = {g1, . . . , gr′} is a set of double coset represen-
tatives for J(Q)\J(Af)/K1,Q then we can take Ξ = Ξ′ · [K1,Q/K] in (I.2.12). It
follows that

(I.2.13) A`(J,ΛW ,K) is a free O[K1,Q/K]−module.

We can apply the same argument to K0,Q instead of K1,Q. Since

K0,Q/K ∼= K1,Q/K×
∏

q∈Q

(Z/qZ)×,

we obtain:

Lemma I.2.14. Assume q(r) to be sufficiently large. Then A`(J,ΛW ,K) is a free
O[K1,Q/K×

∏

q∈Q(Z/qZ)×]-module.

In what follows, we assume ΛWσ
to be of the form ΛW ⊗ Λσ, where Λσ is a

K1,Q/K-invariant lattice in σ.

Corollary I.2.15. Assume q(r) to be sufficiently large. Suppose Λσ can be realized
as a direct summand in O[K1,Q/K] as O[K1,Q/K]-module. (For example, suppose
` does not divide the order of

∏

w∈SCKw/Kw.) Then A`(J,ΛWσ
, K1,Q) is a free

O[
∏

q∈Q(Z/qZ)×]-module.

Let DQ =
∏

q∈Q(Z/qZ)×. For any Z`[DQ]-module N letNDQ
denote the module

of coinvariants.

Corollary I.2.16. Let `N be the exact power of ` dividing the order of DQ. Under
the hypotheses of Corollary I.2.15, the natural inclusion

A`(J,ΛWσ
, K0,Q)→ A`(J,ΛWσ

, K1,Q),

followed by the canonical map

A`(J,ΛWσ
, K1,Q)→ A`(J,ΛWσ

, K1,Q)DQ
,

induces an isomorphism between A`(J,ΛWσ
, K0,Q) and `N · A`(J,ΛWσ

, K1,Q)DQ
.

Proof. Indeed, Corollary I.2.15 reduces the assertion of I.2.16 to the corresponding
statement for the group ring O[DQ] itself; but this is clear.

Let K
[`]
1,Q ⊂ K0,Q be the largest subgroup containing K1,Q such that the quotient

∆Q = K0,Q/K
[`]
1,Q is an `-group, necessarily abelian. (In other words, K

[`]
1,Q is

generated by K1,Q and by the diamond operators of order prime to `; cf. III.1.3.8,

below). We will be using Corollaries I.2.15 and I.2.16 with K1,Q replaced by K
[`]
1,Q:
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Corollary I.2.17. Assume the hypotheses of Corollary I.2.15. Then

(i) A`(J,ΛWσ
, K

[`]
1,Q) is a free O[∆Q]-module.

(ii) The natural inclusion

A`(J,ΛWσ
, K0,Q)→ A`(J,ΛWσ

, K
[`]
1,Q),

followed by the canonical map

A`(J,ΛWσ
, K

[`]
1,Q)→ A`(J,ΛWσ

, K
[`]
1,Q)∆Q

,

induces an isomorphism between A`(J,ΛWσ
, K0,Q) and `N · A`(J,ΛWσ

, K
[`]
1,Q)∆Q

.

Proof. Since the kernel of DQ→∆Q is of order prime to `, this follows immediately
from the previous corollaries.

I.3. Functoriality and multiplicities

We collect here some applications of the stable trace formula, established in
[C1,CL,L,HL]. We let J̇ ′ denote the group RK/QGL(n)K, J̇ = J̇ ′×RK0/QGm,K0

,

both viewed as algebraic groups over Q; J̇ ′ will also be viewed as an algebraic
group over K or over E. Let J and J ′ be the groups defined at the end of I.1. Then
we have

(I.3.1) J̇ is an inner form of RK0/QGK0
and RK0/QJK0

;

(I.3.2) J̇ ′ is an inner form of RK/EG
′
K and RK/EJK.

Let π ∈ Coh(J), resp. π ∈ Coh(J ′), and let S be the set of places of Q, resp. of
E, containing all archimedean places and all finite places where either π or the group
J is ramified. Then we can formally define BCS(π) ∈ Rep(J̇)S (resp. Rep(J̇ ′)S) to
be the representation such that BCS(π)w = BC(πw) for all w /∈ S, with BC(πw)
the local unramified base change map with respect to the isomorphism I.3.1.

Theorem I.3.3 [C1,L,HL]. Let π ∈ Coh(J) (resp. Coh(J ′)). Suppose either
(i) J is the unitary similitude group of a division algebra; or
(ii) There is a rational prime p split in K0 and a prime v0 of E dividing p such

that π is supercuspidal at v0, in the sense of I.2.10.
Then BCS(π) is the prime-to-S part of a cohomological automorphic representation

of J̇ (resp. J̇ ′).

Proof. The proof in case (i) is basically contained in [C1,C2], and is completed in
[CL] using the results of [L]. Case (ii) is worked out in [HL].

Under the hypotheses of Theorem I.3.3, strong multiplicity one implies that
BCS(π) extends to a unique cuspidal automorphic representation of J̇ (resp. J̇ ′),

which we denote BC(π); it is necessarily cohomological. In the case of J̇ , we write

BC(π) = BC(π)1×BC(π)2, where BC(π)1 is an automorphic representation of J̇ ′

and BC(π)2 is a Hecke character of K0.
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Proposition I.3.4 [L]. We retain the hypotheses of Theorem I.3.3. Let q be a
rational prime that ramifies in K0, and suppose πq is spherical with respect to a very
special maximal compact subgroup of Gq (resp. G′

q). Then BC(π) is unramified at
all primes dividing q.

Moreover, in the case of G′, let q be a rational prime that splits in K0, q = v1 ·v2.
Then we have

BC(π)q = BC(π)v1 ⊗ BC(π)v2 ' πq ⊗ π̌q
via the isomorphism G′(K0,q)

∼−→ G′(Qq)×G′(Qq).

Proof. The first assertion follows from [L, Proposition IV.6.4], the second from
[L,Lemma IV.4.1]. The application of these results to unitary groups is carried out
in detail in [HL].

Let E′/E be a totally real cyclic extension, K′ = K0 ·E′, and let

BCK′(π) = BC(π)1,K′×BC(π2),

where BC(π)1,K′ is the base change, as in [AC], of BC(π)1, for the cyclic extension

K′/K. We let JE
′

, (resp. J
′,E′) be unitary similitude groups (resp. unitary groups)

defined as in §I.1 relative to K′/E′ and satisfying the analogues of (I.1.1)-(I.1.2).

Theorem I.3.5 [C1]. Suppose BC(π)1,K′ is supercuspidal at a non-empty set of

places, including every finite place w at which J
′,E′ is anisotropic. Then there is

an automorphic representation BCE′(π) ∈ Coh(JE′) whose base change to K′, in
the sense of Theorem I.3.3, is isomorphic to BCK′(π).

Moreover, BCE′(π)∞ belongs to the discrete series.

Proof. The first assertion for the unitary group J
′,E′ is a special case of [C1, Propo-

sition 4.11]. Indeed, it suffices to show that BCK′(π) is dual to its Gal(K′/E′)-
conjugate, and this is immediate from the corresponding fact for BC(π). The
assertion for the similitude groups follows easily from this case.

The final assertion is [C1, Corollaire 5.6].

(I.3.6) Clozel’s theorem actually asserts that BC(π)1,K′ descends to an L-packet of

cohomological automorphic representations of JE
′

, which is stable at archimedean
places in the sense that the one can switch freely within the archimedean discrete
series L-packet. Under additional hypotheses we can say more. Let π ∈ Coh(J).
We now suppose

(I.3.6.1) The extension K/E is unramified at all finite primes.

(I.3.6.2) πq is spherical for every rational prime q that does not split in K0.

The proof of the following theorem will appear in [HL]:

Theorem I.3.7 [HL]. Under hypotheses (I.3.6.1) and (I.3.6.2), the multiplicity
m(π) = 1.

**[THIS IS NO LONGER REALLY NECESSARY]
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II. Hecke operators and modular representation theory

II.1. Calculations with Jacquet modules.

In the present section we fix a rational prime q and a q-adic field F , with maximal
orderOF , maximal idealmF , and residue field k(F ), and uniformizing parameter$.
Let H = GL(n, F ) and let B be its standard upper triangular Borel subgroup. Let
P ⊂ GL(n) be the standard parabolic subgroup with Levi decomposition P = LN ,
L = GL(1) × GL(n − 1) with its standard embedding in H. Let Γ = GL(n,OF )
and let r : Γ→GL(n, k(F )) denote the reduction map. We define Γ1 ⊂ Γ0 ⊂ Γ as
in §I.2: the parahoric subgroup Γ0 is the inverse image under r of P (k(F )), and

Γ1 = {g ∈ Γ0 : r(g) =

(

1 ∗
0 ∗n−1

)

}.

We fix a commutative ring R in which q is invertible and let H, H0, and H1 denote
the Hecke algebras of H with respect to Γ, Γ0, and Γ1, respectively, in each case
with R-coefficients. We also let HL denote the Hecke algebra of L(F ) with respect
to its maximal compact subgroup ΓL = Γ ∩ L(F ).

Let z : F×→H denote the embedding of F× as diagonal matrices. The map

a→< a >= z(a)K,

where K = Γ, Γ0, or Γ1, maps F× to a subgroup of the multiplicative group of the
corresponding Hecke algebra. The map <> identifies its image with F×/O×F in the
case of H and H0 and with F×/(1 +OF ) in the case of H1.

Let χ = (χ1, χ2, . . . , χn) be an ordered n-tuple of R-valued characters of F×.
We may regard χ as a character of T = GL(1, F )n, viewed as the Levi factor of B.
Then, by composition with the natural projection, χ defines a character of B. We
let iH,Tχ denote the non-normalized induced representation

iH,Tχ = {f : H→R | f(bh) = χ(b)f(h), ∀b ∈ B, h ∈ H}.

Let | |F : F×→qZ be the absolute value character:

|x|F = |k(F )|−vF (x),

where vF is the valuation on F . Composing with the natural map qZ→R× we
obtain a character ν : F×→R×. Define the modulus character δ : B→R× as
the composition ν ◦ detad where detad : B→F× is the determinant of the adjoint
representation of B on its Lie algebra. We assume q to be a square in R× and
choose a square root

√
q. Then we can define δ

1
2 : B→R×, which we write as an

n-tuple of characters of F×:

δ
1
2 = (δ1, δ2, . . . , δn).

The Weyl group W of GL(n), which we identify with the symmetric group Sn,
acts on the set XR(T ) of R×-valued characters of T by permutation:

w(χ) = (χw(1), χw(2), . . . , χw(n)).
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We define the twisted action

w ∗ χ = w(χ) · δ 1
2w(δ−

1
2 ).

The product δ
1
2w(δ−

1
2 ) does not depend on the choice of

√
q.

We will need the following theorem, due to Bernstein and Zelevinski when R is a
field of characteristic zero and to Vignéras when R is a field of positive characteristic
` 6= q [BZ;V1, III. 1.15]:

Theorem II.1.1. Suppose R = Q` or R = F`. Suppose χ ∈ XR(T ) has the
property that, for all 1 ≤ i, j ≤ n, we have

(II.1.1.2) χiδ
−1
i 6= χjδ

−1
j ν.

Then iH,Tχ is irreducible.

We note that the irreducibility criterion of Theorem II.1.1 does not depend on
the choice of

√
q.

Let Q be a standard parabolic subgroup, with Levi decomposition Q = LQNQ.
For any smooth R[G]-module π we define the (non-normalized) Jacquet module
rH,LQ

π to be πNQ
. Then rH,LQ

π is a smooth LQ module and is admissible if π is.
The parahoric subgroup Γ0 admits an Iwahori decomposition

(II.1.2) Γ0 = (Γ0 ∩N)(ΓL)(Γ0 ∩N).

Note that ΓL ' GL(1, OF ) × GL(n − 1, OF ). Let α0 be an R×-valued character
of GL(1, OF )/(1 + mF ). Then α0 can be extended to an R×-valued character σ
of Γ0 that is trivial on (Γ0 ∩ N)×GL(n− 1, OF )×(Γ0 ∩ N). Let χ ∈ XR(T ) have
the property that χi is unramified for i > 1, and such that χ1 is trivial on 1 +mF .
Write I(χ) = iH,T (χ). We are interested in HomΓ0

(σ, I(χ)).

Lemma II.1.3. Suppose R = Q` or R = F`. Let χ ∈ XR(T ) be as above, and
suppose χ1|GL(1,OF ) = α0. If χ1 is unramified then dimRHomΓ0

(σ, I(χ)) = n; if
χ1 is ramified then dimRHomΓ0

(σ, I(χ)) = 1.

Proof. The calculation is standard but we include it for completeness. By restriction
to Γ we obtain an isomorphism

I(χ)
∼−→ {f : Γ→R | f(bk) = χ(b)f(k), ∀b ∈ B ∩ Γ, k ∈ Γ}.

Let

M(σ) = {f : Γ→R | f(bkβ) = χ(b)σ(β)f(k), ∀b ∈ B ∩ Γ, k ∈ Γ, β ∈ Γ0}.

One checks easily that dimRHomΓ0
(σ, I(χ)) = dimRM(σ). In the unramified

case σ is trivial and we find that dimRM(σ) = #(B ∩ Γ\Γ/Γ0) = n by the Bruhat
decomposition for GL(n, k(F )). Indeed, let Wn−1 denote the Weyl group of GL(n−
1), viewed as a subgroup of W . Let B(mF ) = r(B ∩ Γ) ⊂ GL(n, k(F )), P (mF ) =
r(Γ0) ⊂ GL(n, k(F )). Then the Bruhat decomposition yields

B ∩ Γ\Γ/Γ0 ' B(mF )\GL(n, k(F ))/P (mF ) 'W/Wn−1.
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Let WP ⊂W denote a set of coset representatives of W/Wn−1, so that

Γ = ∪w∈WPC(w); C(w) = (B ∩ Γ) · w · Γ0.

Thus f ∈ M(σ) is determined by its restrictions fw to each C(w). Let a be the
diagonal matrix diag(a1, . . . , an) ∈ B ∩ Γ, with ai ∈ O×F . In the ramified case we
have

χ1(a1)f(w) = f(aw) = f(waw) = σ(aw)f(w) = f(w)

unless w ∈Wn−1. Thus fw ≡ 0 except on the identity coset and dimM(σ) = 1.

Let N0 ⊂ Lie(N(F )) be a lattice in the abelian Lie algebra of N(F ). Let
H−L ⊂ HL denote the subspace of Hecke operators supported on the union of cosets
ΓLT

−ΓL where

T− = {t ∈ T | ad(t−1)(N0) ⊂ N0}.

The elements of T− are said to be expanding.

More generally, we let

HL(σ) = EndLindL,ΓL
σ;

here ind denotes compact induction. Here and in what follows, all endomorphisms
are assumed to commute with R. We can identify HL(σ) with the R-module of
compactly-supported functions b : L(F )→R such that b(khk′) = σ(k)b(h)σ(k′) for
h ∈ L(F ), k, k′ ∈ ΓL. Then the natural algebra structure on HL(σ) inherited from
its definition as endomorphism ring induces the convolution algebra structure on
the space of functions. Similarly, we let

H0(σ) = EndHindH,Γ0
σ;

this is isomorphic to the R-module of compactly-supported functions

b : H(F )→R; b(khk′) = σ(k)b(h)σ(k′), h ∈ H(F ), k, k′ ∈ Γ0.

Then we let HL(σ)− ⊂ HL(σ) be the R-submodule of functions supported on
ΓLT

−ΓL; this algebra is stable under product. (For all this, cf. [V1,I.8.6]).

For any smooth R[H] module π, the space HomH(indH,Γ0
σ, π) is naturally a

right module over H0(σ). By the universal property of compact induction,

HomH (indH,Γ0
σ, π) = HomΓ0

(σ, π),

and therefore the right-hand side is also a right H0(σ)-module. In the same way,
HomΓL

(σ, π) is a right HL(σ)-module when π is a smooth R[L]-module.

The proof of the first part of the following proposition was provided by M.-F.
Vignéras, as were the references for the second part.
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Proposition II.1.4. The notation is as in Lemma II.1.3.
(i) The natural projection I(χ)→rH,LI(χ) induces an isomorphism of R-modules

(II.1.4.1) p : HomΓ0
(σ, I(χ))→HomΓL

(α0 ⊗ 1, rH,LI(χ)).

(ii) The subset H−L ⊂ HL is a subalgebra and there exists a homomorphism

T−H,L : HL(σ)−→H0(σ) such that

p(fT−H,L(b)) = p(f)b.

Here the right actions of the Hecke algebras are defined as above. The homomor-
phism is given on functions b ∈ H−L by

T−H,L(b)(khk′) =

{

0 if khk′ /∈ Γ0T
−Γ0

σ(k)b(h)σ(k′) if h ∈ T−, k, k′ ∈ Γ0.

Proof. (i) We denote by p the natural map (II.1.4.1). Maps like p are known to
be surjective in great generality, and in particular in the present case [V1,II.3.3].
Thus we have to prove injectivity. We first prove injectivity over Q`. Note that the
dimension of the left-hand side is n for χ1 unramified, 1 otherwise. On the other
hand, write

(II.1.4.2) L(F ) = GL(1, F )×Hn−1, Hn−1 = GL(n− 1, F ),

and let Tn−1 = T ∩Hn−1, the intersection taking place in L(F ). With this notation,
the semisimplification of rH,LI(χ) as admissible H-module is the direct sum

(II.1.4.3) rH,LI(χ)ss
∼−→ ⊕ni=1 χi ⊗ iHn−1,Tn−1

(χi)ss,

where χi = (χ1, . . . , χ̂i, . . . , χn), the tensor product corresponding to the decom-
position (II.1.4.2). In the unramified case each summand has a one-dimensional
ΓL-fixed subspace. Over Q` the action of ΓL is semisimple, hence the right hand
side of (II.1.4.1) has dimension n, and p is an isomorphism for reasons of dimension.
In the ramified case we have

dimHomΓL
(α0 ⊗ 1, χ1 ⊗ iHn−1,Tn−1

(χ1)ss) = 1;

dimHomΓL
(α0 ⊗ 1, χi ⊗ iHn−1,Tn−1

(χi)ss) = 0, i 6= 1.

This is because χi is ramified for i 6= 1. Thus again we have equality of dimensions
in (II.1.4.1). This completes the proof of (i) over Q`.

We complete the proof for F` in the unramified case, the ramified case being
similar. Note first that the result for Q` implies the corresponding result over

R = Z`, the integral closure of Z` in Q`. Indeed, let χ take values in Z
×
` and write

I(χ)Z`
for the corresponding induced representation, viewed as a free Z`-module.

Let I(χ)Q`
denote the induced representation with Q`-coefficients. It is known that

I(χ)Γ0

Z`
is a lattice in I(χ)Γ0

Q`

, hence is free of rank n. It is also known that rH,LI(χ)Γ0

Z`
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is a lattice in rH,LI(χ)Γ0

Q`

[V1, II.4.14(d)], hence is also free of rank n. Moreover,

the map p with coefficients in Z` is still surjective (cf. [V1, II 3.3]), hence is an
isomorphism by considerations of rank.

Finally, we suppose R = F`. Reduction modulo ` defines an injection

(II.1.4.4) rH,LI(χ)Γ0

Z`
⊗ F` → rH,LI(χ)Γ0

F`
.

But we have seen that rH,LI(χ)Γ0

Z`
is free of rank n. On the other hand, the right-

hand side of (II.1.4.4) is of dimension ≤ n. Indeed, the analogue of (II.1.4.3)
remains true over F`, and the ΓL-fixed subspace of the right-hand side of (II.1.4.3)

is always of dimension n. Thus dim rH,LI(χ)Γ0

F`
= n. But the dimension over F`

of the left-hand side of (II.1.4.1) still equals n, and we have already seen that p is
surjective. This completes the proof of (i).

Assertion (ii) is a special case of [V2,Theorem II.4] and [V2,Lemma II.10.1].

For i = 1, . . . , n, we write t($)i for the diagonal matrix with entry $−1 in the
ith place and 1 elsewhere, and let UL ∈ HL denote the function equal to 1 on
ΓLt($)1ΓL and 0 elsewhere. Then t($)1 belong to T−, hence UL ∈ H−L . We let

U = T−H,L(UL) ∈ H?(σ), for ? = 0, 1.

For the remainder of this section we assume q ≡ 1 (mod `). Then the characters
ν and δi, i = 1, . . . , n are trivial mod `. We restrict attention to the case of
unramified χ for the time being, so σ is the trivial representation. We also work over
R = F`. Let χ and I(χ) be as in the statement of Proposition II.1.4. The operator
UL has support in the center of L(F ), and acts on each constituent of the right-
hand side of II.1.4.3 as the scalar χi($)−1. It follows from (ii) of Proposition II.1.4
that U , viewed as a linear operator on the n-dimensional space HomΓ0

(σ, I(χ)) has
the n generalized eigenvalues χi($)−1 (counted with multiplicity). Let β1, . . . , βr
denote the r distinct χi, mr the multiplicity of βr in χ, and assume the χi are
ordered so that

(II.1.5) χ1 = · · · = χm1
= β1; . . . , χm1+···+mj−1

= · · · = χm1+···+mj
= βj ; . . .

For any R-valued character β of F×, and any positive integer m, let β[m] be the
1-dimensional representation β ◦ det of GL(m,F ). Following the notation of [V2],
we write

χ1×χ2× · · ·×χn = iH,Tχ.

More generally, we let n = m1 + · · ·+ mr be a partition, P = P (m1, . . . ,mr) the
corresponding standard parabolic subgroup of H, and let

β1[m1]× . . .×βr[mr]

denote the full induced representation (when q ≡ 1 (mod `) normalized and non-
normalized induction coincide) from the representation β1[m1]⊗· · ·⊗βr[mr] of the
standard Levi factor GL(m1, F )× . . .GL(mr, F ) of P.

A representation of H is spherical if it contains a non-zero fixed vector under Γ.
Obviously β1[m1]× . . .×βr[mr] is a spherical representation. Conversely,
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Proposition II.1.6 [V2]. Assume R = F` and q ≡ 1 (mod `). Assume βi 6= βj
for i 6= j. Then

(i) β1[m1]× . . .×βr[mr] is irreducible;
(ii) Every irreducible spherical R-representation of H is obtained in this way.
(iii) dimRHomΓL

(1, rH,Lβ1[m1]× . . .×βr[mr]) = r, and the operator UL has the
r distinct eigenvalues βi($)−1, i = 1, . . . , r.

(iv) The natural projection β1[m1]× . . .×βr[mr]→rH,L β1[m1]× . . .×βr[mr] in-
duces an isomorphism of R-modules

HomΓ0
(1, β1[m1]× . . .×βr[mr])

∼−→ HomΓL
(1, rH,Lβ1[m1]× . . .×βr[mr])

and the operator U on the left-hand side has the r-distinct eigenvalues βi($)−1,
i = 1, . . . , r.

Proof. Assertions (i) and (ii) are proved in VI.3 of [V2]. We prove (iii) and (iv)

together. First, we can lift βi to a character β̃i with values in Z
×

` and define the

representations β̃i[mi] and β̃1[m1]× . . .×β̃r[mr] over Q`, by the same procedure
as above. It is well known that, for appropriate characteristic zero lifts χ̃j of the
characters χj of (II.1.5), there is an embedding

f : β̃1[m1]× . . .×β̃r[mr] ↪→ χ̃1× . . .×χ̃n.

Write π̃ = β̃1[m1]× . . .×β̃r[mr], π̃
′ = χ̃1× . . .×χ̃n, and let π̃′′ denote π̃′/f(π̃).

There is a commutative diagram
(II.1.6.1)

0 −−−−→ π̃Γ0
f−−−−→ (π̃′)Γ0 −−−−→ (π̃′′)Γ0 −−−−→ 0

g





y
g′





y
g′′





y

0 −−−−→ rH,L(π̃)ΓL −−−−→ rH,L(π̃′)ΓL −−−−→ rH,L(π̃′′)ΓL −−−−→ 0

Exactness of the bottom row follows from exactness of the Jacquet functors. Now
we have already seen in Proposition II.1.4 that g′ is an isomorphism. On the other
hand, all the vertical arrows are surjective [V1,II.3.3]; hence they are isomorphisms.
This proves the analogue of the first part of (iv) over Q`. The proof over F` then
proceeds as in the proof of Proposition II.1.4.

In what follows, we let π = β1[m1]× . . .×βr[mr]. It follows from what we have
shown thus far that the dimension in (iii) is equal to

dimRHomΓ0
(1, π).

Using the fact that H = Γ ·P, it follows by standard arguments that this dimension
equals the cardinality of Γ ∩ P\Γ/Γ0. The Bruhat decomposition then shows that
this is equal to

(II.1.6.2) |Sm1
× · · ·Smr

\Sn/S1×Sn−1|,

where Sm is the symmetric group on m letters. It is elementary that (II.1.6.2)
equals r.
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It remains to prove the assertions about the eigenvalues of UL and U . Indeed,
Proposition II.1.4 shows that the assertions for U and for UL are equivalent. Follow-
ing a suggestion of Vignéras, we first replace Γ0 by the standard Iwahori subgroup
I0; this is the subgroup of Γ of matrices whose reductions (mod mF ) are upper
triangular. There is a commutative diagram analogous to (II.1.6.1) when Γ0 is
replaced by I0 and L is replaced by the diagonal torus T ; thus ΓT is the maximal
compact subgroup of T . In this case, the above arguments (cf. [V2, Lemma VI.2
(b)]) show that

(II.1.6.3) πI0 = |Sm1
× · · ·Smr

\Sn| =
n!

m1! · · · ·mr!
.

Let HR(n, 1) denote the Iwahori-Hecke algebra for GL(n) over R = F`, with
the parameter q = 1. Then πI0 is an HR(n, 1)-module. Let {Xi|i = 1, . . . , n},
{Sj |j = 1, . . . , n− 1} be the generators of HR(n, 1) defined in [V1,I.2.14]. Here Xi

is the product Ti · (Ti−1)
−1, where Tj is the I0-double coset of the diagonal matrix

∏

i≤j t($)i, with t($)i as above, multiplied by a power of q which under our hy-
potheses equals 1. Similarly Sj is the I0-double coset of the standard transposition
sj in the Weyl group of GL(n) which exchanges j and j + 1. The Sj generate the
Hecke algebra H0

R(n, 1) of GL(n, k(w)) relative to its Borel subgroup. Since q = 1
in R, this is just the R-group algebra R[Sn]. The (Xi)

± generate a commutative
subalgebra A ⊂ HR(n, 1), normalized by H0

R(n, 1), and we let πI0ss denote the semi-
simplification of πI0 as A-module. Then πI0ss is a sum of characters of A, the weights
of π, which we identify with unramified characters of the diagonal torus T .

By construction, the character χ occurs non-trivially in πI0ss as the character
on the standard function in the induced representation β1[m1]× . . .×βr[mr] which
equals 1 on Γ. Now the Weyl group Sn acts on A by permuting the Xi, and it
follows from Corollary 2.12 of [V3] that, if s ∈ Sn, then s(χ) is also a weight of
π. More precisely, the reference cited only applies explicitly when s is a simple
transposition, but we may induct on the number of simple transpositions occuring
in a minimal factorization of an arbitrary s. The set of distinct s(χ), as s varies
through Sn, has cardinality precisely equal to n!

m1!····mr ! , which is just the dimension

of πI0 . In particular, each character of A in the set {s(χ)} occurs with multiplicity
one, and the representation πI0 of A is already semi-simple.

Note that the set of {s(χ)} is just the set of n-tuples of characters in which
βi occurs mi times, with arbitrary order. On the other hand, let HT denote the
Hecke algebra of T relative to its maximal compact subgroup. Then there is a
homomorphism t−H,T : HT→HR(n, 1) satisfying the analogue of Proposition II.1.4

(ii) (cf. [V2, Theorem II.6]); in particular, we have

(II.1.6.4) t−H,T (t($)1) = X1.

It follows that, for each i = 1, . . . , n, there is at least one s ∈ Sn for which
s(χ)(X1) = βi($).

Now πΓ0 ⊂ πI0 is the subspace of invariants under the subgroup generated by the
transpositions sj , j = 2, . . . , n − 1, hence of the double cosets Sj , j = 2, . . . , n − 1
(since q = 1 in R). On the other hand, the operator U is the Γ0 double coset



19

containing X1; it is of the form
∑

S · X1 · S′, where S and S′ run through finite
sets of finite products of elements of {Sj |j > 1}. But all such S commute with X1.
The set of eigenvalues of U on πΓ0 thus equals the set of eigenvalues of X1 on πΓ0 ,
hence is contained in the set of eigenvalues of X1 on πI0 . It follows from the above
description in terms of the {s(χ)} that the latter set is precisely the set indicated
in (iv).

Note that if we assume ` > n − 1 we can conclude immediately. Indeed, by
projecting πI0 on its Sn−1-invariant subspace πΓ0 , where Sn−1 is generated by
the sj with j > 1, we see that X1 already has r distinct eigenvalues on the latter
space. But the above argument shows that every eigenvalue of X1 on πΓ0 is also
an eigenvalue of U .

In general, we will show in the course of the proof of the following lemma – the
reader can check that this involves no circularity – that

(II.1.6.5) U has at least r eigenvalues on πΓ0 .

This suffices to complete the proof.

The above proof actually provides more information about the spherical vector.

Lemma II.1.7. We retain the hypotheses of the previous proposition.
(i) Let π = β1[m1]× . . .×βr[mr] and let v0 ∈ πΓ be a non-zero spherical vector.

Then v0 generates the Iwahori-fixed subspace πI0 as a module over the commutative
algebra A.

(ii) The spherical vector v0 generates the Γ0-fixed subspace πΓ0 over the algebra
R[U ] of polynomials in the operator U .

Proof. It follows from the irreducibility of π that v0 generates πI0 as module over
HR(n, 1). We may characterize R ·v0 ⊂ πI0 as the fixed subspace under H0

R(n, 1) =
R[Sn]. But we have seen in the proof of Proposition II.1.6 that Sn acts transitively
on the weights of π. It then follows formally that every weight of π occurs in the
A-module generated by v0. Since the weights have multiplicity one, this implies (i).

Now let V1 ⊂ πI0 denote the R[X1]-module generated by v0. Since the remaining
Xi’s commute with X1, the above argument shows that the r distinct eigenvalues
βi(X1), i = 1, . . . , r, all occur in V1. Now there is a commutative diagram

(II.1.7.1)

πΓ0
i−−−−→ πI0

pG,L





y

pG,T





y

rH,Lπ
ΓL

pL,T−−−−→ rH,Tπ.

Here i is the inclusion, pG,L is the isomorphism of Proposition II.1.4, and the
other two maps are constructed analogously via the corresponding Jacquet functors.
Applying the analogue of Proposition II.1.4 (ii) for the Levi subgroup T of L (cf.
[V2, loc. cit.]), and recalling (II.1.6.4), we find that

(II.1.7.2)
pL,T ◦ pG,L(v0U) = pL,T ◦ pG,L(v0t($)1)

= pG,T (i(v0)X1).
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We now see that U has r distinct eigenvalues on the subspace R[U ] ·v0 ⊂ πI0 , which
implies II.1.6.5 and completes the proof of Proposition II.1.6. Since U fixes πΓ0 ,
this also completes the proof of the lemma.

We now replace F` by the finite field k of characteristic `, and let R be a finite
local Z`-algebra with maximal ideal mR and residue field k; let x 7→ x : R→k
denote reduction mod mR. Let KR = R⊗Q`; we assume KR to be a finite direct
sum ⊕iKi of `-adic fields with the same residue field, although there is probably
no reason to exclude nilpotents. Let mj denote the multiplicity of the character

βj := • ◦ βj . Suppose m1 = 1, so that χ1 = β1 is distinct from the other characters

mod mR, and let λ = χ1($) ∈ R×. Let π be an admissible R[H]-module generated
by a spherical vector, say v, corresponding to the same character of H as I(χ).
We assume π ⊗Q` is a direct sum ⊕πi where πi is an irreducible spherical Ki[H]-
module corresponding to the Ki,×-valued character χi, say. Thus each χi takes
values in the integers of Ki and reduces modulo the maximal ideal to χ.

It follows from Proposition II.1.6 that there is a surjective morphism

(II.1.8) φ : π→β1[m1]× . . .×βr[mr]

of k[H]-modules, the right-hand side being the irreducible quotient of π, gen-
erated by the image of v. Let v0 generate the 1-dimensional U -eigenspace of
[β1[m1]× . . .×βr[mr]

Γ0 with eigenvalue λ. It follows from Lemma II.1.7 that
v0 ∈ φ(k[U ]v). Then, letting

(II.1.9) X =
∏

i>1

U − βi($)−1

λ− βi($)−1
,

it is clear that

(II.1.10) X(v) ≡ v0 (mod mR + ker(φ)).

In particular, X(v) defines a lifting of the λ-eigenspace of U to π.
Let V0 ⊂ π denote the R-submodule on which U acts with eigenvalue λ; i.e.,

V0 is the intersection of π with the corresponding U -eigenspaces in πi.

Lemma II.1.11. . Define π, χ, and βi as above, and assume χ1 has multiplicity
one mod mR.

(i) The R-submodules πΓ and V0 of πΓ0 are free of rank 1.

(ii) The limit X∞ = limm→∞X
`m exists as a continuous operator on πG0 and

defines a projection onto v0. The restriction of X∞ to the spherical subspace πG

defines an isomorphism

X∞ : πG→v0

of R-modules.

Proof. Part (i) follows from Nakayama’s lemma and the corresponding facts for
induced representations of H over k. Part (ii) follows from (II.1.10) by successive
approximation modulo increasing powers of mR.
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II.2. Notation for Hecke algebras.

Let CS(Q) denote the set of all primes of Q, and let CS+(Q) be the subset of
finite primes that split in K0 and are unramified in K. For v ∈ CS+(Q) of residue
characteristic p we choose a place v1 of K0 above v, and let Σ = Σ(v1) be the set
of primes of K dividing v1. Then we have

(II.2.1) Gv ∼=
∏

w∈Σ

GL(n,Kw)×Q×
v .

The Hecke algebra Tv of Gv relative to any maximal compact subgroup (conjugate
to

∏

w∈ΣGL(n,OKw
)×Z×v ) is isomorphic to a polynomial algebra over Z[ 1

p ] in the

variables
{Ti,w, i = 1, . . . , n, T−1

n,w, w ∈ Σ;T0,v, T
−1
0,v }.

Here Z[T0,v, T
−1
0,v ] is the Hecke algebra of the factor Q×

v in II.2.1; by abuse of
language we refer to the Ti,w as the Hecke operators at w, or at the prime of E
below w. The Hecke operators at w are normalized so that

(II.2.1) Pw(q−s) = 1 +

n
∑

i=1

(−1)iTi,wq
−is

is the local Euler factor at w of the motivically normalized standard L-function of
GL(n). Here q is the order of the residue field k(w) and the inverse roots of Pw(X)
are the Satake parameters, multiplied by q(n−1)/2. Up to canonical isomorphism
the algebra Tv does not depend on the choice of v1 above v.

The global Hecke algebra T is the tensor product over v ∈ CS+(Q) of the Tv.
If S is a finite subset of CS+(Q), we let TS ⊂ T be the subalgebra generated by
the Tv for v /∈ S.

Suppose q ∈ CS+(Q), v1 a divisor of q in K0 and let Σ(v1) be as above. For
q ∈ Σ(v1), we consider the parabolic subgroup P = LN of type (1, n− 1) in H =
GL(n,Kw), as in §II.1, and let Γ0 be the corresponding parahoric subgroup. Let
T ′i,q, 1 ≤ i ≤ n−1, denote the Hecke operator as above for the factor GL(n−1,Kq)
of L, and define

(II.2.2) Vi,q = T−H,L(T ′,−1
n−1,q · T ′n−i,q) ∈ H?, 1 ≤ i ≤ n− 1, ? = 0, 1.

Here we have realized T ′,−1
n−1,q · T ′n−i,q as an element of H−L in the obvious way.

II.2.3. Let $ ∈ Kw be a uniformizer. Suppose R = Q` and χ ∈ XR(T ) are as
in §II.1, and let I(χ) be the induced representation with coefficients in R. Let
a ∈ rH,LI(χ) be a non-zero eigenvector in the χ1($

−1)-eigenspace for the operator
U . Assume a is a spherical vector for ΓL; then a is unique up to scalar multiples.
Moreover, a is an eigenvector for the Hecke operators T ′i,q defined above. We denote

by bi(χ;χ1) the eigenvalue of T ′,−1
n−1,q · T ′n−i,q, acting on a.

II.2.4: The U-operator. Choose q ∈ Q, and define Γ1,q ⊂ GL(n,Zq) as in §I.2.
We consider the double coset Uq = Γ1,q · t($)1Γ1,q ⊂ GL(n,Qq). Here and in what

follows we are identifying GL(n,Qq) = U(D#)q with D#,×
q(2) . The identification with
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D#,×
q(1) identifies Uq with the double coset Γ′1,q · (t($)1)

−1Γ′1,q, where Γ′1,q consists

of invertible matrices over Zq congruent to

(

1 0
∗ ∗n−1

)

(mod q).

One verifies immediately that

(II.2.4.1) Uq =
∐

Γ1,q · t($)1 ·
(

1 b
0 In−1

)

,

where b = (b1, . . . , bn−1) runs through (Zq/qZq)
n−1. Write W = Qn

q . Let Λ =

Znq ⊂W be the standard lattice, and let λ denote the row vector (q−1, 1, . . . , 1), so
that

Γ1,q = {g ∈ GL(W ) | g(Λ) = Λ, g(λ) = λ (mod ()Λ)}.
Let Λ′ be the lattice generated by Λ and λ. Then the description (III.2.2) shows
that, in the standard right action on lattices, we have

(II.2.4.2) (Λ, λ) · Uq = {(Λ′, λ′) |qλ′ = λ (mod Λ))}.
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III. Unitary automorphic forms and λ-adic representations

III.1. Review of λ-adic representations.

We return to the situation of §I. Let SC, Q, r, K1,Q, V , and σ be as in I.2. We
assume throughout that ` is unramified in K and that K1,Q contains a hyperspecial
maximal compact subgroup of J(Q`). The primes in Q are denoted w rather than
q, and the primes above them in K are denoted w1 and w2. The identification
Γw ' GL(n,Qq) for w ∈ Q is made via w2, so that K0,Q is upper triangular
parahoric. Let π ∈ Coh(J, V ), in the notation of I.3, and assume π satisfies the
hypothesis of Proposition I.2.10:

(III.1.1) HomK1,Q
(σ, π) 6= 0.

At primes that ramify in K/Q we assume πv to be spherical with respect to a very
special compact open subgroup Kv, cf. I.3.4.

We assume π satisfies either condition (i) or (ii) of Theorem I.3.3. Then π admits
an automorphic base change. Let Π be the automorphic representation of GL(n)K
denoted BC(π)1 in I.3. It follows as in [CL], *** that Π satisfies the following three
hypotheses:

(i) Π∞ is a cohomological representation

(ii) Π ◦ c ∼−→ Π∨ (Π is θ stable, where θ is the involution of J ′E corresponding
to the group J ′);

(iii) For some finite place v of K, Πv is supercuspidal

Let E(π) be a number field which is simultaneously a field of definition for πf
and V , and let λ be a prime of E(π) dividing `. Let O = Oλ be the ring of integers
of Eλ, mλ its maximal ideal, and k = k(λ) its residue field. Under these hypotheses,
it is shown in [HT1], following Clozel and Kottwitz, how to associate a continuous
representation1

rρ(π) : GK→GL(n,O).

where henceforth we write GK for Gal(K/K). In our applications the residual
representation over k will be irreducible, so the lattice will be unique up to scalar
multiplication.

Next, we let GE denote Gal(E/E), and define

ρ(π) = IndK/Erρ(π)

to be the induced 2n-dimensional representation of GE , acting on the O-module
IndK/EAλ[πf ]. Finally, let

ρ = ρ(π) : Gal(E/E) → Aut(IndK/EAλ[πf ]⊗O k)

denote the residual representation, and let rρ = rρ(π) denote the restriction of ρ to
GK.

1More precisely, [HT1] defines a Galois representation over some finite extension of E(π). Since
the Galois group is compact, it necessarily stabilizes an integer lattice. For the purposes of this

paper the descent to E(π) is not strictly necessary, however COMPLETE???
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Proposition III.1.3. Suppose SC is non-empty and contains a place w such that
πw is either supercuspidal (if J ′w

∼= GL(n,Ew)) or corresponds under the Jacquet-
Langlands correspondence to a supercuspidal representation of GL(n,Ew) (if J ′w
is isomorphic to the multiplicative group of a division algebra). Then rρ(π) is
absolutely irreducible. Moreover, suppose ` - |GL(n, k(w))| (i.e., ` is banal for
GL(n,Ew), in the sense of Vignéras [V1]). Then rρ(π) is absolutely irreducible.

The proof will be given at the end of this section.
For any prime v of Q that splits in K0 and is unramified in K, and such that

πv is unramified we let φv,π : Tv → E(π) denote the character by which the local
unramified Hecke algebra acts on πKv

v . Let S(π) be the set of all such unramified
primes, let TS be the corresponding global Hecke algebra, as in §II.2, and let
φπ : TS → E(π) be the corresponding character; φπ gives the natural action of
TS(π) on πK . If w is a prime of E dividing some prime in S(π), we let

(III.1.4) φπ(Pw)(X) = 1 +

n
∑

i=1

(−1)iφ(π)(Ti,w)Xi

in the notation of (II.2.1).

Theorem III.1.5. Suppose π contains a fixed vector for a hyperspecial maximal
compact subgroup of Jq(r) (i.e., not only a fixed vector for Kq(r), as implied by

(III.1.1). Let Sbad be the set of primes of K dividing primes in Q ∪ SC or of
residue characteristic `. Then the representation rρ(π) is unramified outside Sbad.
Moreover, for all but finitely many primes w of E dividing rational primes in S(π),
there is a prime w1 of K dividing w and such that the arithmetic Frobenius Frobw1

satisfies
φπ(Pw)(Frobw1

) = 0.

Remark. The choice of w1 in the above theorem is determined as in II.2 by the
choice of identification of J ′w with a general linear group. The base change of π to
K is conjugate self-dual, and one verifies that, if w2 is the other prime dividing w,
then φπ(Pw)(qn−1Frob−1

w2
) = 0. Bear in mind also that the natural action on the

cohomology of the Shimura variety is that of the Galois group of Q over the reflex
field, and that there is an implicit identification of the reflex field with K.

An alternative way of phrasing this theorem is in terms of partial L-functions:
there is a finite set S of finite primes such that we have the equality of Euler
products

(III.1.5.1) LS(s, rρ(π)) = LS(s− n− 1

2
, BCK(π)).

Here the right-hand side is the standard L-function with the unitary (Langlands)
normalization; the superscript S indicates that factors at S have been removed. As
mentioned above, we have normalized rρ to make (III.1.5.1) true; cf. the discussion
on p. 100 ff. of [H1].

Proof. The proof of this theorem is mainly due to Kottwitz, and is contained in [K2].
Specifically, Kottwitz proves there that rρ(π) is unramified outside Sbad, except
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possibly at primes of K ramified over Q, and shows that the arithmetic Frobenius
satisfies the Hecke polynomial for all but finitely many unramified places. The
proof is completed in Theorem VII.1.9 of [HT1]; by (2) of that theorem, it suffices
to verify that Πv is unramified for all v /∈ Q∪SC, and this follows from Proposition
I.3.4.

For each archimedean place τ of E, let

a(τ) = (a1(τ) ≥ · · · ≥ an(τ))

be the highest weight of the τ -component Vτ of the representation V of J ′(R), with
respect to some maximal torus; let a = (a(τ))τ∈ΣE

. For each τ , let

(III.1.6) n(τ, V ) = inf{n1 + n2 | Vτ ⊂ St⊗n1 ⊗ St⊗n2,∗}

where St denotes the standard representation of GL(n) and inclusion is as a direct
summand. Let n(V ) = n− 1 +

∑

τ∈ΣE
n(τ, V ).

Proposition III.1.7. Under the hypotheses of Theorem III.1.5, the representation
ρ(π) is crystalline at all primes of K dividing `. Suppose moreover that ` > n(V )+1.
Then the representation on Aλ[πf ] is crystalline in the sense of belonging to the
category RepO,cris,[0,`−1[ defined in IV.4, below.

Proof. Let w be a prime of K dividing `, Ow the w-adic completion of OK. By
`-adic Hodge theory [FM,F] it suffices to show that Aλ[πf ] occurs as a Grothen-
dieck submotive of the cohomology of a smooth scheme AV of dimension n(V )
over Spec Ow, where the projectors are given by correspondences with `-integral
coefficients. If V is the trivial representation then this is clear. The general case
requires a standard argument to relate Mλ[πf ] to the cohomology of a Kuga fiber
variety. We omit this argument, since only the case of trivial V will be considered
in the remainder of this paper.

Theorem III.1.8. Let w ∈ Q of residue characteristic q. Let w1 be the prime
of K above w and let Zw ⊂ GE denote a decomposition group. Suppose πw is in
case (b) of Proposition I.2.10. Let (α, β1, . . . , βn−1) be the corresponding n-tuple of
characters. Then rρ(π)|Zw

breaks up as a direct sum

rρ(π)|Zw

∼−→ A⊕ B.

Here B is an unramified representation and the inertia subgroup Iw of Zw acts on A
via the restriction to Iw of the character associated to α via local class field theory.

This is a special case of Theorem VII.1.7 of [HT1]; an earlier proof has been
published in [HT2].
Proof of Proposition III.1.3 Now let w ∈ SC be the place mentioned in the state-
ment of the proposition. Let σ(πw) denote the `-adic representation of the de-
composition group Zw associated to πw by the local Langlands correspondence
[HT1,He]. Proposition III.1.3 is a consequence of the following two theorems and
the multiplicity one theorem (Theorem I.3.7).
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Theorem III.1.9 [H1,§3; HT1]. Under the hypotheses of this section, let w ∈
SC. Then rρ(π)|Zw

∼= σ(πw).

Theorem III.1.10. Let F be a p-adic field, p 6= `, and let τ be a supercuspidal
representation of GL(n, F ) with coefficients in the `-adic field L, with continuous
central character ωτ .

(a)([BHK], Theorem 3.3) Let σ(τ) be the `-adic representation of WF associated
to τ by the correspondence of [H1]. Then σ(τ) is irreducible.

(b) ([V3], 1.20) Moreover, suppose ωτ is `-adically integral, and suppose ` is
banal for GL(n, F ). Then the image of σ(τ) fixes a lattice A over the integer ring
OL ⊂ L, and the residual representation σ(τ) on A⊗ k(L) is irreducible; here k(L)
is the residue field of OL.

Proof. The article [BHK], where part (a) is stated as Theorem 3.3, only treats
the case of characteristic zero coefficients. The argument in 1.20 of [V3] shows
that the semisimplified reduction (mod `) decomposes as the sum of m irreducible
representations of dimension e = n

m
. Here if m > 1 then m is a divisor of n of

the form `y · ε(|k(E)|d), where y is a non-negative integer, necessarily equal to 0
since ` > n (` is banal). Next, d is a divisor of e, E is a tamely ramified extension
of F , with residue field k(E), such that [E : F ] = e

d
, and ε(•) is the order of the

integer • in F×` . Thus |k(F )|e = |k(E)|d, hence m = ε(|k(E)|d) = ε(|k(F )| n
m ). The

hypothesis that ` is banal implies that ε(|k(F )|) > n, thus that ε(|k(F )| n
m > m,

which is a contradiction unless m = 1. In other words, σ(τ) is irreducible.

III.2. Representations over the Hecke algebra

We now introduce the `-adic Hecke algebras of operators on spaces of automor-
phic forms; these will be indicated by T’s (as opposed to T’s). Fix a π ∈ Coh(J, V )
as above, and let S be a finite set of rational primes including ` and all primes bad
for π. We will allow S to grow as necessary; in particular, when we choose a finite
set Q of auxiliary primes we will assume that S contains Q. Let TS be the tensor
product over all Tv as in §II.2, where v /∈ S runs through rational primes that
split in K0. We define σ and ΛWσ

for π as in §I.2.8. Then TS acts on the modules
A`(J,ΛWσ

, K) of `-adic automorphic forms, introduced in §I.2, when K = K0,Q

or K1,Q. We let TK,σ denote the complete Z`-subalgebra of End(A`(J,ΛWσ
, K))

generated by TS and by the operators Uq and Vi,q, defined as in §§III.2 and II.2,
respectively, for q ∈ Q, i = 1, . . . , n− 1.

Define K
[`]
1,Q ⊂ K0,Q as in §I.2. When K = K0,Q, (resp. K

[`]
1,Q) we write T0(Q)

(resp. T1(Q)) for TK,σ. It follows from the characteristic zero theory that the
algebras Ti(Q) ⊗Z`

Q` are semisimple, i = 0, 1. The choice of a component m of
Ti(Q) ⊗Z`

Q` determines the local Galois representation rρ(π) locally at all but
finitely many primes that split in K/E, for any π that corresponding to m. The set
of such primes has Dirichlet density one, hence determines rρ(π), and therefore the
partial L-function LS(s− n−1

2 , BCK(π)) via formula III.1.5.1, for some finite set S
of bad primes.

We now fix i = 0 or 1 and let T denote the complete subalgebra of Ti(Q) for
i = 0, 1 generated only by the unramified Hecke operators in TS. Let m denote a
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maximal ideal of Ti(Q), and denote by Lm the localization of A`(J,ΛWσ
, K) at m;

in §V this will be denoted Li,Q. Let M(m) denote the set of distinct irreducible
components of Lm⊗Q` and let C(m) denote the corresponding set of automorphic
representations of J ; we assume our chosen π belongs to C(m). For π′ ∈ C(m)
we let E(π′) denote the corresponding direct factor of T ⊗ Q`. Then the λ-adic
representation ρ(π′) can be realized over E(π′).

Say there are r distinct elements in M(m), and let {π1, . . . , πr} be a corre-
sponding set of elements of C(m). The sum of the `-adic representations rρ(πi)
for i = 1, . . . , r can be viewed ad hoc as a E(π1) × · · · × E(πr) = T ⊗ Q`-module.
Denote this Hecke module V (m), with action rρ(m) of Gal(Q/K).

Proposition III.2.1. Assume the residual representation rρ(π) is absolutely irre-

ducible. Then the action of Gal(Q/K) on V (m) can be realized over the localization
Tm of T at m.

Proof. This is a simple application of Carayol’s theorem [Ca, Théorème 1.2]. By
construction, the traces of rρ(m)(Frobw) lie in Tm for almost all w that split in

K/E. This is a dense subset of Gal(Q/K). It is now clear that rρ(m) satisfies the
hypotheses of Carayol’s theorem, the most important being absolute irreducibility
of the residual representation.

III.3. Action of complex conjugation.

Let k be a field of characteristic 6= 2, V an n-dimensional vector space over k,
and let rφ : GK → GL(V ) be an irreducible representation. Let c ∈ GE be any
complex conjugation, and let φc denote the representation g 7→ φ(cgc−1). Assume
there exists a character χ : GE→k× such that

(III.3.1) rcφ
∼= řφ ⊗ χ

as representations of GE . Choosing dual bases, we identify V and V̌ with kn. Then
for g ∈ GK,

(III.3.2) φ(g) = (rφ(g), řφ · χ(g)) ∈ GL(n, k)×GL(n, k)

lies in the group G̃(k) defined in (I.1.5).
There is an isomorphism B : V̌→V intertwining the representation řφ⊗χ of GK

on V̌ with the representation rcφ on V :

(III.3.3) Břφ · χ(g)B−1 = rcφ(g).

By Schur’s Lemma B is unique up to scalar multiples.

Lemma III.3.4. The intertwining map B is either symmetric or skew-symmetric,
and this is independent of the choice of B and of the complex conjugation c.

Proof.. When χ is the trivial character, this follows from Lemma 15.1.1 of [R2],
bearing in mind that c2 = 1. The same proof works for general χ.
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Let ε(rφ) = 1 if B is symmetric, = −1 if B is skewsymmetric. Evidently ε(rφ) = 1
if n is odd. In terms of the chosen bases, we identify B with an invertible n × n
matrix. Then it follows from Lemma III.3.4 that the element
(III.3.5)
φ(c) = (B,B−1) n c = (B, tB−1 · ε(rφ)) n c ∈ [GL(n, k)×GL(n, k)] nGal(K/E)

actually belongs to G̃(k). One verifies immediately that

φ(c)2 = 1

and (III.3.3) translates into the relation

φ(c)φ(g)φ(c)−1 = φ(cgc−1).

Thus

Lemma III.3.6. The map

φ : GE ∼= GK n {1, c} → G̃(k)

is a homomorphism of groups.

We return to the notation of §III.1. It follows from (III.1.5.1) and Chebotarev
density that rφ = rρ(π) satisfies (III.3.1) with χ = ω1−n, where ω is the cyclotomic
character. Let rρ(π)→GL(n,O) be as in §III.1. Then the argument above applies
to yield

Corollary III.3.7. Suppose SC is non-empty, so rρ(π) is absolutely irreducible.

Then ρ(π) factors through a homomorphism to the L-group G̃(O). More precisely,
there is a sequence of maps

Gal(E/E) → G̃(O) → Aut(IndK/EAλ[πf ])

whose composite is equivalent to ρ(π). Moreover, the restriction to GK of the com-
posite ν ◦ ρ(π) : Gal(E/E)→O× equals the (1− n)th power of the cyclotomic char-
acter; here ν is the similitude character defined at the end of §I.1.

Let

(III.3.8) ωπ(1− n) = ν ◦ ρ(π)

be the character of GE defined by Corollary III.3.7. It is determined by its restric-
tion to GK and by the formula

(III.3.9) ωπ(1− n)(c) = ε(rρ(π)),

which is immediate from (III.3.5).
Let ad rρ(π) (resp. ad rρ) denote the adjoint representation GE on the Lie

algebra M(n, k) of G̃(k) (resp. on M(n,O)). It is immediate that

ad rρ(π)(c)(X) = −BtXB−1, X ∈M(n, k);

the same formula holds for ad rρ.
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Lemma III.3.10. Let c denote any complex conjugation in GE . Then the dimen-

sion of the +1-eigenspace of ad rρ(π)(c) equals n(n−1)
2

if ε(rφ) = 1, n
2

2
if ε(rφ) = −1.

The same formula holds for ad rρ.

In particular, the dimension is always ≥ n(n−1)
2 .

Proof. This is an elementary calculation.

The results of the present section apply to the representations over the Hecke
algebras constructed in §III.2. In particular, the representation of GK constructed
in Proposition III.2.1 extends to a homomorphism from GE to G̃(Tm).



30

IV. Deformation of Galois representations

IV.1. Definition of the deformation problem. As in the previous sections, we let
GE = Gal(Q/E), GK = Gal(Q/K). A decomposition group at the prime v is

denoted Zv, the inertia subgroup by Iv. The L-group G̃, viewed as a Z-group
scheme, is as in (I.1.5). We fix a prime `, unramified in K, and a representation

ρ : GE → G̃(Fl), and let rρ denote the restriction of ρ to GK. The representation
ρ is assumed to satisfy the following conditions:

IV.1.1.0. There is a finite subfield k ⊂ Fl such that ρ takes values in G̃(k).

IV.1.1.1. The composite GE → G̃(Fl) → {1, c} cuts out K/E.

IV.1.1.2. rρ is unramified except at primes above ` and above a non-empty finite
set of primes SC of E. At primes above `, rρ is crystalline. If p ∈ SC then p = vvc

splits in K and rρ|Zv
breaks up as a direct sum of irreducible representations ri,v.

Moreover, there is at least one p ∈ SC such that rρ |Zv
is irreducible, with v as

above.

IV.1.1.3. Denote by c any lifting of c to a complex conjugation in GE . In the
adjoint representation ad ρ of GE on Lie(G̃), the +1-eigenspace of c has dimension

≥ n(n−1)
2

.

IV.1.1.4. The composite ωρ = ν◦ρ : GE→k×, restricted to GK, equals the (1−n)th

power of the cyclotomic character, where ν : G̃ → GL(1) is the similitude character
defined in §I.1.

Here and in what follows the term ”crystalline,” applied to `-torsion modules, is
used to refer to Galois representations obtained by the Fontaine-Laffaille construc-
tion (see IV.4.3, below). The details of this theory are recalled in §IV.4.

Lemma IV.1.1.5. In the situation of IV.1.1.2, suppose ` is banal for GL(n,Ep)
(cf. Proposition III.1.3). Then ` - #ρ(Ip) and, for any lifting ρ of ρ to character-
istic zero, ` - #ρ(Ip).

Proof. Let ρ be a lifting as in the statement of the lemma. It is irreducible, hence
ρ(Ip) is a finite group. Let q = Nv. Let I = Iv, the inertia subgroup of Zv, and let
P ⊂ I be the wild ramification subgroup (i.e., the p-Sylow subgroup, where p is the
residue characteristic of p). By the banality assumption ` > n ≥ 2, so it suffices to
show that ` is prime to the image of rρ(I). Let g ∈ Z`(1) ⊂ I/P be a topological
generator and assume some lift g̃ ∈ I has non-trivial image under ρ. Let σ ∈ Zv
be a Frobenius element. It acts on I by conjugation, and g̃σ = g̃q · b for some
b ∈ P . Then the set of eigenvalues of ρ(g̃) and of ρ(g̃q · b) are the same. The closed
subgroup < g̃q · b >⊂ I topologically generated by g̃q · b maps bijectively to Z`(1)
under projection to I/P ; let g′ ∈< g̃q · b > be the lifting of g, so that (g′)q = g̃q · b.
By conjugacy of Sylow `-subgroups, g′ is conjugate to g in I, hence has the same
eigenvalues. It follows that, if s ∈ µ`∞ is an eigenvalue of ρ(g), then so is sq. The
set of eigenvalues has at most n elements, hence there is m ≤ n such that sq

m

= s.
Thus ` divides qm − 1, which contradicts the banality hypothesis.

We note the following consequence of (IV.1.1.2):
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IV.1.1.7. The intersection K ∩Q(ζ`) = Q.

Let O denote the ring of integers in a totally ramified finite extension K of
the fraction field of the Witt ring W (k). Let CO denote the category of complete
noetherian local O-algebras with residue field k; morphisms in CO are assumed to
be local (take maximal ideals to maximal ideals). If R is an object of CO we let mR

denote its maximal ideal. Since ` > 2 by the banality hypothesis, the character ωρ
defined by IV.1.1.4 has a unique lift ωρ,R : GE → R× for any object R of CO.

IV.1.2. Let R be an object of CO. A deformation of ρ to R is a homomorphism
ρ : GE → G̃(R) such that

(IV.1.2.1) ρ ≡ ρ (mod mR).

(IV.1.2.2) ν ◦ ρ(g) = ωρ,R.

Here ν : G̃(R)→R× is the similitude character.

We assume

IV.1.3. ρ has a deformation ρ0 to O such that for each prime λ of K dividing `
rρ0 |Gλ

is crystalline and the filtered module has n graded pieces, each free of rank
one over O, and of weights 0, 1, . . . , n− 1.

IV.1.4. We will be considering deformations of ρ with conditions at certain auxiliary
sets of primes. Let Q denote a finite set of height one primes q of E disjoint from
SC ∪ {`} [divisors of `] which satisfy

IV.1.4.1. q splits in K and the division algebras D and D# are split above q;

IV.1.4.2. The residue characteristic q of q satisfies q ≡ 1 (mod `);

IV.1.4.3. ρ(Frobq) has a distinguished eigenvalue αq of multiplicity one.

As representations of Zq, we write

(IV.1.4.4) ρ = ρα ⊕ ρβ,

where ρα is the αq-eigenspace of ρ(Frobq) and ρβ is the direct sum of the remaining

eigenspaces. Let ∆q denote the maximal `-power quotient of (Z/qZ)× and ∆Q =
∏

q∈Q∆q.

By a deformation of ρ of type Q we shall mean a pair (R, ρ) as in Definition
IV.1.2 such that:

IV.1.5.1. For each prime λ of K dividing `, rρ|Zλ
is crystalline and the filtered

module has n graded pieces, each free of rank one over R, and of weights 0, 1, . . . ,
n− 1.

IV.1.5.2. If q ∈ Q then rρ|Zq
= χ ⊕ r′ where r′ = r′q is unramified and χ = χq :

Zq→R× is a character whose reduction modulo mR is unramified and takes Frobq
to αq.
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IV.1.5.3. If v /∈ Q ∪ {`} then ρ(Iv)
∼−→ ρ(Iv).

Proposition IV.1.6. There exists a universal deformation (RQ, ρQ) of ρ of type
Q.

Proof. When ρ is replaced by the absolutely irreducible representation rρ , the ex-
istence of a universal deformation follows from Theorem 1.1 of [R], as in [DDT,
Lemma 2.37]; cf. the proof of Proposition IV.2.3 below. The extension to the

disconnected group G̃ can be seen easily from the approach (using “well-placed
liftings”) described in [loc. cit.]. The crucial point is that the lifting of ρ(c) to

G̃(R) is unique, up to an element of the center of GL(n,R). Indeed, if c1 and c2 are
any two liftings, then (c2)

−1c1 intertwines rρ with itself, hence is a scalar matrix
congruent to 1 (mod mR).

IV.1.7 For q ∈ Q we let χq : Zq→R×Q be the character defined in (IV.1.5.2). Then

χq necessarily factors through a natural map ∆q→R×Q. Thus RQ is tautologically

an O[∆Q]-module.

IV.2. Bounding the Selmer group.

Henceforward, we assume ` > n. We fix a finite set Q of primes of E as in
IV.1.4. Let ad rρ denote the composition of ρ with the adjoint representation

ad : G̃→Aut(gl(n)), where gl(n) ⊂ Lie(G̃) is viewed as the kernel of the similitude
map. For each place v of E we fix a k-subspace LQ,v ⊂ H1(Zv, ad rρ). The LQ,v
are chosen as follows:

IV.2.1.1. For v dividing `, LQ,v is the Bloch-Kato group H1
f (Zv, ad rρ).

In [BlK], Bloch and Kato work with characteristic zero coefficients. The `-torsion
group H1

f (Zv, ad rρ) will be defined in IV.4, below.

IV.2.1.2. For v = q ∈ Q, write

ad rρ = ad ρα ⊕ ad ρ′α,

where
ad ρ′α = ad ρβ ⊕Hom(ρα, ρβ)⊕Hom(ρβ , ρα),

(notation IV.1.4.4). We set

LQ,q = H1(Zq, ad ρα)⊕H1(Zq/Iq, ad ρ
′
α).

IV.2.1.3. At all other finite primes v LQ,v = H1(Zv/Iv, ad r
Iv

ρ ).

IV.2.1.4. At archimedean primes we take LQ,v = 0.

There is a natural isomorphism (Poincaré duality)

ad rρ
∼−→ ad r∗ρ,

hence natural non-degenerate pairings for each place v

(IV.2.1.5) H i(Zv, ad rρ)×H2−i(Zv, ad rρ(1))→ Q/Z
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(Tate’s local duality), where (1) denotes Tate twist. For each v we let L⊥Q,v ⊂
H1(Zv, ad rρ(1)) be the annihilator of LQ,v with respect to (IV.2.1.5), and define
the Selmer group of ad rρ(1), relative to the data L⊥Q,v:

(IV.2.1.6) H1
Q∗(E, ad rρ(1)) = {h ∈ H1(E, ad rρ(1)) | ∀ v rv(h) ∈ L⊥Q,v}

We write MQ for mRQ
. The objective of this section is to prove the following

theorem.

Theorem IV.2.2. The Selmer group H1
Q∗(E, ad rρ(1)) is finite and we have the

inequality
dimk MQ/(MQ

2, `) ≤ #Q+ dimkH
1
Q∗(E, ad rρ(1)).

In particular, if dimH1
Q∗(E, adrρ) = 0 then the O-algebra RQ can be topologically

generated by #Q elements.

This theorem generalizes Lemma 5 of [TW]. Henceforward we write dim instead
of dimk. We begin by translating the theorem into a statement purely in terms of
Galois cohomology.

Proposition IV.2.3. Define the Selmer group of ad rρ, relative to the data LQ,v:

H1
Q(E, ad rρ) = {h ∈ H1(E, ad rρ) | ∀ v rv(h) ∈ LQ,v}.

Then
dimMQ/(MQ

2, `) = dimH1
Q(E, ad rρ).

Proof. This is proved as in [DDT,Theorem 2.41]. Let D denote the category of
k[GE ]-modules M finite over k with dimension divisible by n, satisfying the ana-
logues of properties IV.1.5.1-3:

IV.2.3.1. As a module over Zv, v above `, M is a Fontaine-Laffaille representation
(cf. §IV.4, below).

IV.2.3.2. As a module over Zq, q in Q, M is a the sum of an unramified module
B and a module A whose semisimplification is isotypic for the unramified character
αq.

IV.2.3.3. If v /∈ Q ∪ {`} then the action of Iv on M is a direct sum of copies of
irreducible direct summands of ρ(Iv).

The category D is closed under products and taking subobjects and quotient
objects. Obviously it contains ρ. Thus Lemma 2.39 of [DDT] applies and yields

dim MQ/(MQ
2, `) = dimH1

D(E, ad rρ),

where H1
D(E, ad rρ) ⊂ H1(E, ad rρ) ' Ext1GE

(ρ, ρ) is the subspace of classes whose
corresponding extensions lie in D.

Now we have to verify that conditions IV.2.3.1-3 for extensions translate into
the cohomological conditions IV.2.1.1-3. Specifically, the equivalence of IV.2.3.1
and IV.2.1.1 is proved below in IV.4.7. The equivalence of IV.2.3.2 with IV.2.1.2
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is easy to verify. At finite places v /∈ Q∪`∪SC, and such that v is unramified in K,
IV.2.3.3 says the action of Iv is trivial, which is obviously equivalent to IV.2.1.3.
Now suppose v in SC. The compatibility of IV.2.3.3 and IV.2.1.3 is equivalent to
the condition

H1(Zv/Iv, HomIv
(ρ, ρ)) ' Ker[H1(Zv, Hom(ρ, ρ)) → H1(Iv, Hom(ρ, ρ))],

and this is just the inflation-restriction sequence. For v ramified in K, the argument
is similar.

We thus need to prove the inequality

(IV.2.4) dimH1
Q(E, ad rρ)− dimH1

Q∗(E, ad rρ(1)) ≤ #Q.

Following Wiles [W,Prop. 1.6], the left hand side of (IV.2.4) can be expressed as
a sum of local terms. We write the formula as in [DDT, Theorem 2.19], where it is
stated for a general number field:

Proposition IV.2.5. Let h0 = dimH0(E, ad rρ), h
0,∗ = dimH0(E, ad rρ(1)).

For any place v of E let h0
v = dimH0(Zv, ad rρ). Then we have the formula

dimH1
Q(E, ad rρ)− dimH1

Q∗(E, ad rρ(1)) = h0 − h0,∗ +
∑

v

(dimLQ,v − h0
v).

Lemma IV.2.6. Under the hypotheses of Proposition IV.2.5, the local terms are
computed as follows:

(a) For v real, h0
v ≥ n(n−1)

2 , dimLQ,v = 0.

(b) For v ∈ Q, dimLQ,v − h0
v = 1.

(c) For v above `, dimLQ,v − h0
v = [k(v) : F`] · n(n−1)

2 .

(d) For all other places v, dimLQ,v − h0
v = 0.

Finally, the global terms are given by h0 = h0,∗ = 0.

Admit this lemma for the moment. Comparing Proposition IV.2.5 with Lemma
IV.2.6, we find

(IV.2.7) dimH1
Q(E, ad rρ)− dimH1

Q∗(E, ad rρ(1))

≤ #Q−
∑

v real

n(n− 1)

2
+

∑

v|`

[k(v) : F`] ·
n(n− 1)

2

≤ #Q− [E : Q]
n(n− 1)

2
+ [E : Q]

n(n− 1)

2
≤ #Q

Theorem IV.2.2 now follows by comparing (IV.2.7) with Proposition IV.2.3.

IV.2.8. We begin by calculating the global terms in Lemma IV.2.6. The hypothesis
that SC is non-empty implies that ρ is already irreducible when restricted to a
decomposition group of GK above a prime in SC. Thus H0(K, ad rρ) is one-
dimensional and given by the trace of rρ. But complex conjugation c acts as −1 on
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the center of the GL(n)-component of the L-group, so H0(E, ad rρ) is trivial. In
the same way, and using IV.1.1.5, we see that h0,∗ = 0.

The local terms will be computed in the next two sections.

IV.3. Local calculations, char v 6= `.

In this section we carry out the calculations summarized in Lemma IV.2.6. For
any place v and any finite F`[Zv]-module M we set

hi(M) = dimHi(Gv,M); hi,unr(M) = dimHi(Zv/Iv,M
Iv),

i = 0, 1, 2.
IV.3.1. If M is an unramified Zv-module then of course h0,unr(M) = h0(M). On
the other hand, M is always assumed to be Frobv-semi-simple when ` is not equal
to the residue characteristic of v. Then M is the sum of characters of Zv/Iv and

(IV.3.1) h1,unr(M) = h0(M) = dimMZv .

It follows that, for v unramified, v /∈ Q, we have

dimLQ,v − h0
v = 0.

This verifies IV.2.6 (d) at unramified places.
IV.3.2. Now take v ∈ Q. We have

dimLQ,v − h0
v = h1(ad ρα)− h0(ad ρα) + h1,unr(ad ρα)′ − h0(ad ρα)′.

Since ad(ρα)′ is unramified the last two terms cancel, by (IV.3.1). On the other
hand, the first two terms give

h0(ad ρα(1))

by the local Euler characteristic formula and local duality (cf. [W,p. 473]). But
ρα is one-dimensional, so ad(ρα) is the trivial Zv module. Since q ≡ 1 (mod `) the
Tate twist is also trivial, and we find

dimLQ,v − h0
v = 1,

which verifies IV.2.6 (b).
IV.3.3. For v real, we have dimLQ,v = 0, by hypothesis. On the other hand,

h0
v = dim[ad rρ]

c=1,

independently of v. Then (a) follows immediately from hypothesis IV.1.1.3.
IV.3.4. Now suppose v is ramified, but of residue characteristic 6= `. By hypothesis,
either v ∈ SC, or v ramifies in K/E and rρ is unramified at the prime above v. We
need to calculate

dimLQ,v − h0
v = h1,unr(ad rρ)− h0(ad rρ).
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First, suppose v ∈ SC, and rρ = ⊕ri=1(ri)
ai , where the ri are irreducible and

distinct. Returning to IV.1.1.2, we find that

dim[ad rρ]
Zv =

∑

i

(ai)
2.

Let Lij = H1(Zv/Iv, ri ⊗ r∗j ), where ∗ denotes dual. It suffices to show that
dimLij = δij . Suppose ri|Iv

breaks up as the sum of d irreducible representations
τik. Then

(IV.3.5) (ri ⊗ r∗i )
Iv = ⊕dk=1[ad τk]

Iv

has dimension d. As a representation of the cyclic group Zv/Iv, the right-hand side
of IV.3.5 is isomorphic to the sum ⊕χ of the distinct characters of Zv/H, where
H ⊃ Iv is the stabilizer in Zv of τ1, say. Thus

dimLii =
∑

χ

dimH1(Zv/H, χ) = 1,

since only the trivial character has non-trivial cohomology. The verification for Lij
with i 6= j breaks up into two cases. If rj is not an unramified twist of ri, then
(ri ⊗ r∗j )

Iv = 0. If ri = rj ⊗ ξ, with ξ an unramified character, then we find

(ri ⊗ r∗j )
Iv = ⊕dk=1χ · ξ

where χ runs through the characters of Zv/H, as above. We conclude that dimLij =
0 by observing that the non-isomorphy of ri and rj implies that ξ does not factor
through Zv/H.

Now suppose v ramifies in K/E. Let w denote the prime above v. In this case
Zv acts via the abelian group Gal(K/E)× Zw/Iw. Let M denote the subspace of
ad ρ fixed by Gal(K/E). Then dimLQ,v − h0

v = h1,unr(M) − h0(M) = 0 as in
IV.3.1. This completes the verification of (d).

To complete the proof of Lemma IV.2.6, it remains to estimate the local terms
at primes dividing `. This is the subject of the next section.

IV.4 Local calculations, crystalline case.

In this section we complete the proof of Lemma IV.2.6 by all the facts we need
about comparison theorems between crystalline and étale cohomology. As above,
we work in residue characteristic ` and restrict our attention to the situation of good
reduction. We begin by defining crystalline representations of Gal(Ev/Ev), when
v is of residue characteristic `, with coefficients in Fl, in terms of the Fontaine-
Laffaille construction [FL]. Recall that ` is assumed unramified in E. Next we
define crystalline deformations of mod ` crystalline representations and show that
the crystalline condition is captured, in terms of local Galois cohomology, by an
`-torsion analogue of the Bloch-Kato group H1

f . The inequality of Lemma IV.2.6

(c) is then proved by a calculation in the Fontaine-Laffaille category. We conclude
by showing that under a certain regularity hypothesis (satisfied in our applications)
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the image of tame inertia contains an element whose eigenvalues have multiplicity
one.

Our base ring will be the Witt ring W (k(v)), where k(v) is the residue field of v;
thus W (k(v)) = Ov in our previous notation. We let OC`

denote the ring of integers
in the completion C` of the algebraic closure of the fraction field of W (k(v)). Let
Acris = Acris(OC`

) be the ring defined in [Fo, Asterisque, 2.3], an `-integral form of
Bcris. The W (k(v))-algebra Acris is endowed with a decreasing filtration FiliAcris,
i ≥ 0 and with a σ-linear operator φ such that

(IV.4.1) φ(FiliAcris) ⊂ `iAcris, 0 ≤ i ≤ `− 1.

Here σ is absolute Frobenius.
Recall the `-adic coefficient ring O from IV.1. Let RepW (k(v))⊗O denote the

category of O[Gal(Ev/Ev)]-modules of finite type. By analogy with [FPR, p. 638],
we define RepW (k(v))⊗O,cris,[0,`−1[ to be the full subcategory of RepW (k(v))⊗O

whose objects are isomorphic to subquotients of crystalline Q`⊗Z`
O[Gal(Ev/Ev)]-

modules. For any object Λ of RepW (k(v))⊗O,cris,[0,`−1[ we can define the fil-

tered module (Fontaine-Laffaille module) Mcris(Λ). It is an object of the category
MFW (k(v))⊗O,[0,`−1[ consisting of

(i) a W (k(v))⊗O-module M of finite type, a decreasing filtration Fili(M) by
W (k(v))⊗O-submodules which are direct factors, with Fil0M = M , Fil`M = 0;
and

(ii) a family φi : Fili(M)→M of σ-linear maps such that φi(x) = `φi+1(x) for
x ∈ Fili+1M , and such that M is the sum of the images of the φi, as i ranges over
Z.

It is further assumed thatM contains no non-trivial subobjectM ′ with Fil`−1M ′ =
M ′.

The definition is
(IV.4.2)

Mcris(Λ) =
⋃

M | M ⊂ Acris ⊗W (k) Λ)Gal(Ev/Ev); M ∈MFW (k(v)),[0,`−1[

(cf. [Niz, p. 750]; [Wa,Remarque 2.4.4]). The filtration is inherited from the filtra-
tion on Acris, the O-action on Λ is left undisturbed, and φi is inherited from `−iφ
on FiliAcris, which makes sense by (IV.4.1). Then Mcris : RepW (k),cris,[0,`−1[ →
MFW (k),[0,`−1[ is an equivalence of categories. An inverse equivalence [FL] is given
by the formula

(IV.4.3) Λ(M) = Fil0(Acris ⊗W (k) M)φ=1.

For our purposes, crystalline Galois representations are those of the form Λ(M),
for some M ∈ MFW (k(v)),[0,`−1[. More generally, let A be a W (k(v)) algebra of
finite type with a σ-linear automorphism σA. Then we can define the categories
MFA,[0,`−1[ and RepA,cris,[0,`−1[ by analogy with (i), (ii) above, taking A as coeffi-
cient ring. The functors Mcris and Λ can be defined as inverse equivalences between
these two categories. In the applications, A will be a W (k(v))⊗O-algebra, where
σW (k(v))⊗O is defined to be σ ⊗ 1 : W (k(v))⊗O→W (k(v))⊗O.
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Let MFtor,[0,`−1[ denote the subcategory of MFW (k(v)),[0,`−1[ of objects of fi-
nite length (as W (k(v))-modules). By [FL,Prop. 1.8], MFtor,[0,`−1[ is an abelian
category. Let

Reptor,cris,[0,`−1[ ⊂ RepW (k(v)),cris,[0,`−1[

denote the essential image of the functor Λ, restricted to MFtor,[0,`−1[. Then
Reptor,cris,[0,`−1[ is a full subcategory of RepW (k(v)),cris,[0,`−1[, itself a full subcat-
egory of RepW (k(v)). The functors Mcris and Λ define inverse equivalences between
the abelian categories Reptor,cris,[0,`−1[ and MFtor,[0,`−1[. Thus, given two objects
M,N ∈MFtor,[0,`−1[, there is a natural isomorphism

(IV.4.4) Ext1MF (M,N)
∼−→ Ext1cris(Λ(M),Λ(N)),

where Ext1MF (resp. Ext1cris) is shorthand for extensions in MFtor,[0,`−1[ (resp.
Reptor,cris,[0,`−1[). Composing the isomorphism (IV.4.4) with the forgetful functor,
we obtain a homomorphism

(IV.4.5) Ext1MF (M,N)→ Ext1RepW (k(v))
(Λ(M),Λ(N)).

The isomorphism (IV.4.4) and the homomorphism (IV.4.5) respect O-structures;
i.e., take extensions with compatible O-structure to extensions with O-structures.

Write k(v) ⊗ k = k(v) ⊗Z`
k, and suppose now that M and N are free k(v) ⊗

k-modules. In particular, ` · M = 0, ` · N = 0. Let Ext1MF,k(v)⊗k(M,N) ⊂
Ext1MF,k(v)⊗k(M,N) denote the subgroup of extensions in the category of Fontaine-

Laffaille modules which are free k(v)⊗ k-modules. Likewise, let Repk(v)⊗k denote

the category of k(v)⊗ k[Gal(Ev/Ev)]-modules free over k(v)⊗ k. Then

Ext1Repk(v)⊗k
(Λ(M),Λ(N))

∼−→ Ext1Repk(v)⊗k
(k(v)⊗ k,Homk(v)⊗k(Λ(M),Λ(N)))

∼−→ H1(Gal(Ev/Ev), Homk(v)⊗k(Λ(M),Λ(N))).

With respect to this isomorphism, we let

H1
f (Gal(Ev/Ev), Homk(v)⊗k(Λ(M),Λ(N))

⊂ H1(Gal(Ev/Ev), Homk(v)⊗k(Λ(M),Λ(N)))

denote the image of Ext1MF,k(v)⊗k(M,N).

Say M ∈ MFW (k(v))⊗O,[0,`−1[ is regular if gri(M) = Fili(M)/F ili+1(M) is a
free k(v)⊗ k-module of rank ≤ 1 for all i.

Lemma IV.4.6. Let Λ be a crystalline k(v) ⊗ k[Gal(Ev/Ev)]-module, and let
Ad(Λ) denote the k(v) ⊗ k[Gal(Ev/Ev)]-module Homk(v)⊗k(Λ,Λ). Suppose Λ =
Λ(M), with M a regular Fontaine-Laffaille module of rank n over k(v)⊗ k. Then

rankk(v)⊗kH
1
f (Gal(Ev/Ev), Ad(Λ))− dimH0(Gal(Ev/Ev), Ad(Λ)) =

1

2
n(n− 1).
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Proof. By definition, the left-hand side equals

rankk(v)⊗kExt
1
MF,rankk(v)⊗k

(M,M)− rankk(v)⊗kHomMF,rankk(v)⊗k
(M,M).

This is unchanged when we extend scalars from k to a finite extension k′ and replace
M by Mk′ . We thus may assume k ⊃ k(v), and then by projecting on irreducible
components we may replace k(v)⊗ k by k.

Since M is a k-module, its structure as Fontaine-Laffaille module reduces to
a triple consisting of a k-vector space V , a decreasing filtration Fil•V , and an
isomorphism φV : gr•V

∼−→ V . Let gr•V = ⊕ni=1gr
aiV , where 0 ≤ a1 < a2 · · · <

an ≤ ` − 1 is an n-tuple of positive integers. Fix a basis e1, . . . , en of V such
that FiliV is the span of ei+1, . . . , en. Suppose E is an extension of M by itself
in Ext1MF,k(M,M) and let E be the underlying k-module. There is a short exact
sequence

0→ V
i→ E

π→ V → 0

compatible with filtrations and the morphisms φE and φV . Let s : V → E denote
any splitting of π as filtered module; s is determined uniquely up to an element
α ∈ F 0End(V ), where F 0End(V ) ⊂ Endk(V ) denotes the subspace of filtration-
preserving endomorphisms. Then gr•E = gr(i)(gr•V )⊕ gr(π)(gr•V ). In terms of

this basis, φE can be written

(

φV µ
0 φV

)

, for some µ ∈ Hom(gr•V, V ). We have

µ = φE ◦ gr(s)− s ◦ φV .

Moreover, replacing s by s+α changes µ to µ+φV ◦ gr(α)−α ◦φV . Thus the map
M 7→ µ (mod equivalence) defines an isomorphism

Ext1MF,k(M,M)→ {φ ∈ Hom(V, V )}/{φ ◦ gr(α)− α ◦ φ|α ∈ F 0End(V ))}.

Moreover,

HomMF,k(M,M)→ {α ∈ F 0End(V )|φ ◦ gr(α) = α ◦ φ}.

This yields an exact sequence

0→ HomMF,k(M,M)→ F 0End(V )
j→ Homk(gr

•V, V )→ Ext1MF,k(M,M)→ 0,

where the map j takes α to φ ◦ gr(α)− α ◦ φ.
It follows that

dim Ext1MF,k(M,M)− dim HomMF,k(M,M) = dim Homk(gr
•V, V )− dim F 0End(V )

= n2 − 1

2
n(n+ 1) =

1

2
n(n− 1).

IV.4.7. Let A = k[ε]/(ε2), let Λ ∈ Repk,cris,[0,`−1[, and let Λ̃ be a deformation of
Λ to A. Multiplication by ε defines an isomorphism

Λ ∼= Λ̃/εΛ̃
∼−→ εΛ̃
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of k[Gal(Ev/Ev)]-modules. Thus Λ̃ defines an extension

(IV.4.7.1) 0→ Λ→ Λ̃→ Λ→ 0,

and this correspondence defines a bijection between the equivalence classes of de-
formations of Λ to A and Ext1Repk

(Λ,Λ) (cf. [DDT], p. 67). By definition, the

deformation Λ̃ is crystalline if and only if (IV.4.7.1) is an extension in the cate-
gory of crystalline representations; in other words, crystalline deformations are in
bijection with Ext1cris(Λ,Λ) ∼= H1

f (Gal(Ev/Ev), Ad(Λ). We have thus verified the

equivalence of IV.2.3.1 and IV.2.1.1 in the definition of H1
D(E, adrρ).

IV.4.8. It remains to verify Lemma IV.2.6 (c). Thus let v be a prime of E dividing
`. Set h1

f = dimF`
H1
f (Zv, ad(rρ)). By hypothesis IV.1.3 rρ is the crystalline

representation over k(v) associated to a regular Fontaine-Laffaille module. Thus
Lemma IV.2.6 (c) follows directly from Lemma IV.4.6. This completes the proof
of Lemma IV.2.6.

For M ∈ MFW (Fl),[0,`−1[ the action of tame inertia on Λ(M) is calculated ex-

plicitly in [FL]. As a consequence of that calculation, we can prove

Lemma IV.4.9. Let M ∈ MFW (k),[0,`−1[ and suppose M is regular. Then the

eigenspaces of tame inertia on Λ(M) have dimension 1. More precisely, let Λ(M)ss
denote the semi-simplification of the k[Gal(Ev/Ev)]-module Λ/`Λ(M). Then the
action of the inertia subgroup on Λ(M)ss factors through the tame quotient, and
the latter has dimM/`M -distinct eigenvalues.

Proof. The proof is a simple combinatorial exercise, using the results of [FL,§§4-5].
Without loss of generality we may assume M to be a semi-simple `-torsion module,
so that Λ(M) = Λ(M)ss. Let n = dimFl

M and let bi, i = 1, . . . , n be the integers

such that dim grbi(M) = 1; let B = {b1, . . . , bn} ⊂ Z. Let q = |k| = `r, for some r.
Then M is determined, up to isomorphism, by the following set of data:

(a) A partition n = h1 + · · ·+ hs, with hj ≥ 1 for all j;
(b) For each j a map ιj : Z/hjZ→ B, with image Bj , so that B = ∪jBj;
(c) The period of the map ιj is exactly hj ; i.e. for any h < hj the map ιj(a) 7→

ιj(a+ h) is a non-trivial permutation of Bj.
Indeed, we can write M = ⊕jM(j) as a sum of simple objects, and the object

M(j) is determined up to isomorphism by a pair (hj , ιj) as above. Let Λ(j) =

Λ(M(j)). For any positive integer h, let α ∈ Q` satisfy

αq
h−1 = `

and set χh(g) = g(α)/α (mod `) ∈ Fl
×

, for g in the tame inertia group I t. Let

(IV.4.9.1) C(j) = {
hj−1
∑

a=0

ιj(a+ t)qa | t = 0, 1, . . . , hj − 1}.

It follows from (c) above, and from the fact that B ⊂ {0, . . . , p− 1}, that C(j) has
hj distinct elements. The calculation in [FL] shows that the action of I t on Λ(j)
factors through the character χhj

, and g ∈ It has eigenvalues

χhj
(g)c, c ∈ C(j).



41

The exponents in C(j) being distinct, the action of I t on Λ(j) is multiplicity-free.
On the other hand, it is easy to see, that I t has no common eigenvalues on Λ(j1)
and Λ(j2), first if hj1 6= hj2 , then in the general case.

IV.5. Capturing ramification by tame classes.

In order to make Theorem IV.2.2 effective, we need to find sets Q for which
dimH1

Q∗(E, ad ρ) = 0. We follow the strategy of [TW]. For this additional hypothe-
ses are needed. Unfortunately, we have not found an optimal set of hypotheses. In
the coordinates of (I.1.4) the map

(IV.5.1) G̃0 → GL(n)×GL(1); g 7→ (g1, a = ν(g))

is an isomorphism. Let riρ, i = 1, 2, denote the composition of rρ with projection

on the i-th factor in (IV.5.1.1). Thus Ker(r1ρ) determines an extension K1 of K
with Galois group naturally a subgroup of GL(n, k); Ker(r2(ρ)) determines the
extension K(ζn−1

` ) of K, of degree [Q(ζn−1
` ) : Q] (cf. (IV.1.1.4) and (IV.1.1.7)).

We consider the following conditions.

Hypotheses IV.5.2.
(a) K1 ∩ K(ζ`) = K.
(b) The group Im(ρ) has no quotient of order `.
(c) Let V ⊂ ad ρ be an irreducible subrepresentation. Then there is s ∈ GK such

that rρ(s) has n distinct eigenvalues and such that ad (ρ)(s) has eigenvalue 1 on
V .

Theorem IV.5.3. Assume Hypotheses IV.5.2. Then there is an integer r such
that, for any m ≥ 1 there is a set Qm satisfying the hypotheses of IV.1.4, and such
that moreoever

(a) #Qm = r;
(b) For all q ∈ Qm we have q = Nq ≡ 1 (mod `m);
(c) H1

Q∗m
(E, ad ρ(1)) = 0.

(d) rρ(Frobq) has n distinct eigenvalues, and in particular a distinguished eigen-
value αq of multiplicity one.

Proof. We begin by recalling that, for any Q as in IV.1.4, and any q ∈ Q, the
subspace L⊥Q,q ⊂ H1(Zq, ad ρ(1)) is defined by

H1(Zq/Iq, ad ρ
′
α(1))

in the notation of IV.2.1.2. In other words, L⊥Q,q consists of unramified classes with

trivial ad (ρα)(1)-component. Thus
(IV.5.3.1)

H1
Q∗(E, ad rρ(1)) = Ker[H1

∅(E, ad ρ(1))→⊕q∈Qm
H1(Zq/Iq, ad ρα(1))].

For r we take the dimension of H1
∅(E, ad

0ρ(1)). As in [TW,p. 567] we need to
find sets Qm satisfying conditions (a), (b), (d), and the hypotheses of IV.1.4, and
such that the natural map

(IV.5.3.2) H1
∅ (E, adρ(1))→⊕q∈Qm

H1(Zq/Iq, ad(ρα)(1))
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is injective, hence an isomorphism for dimension reasons. Condition (b) asserts
that q splits completely in K(ζ`m).

Let [ψ] ∈ H1
∅ (E, adρ(1)) be a non-zero class. The objective is to find q as above

satisfying condition (b), (d), and IV.1.4 and such that

(IV.5.3.3) resq[ψ] ∈ H1(Zq/Iq, ad ρα(1)) is nontrivial.

By Chebotarev density it thus suffices to find σ ∈ GE such that

IV.5.3.4. (i) σ fixes E(ζ`m);
(ii) ρ(σ) has n distinct eigenvalues;
(iii) There is a distinguished eigenvalue α of ρ(σ) such that ψ(σ) /∈ ad ρ′α(1)

where ad ρ′α ⊂ ad ρ is the codimension one subspace defined with respect to α by
analogy with IV.2.1.2.

Let Em = E(ζ`m), and let Fm denote the extension of Em fixed by the kernel of
ad ρ. We claim ψ restricts to non-trivially to H1

∅∗(Fm, ad ρ(1)). The kernel of the

restriction map is H1(Gal(Fm/E), ad ρ(1)). It suffices to show

(IV.5.3.5) H1(Gal(Fm/E), ad ρ(1)) = 0.

We argue as in [DDT], p. 84. The inflation-restriction sequence for Fm ⊃ F1 ⊃ E
is an exact sequence

H1(Gal(F1/E), ad ρ(1)GF1 ) ↪→ H1(Gal(Fm/E), ad ρ(1))

→[H1(Gal(Fm/F1), ad ρ(1))]GE .

Now GF1
acts trivially on ad ρ(1). Hence

[H1(Gal(Fm/F1), ad ρ(1))]GE ∼= Hom(Gal(Fm/F1), [ad ρ(1))]GE).

Moreover, it follows from Condition IV.5.2 (a) that Gal(F1/E) breaks up as the
direct product Gal(F1/F0)×Gal(F0/E). Thus

(IV.5.3.6) [ad ρ(1))]GE ⊂ [ad ρ(1))]Gal(F1/F0) = {0}.

Indeed, Gal(F1/F0) acts on ad ρ(1)) as a direct sum of copies of the natural action
on the `th roots of unity. But Gal(F1/F0) can be identified with the subgroup

of Aut(µ`) that acts trivially on µ
⊗(n−1)
` . The hypothesis ` > n implies that this

subgroup is non-trivial.
Thus the above exact sequence simplifies to yield

(IV.5.3.7) H1(Gal(F1/E), ad ρ(1))
∼−→ H1(Gal(Fm/E), ad ρ(1)).

On the other hand, applying the inflation restriction sequence for F1 ⊃ F0 ⊃ E
to the left-hand side of (IV.5.3.7), we find

H1(Gal(F0/E), ad ρ(1)Gal(F1/F0)) ↪→ H1(Gal(F1/E), ad ρ(1))

→[H1(Gal(F1/F0), ad ρ(1))]Gal(F0/E).
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Here the right-hand side vanishes because [F1 : F0] is prime to `, while the left-hand
side vanishes as in (IV.5.3.6). This completes the verification of (IV.5.3.5).

Now it follows from IV.5.2 (a) and (b) that ρ remains absolutely irreducible
upon restriction to GEm

for all m. Thus, to verify (IV.5.3.2), it suffices to find sets
of height one primes of Em satisfying conditions (b), (d), IV.1.4, and (IV.5.3.3),
with E replaced by Em. Conditions IV.1.4.1-2 are already satisfied, and IV.1.4.3
concerns only a finite set of primes, which we can avoid. We have

H1
∅(Fm, ad rρ(1)) ⊂ Hom(GFm

, ad rρ(1))

is the subset satisfying various ramification conditions. Thus let ψ ∈ H1
∅(Em, ad rρ(1)).

Its restriction to Fm is a homomorphism from GFm
to ad rρ whose image is a

Gal(Fm/Em)-submodule, say Vψ. Moreover, Gal(Fm/Em) = Gal(F0/E) by IV.5.2
(a). Let s ∈ Gal(Fm/Em) satisfy the conditions of IV.5.2 (c), and let σ0 be a lift-
ing of s to GEm

. It already satisfies conditions (i) and (ii) of IV.5.3.4, and so does
σ = τσ0 for any τ ∈ GFm

. It remains to show that we can choose α and τ so that
σ satisfies condition (iii). Now the eigenvalues of ad rρ(s) are of the form αi · α−1

j ,

where αi, i = 1, . . . , n are the n distinct eigenvalues of rρ(s). Let vij be the corre-
sponding eigenvectors. By hypothesis IV.5.2 (c) the fixed subspace V s

ψ is non-trivial

and is spanned by r non-trivial linear combinations vk =
∑

i aikvii, 1 ≤ k ≤ r. Now
ψ(σ) = ψ(τ) + ψ(σ0). Write ψ(σ0) =

∑

bijvij , ψ(τ) =
∑

ck(τ)vk + v′, where v′ is
a linear combination of the vij with i 6= j. Thus the coefficient of vii in ψ(σ) is

bi(τ) =
∑

ck(τ)aik + bii.

But we may vary the ck(τ) freely, and it is clear that by doing so we can arrange
that at least one bi(τ) is non-zero. Taking α = αi, we then see that σ satisfies
condition (iii). This completes the proof.

IV.6. Eliminating tame deformations

Let q be a rational prime, q 6= `, and let v be a prime of E dividing q. The
maximal `-power quotient Iv,` of the inertia group Iv is isomorphic to Z`(1) as a
module over Zv/Iv, where the (1) denotes Tate twist. Let P ` ⊂ Iv be the kernel of
the canonical map to Iv,`; it is a profinite group with pro-order prime to `. Thus,
for any Zv-module M , the canonical inflation map H1(Zv/P

`,M)→H1(Zv,M) is
an isomorphism.

Now let (ρ, V ) be an n-dimensional semi-simple unramified representation of Zv
with coefficients in a finite field k of characteristic `, and let M = ad ρ.

Lemma IV.6.1. Suppose ρ is trivial and Nv 6= 1 (mod `). Then the inflation
map

(IV.6.2) H1(Zv/Iv,M)→H1(Zv/P
`,M)

is an isomorphism.

Proof. We use the inflation-restriction sequence for the inclusion of Iv,` in Zv/P
`:

(IV.6.3)
0 → H1(Zv/Iv,M) → H1(Zv/P

`,M) → Hom(Iv,`,M)Zv/Iv

= HomZv/Iv
(F`(1),M)
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By our hypothesis, Zv/Iv acts non-trivially on F`(1) but trivially on M . Thus the
right-hand term in (IV.6.3) vanishes.
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V. The main theorem

V.1. Representations on global Hecke algebras.

We now return to the language of automorphic forms on the group J . Fix `, σ,
r, Q and ΛWσ

as in §I; ` is assumed unramified in K. Let K =
∏

pKp be a level
subgroup satisfying the hypotheses of I.2.8. We assume Q satisfies the hypotheses
of IV.1.4 and Theorem IV.5.3. Denote by DK the set of primes of Q divisible by
primes of E that ramify in K. Let Sbad = SC ∪ Q ∪ DK ∪ {q(r), `}. We define
TSbad and the completed Hecke algebras T1(Q) and T0(Q) as in §III.2. Recall that

T1(Q) is attached to the level group K
[`]
1,Q rather than K1,Q.

For q ∈ Q, we choose a lifting α̃q of the Frobenius eigenvalue αq to the ring
O. Similarly, let βi,q, i = 1, . . . , n− 1, be the eigenvalues of Frobenius in ρβ at q,

and let β̃i,q be liftings to characteristic zero. We define unramified characters χi,
i = i, . . . , n of K×q by setting

χ1($) = αq; χi($) = βi−1,q, i = 1, . . . , n− 1.

Let ρ be a residual representation as in §IV.1.1. Let m = m(ρ) be the maximal
ideal of T1(Q) generated by `, by Uq − αq and by

Vi,q − bi(α) i = 1, . . . , n− 1

for each q ∈ Q, and by

trace ∧i rρ(Frobp)− Ti,p i = 1, . . . , n

for all divisors p of p, as p runs through the set of primes not in Sbad that split in
K0. Here Frobp denotes geometric Frobenius, Ti,p is the standard Hecke operator
defined in §II.2, Vi,q is defined by (II.2.2), and bi(χ;χ1) is the eigenvalue defined
in II.2.3.

Note that T1(Q) stabilizes the subspace A`(J,ΛWσ
, K0,Q) ⊂ A`(J,ΛWσ

, K
[`]
1,Q).

As in §III.2, we let L0,Q (resp. L1,Q) denote the localization of A`(J,ΛWσ
, K0,Q)

(resp. A`(J,ΛWσ
, K

[`]
1,Q)) at m. Let T0,Q (resp. T1,Q) denote the Hecke algebra

acting on L0,Q (resp. L1,Q) generated only by the unramified Hecke operators at
primes p /∈ Sbad that split in K0.

Hypothesis V.1.1. The space L0,∅ is non-trivial.

Hypothesis V.1.1 can be regarded as a strong form of Serre’s conjecture for the
group J . We are assuming that the residual representation rρ is modular of minimal
level. In particular we are completely setting aside the problem of lowering the level
solved by Ribet in the case of GL(2). We let π denote an irreducible automorphic
representation of J – with characteristic 0 coefficients – contained in the space Am

of automorphic forms on J(A) generated by L0,Q. By the Hecke eigenvalues of π

we will mean the eigenvalues of the standard Hecke operators T
(i)
p , for p dividing

p as above, acting on the space of Kp-fixed vectors. By definition of L0,Q, if π′

is another irreducible automorphic representation contained in Am then the Hecke
eigenvalues of π and those of π′ are congruent modulo `.
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Hypothesis V.1.2.
(i) The automorphic representation π is unramified at Q ∪ q(r).
(ii) We assume r has been chosen so that q(r) splits completely in K and is not

congruent to 1 (mod `), and so that the Frobenius at r acts trivially on the extension
K1 of K (notation as in §IV.5).

(iii) The local component of π at q is isomorphic to the induced representation
I(χ).

The assumption that π is unramified at q(r) implies that rρ is unramified at
primes dividing q(r), so the last condition of (ii) makes sense. Moreover, the char-
acters χi are distinct (mod `), by condition (d) of Theorem IV.5.3, so (iii) also
makes sense.

Proposition V.1.3. For an appropriate choice of r:
1. There is a representation ρ0,Q : GE → G̃(T0,Q) which is a deformation of

ρ of type ∅ and satisfies trace ∧i rρ0,Q
(Frobp) = T

(i)
p for all divisors p of rational

primes not in Sbad that split in K0, and for i = 1, . . . , n.
2. There is a representation ρ1,Q : GE→G̃(T1,Q) which is a deformation of ρ of

type Q and satisfies

trace ∧i rρ1,Q
(Frobp) = T

(i)
p

for all divisors p of rational primes not in Sbad that split in K0 and for i = 1, . . . , n.
Moreover, the residual representations ρ0,Q and ρ1,Q mod m are isomorphic and

satisfy conditions IV.1.1.0-4.

Proof. The existence of the representations ρ?,Q, with ? = 0 or 1, is a consequence
of Proposition III.2.1. That the residual representations are isomorphic follows
from the relation between Frobenius elements and Hecke operators at unramified
split places (Theorem III.1.5) and Chebotarev density. Conditions IV.1.1.0 and
IV.1.1.1 are obvious, IV.1.1.2 follows from Propositions III.1.7 and III.1.3 and
Theorem III.1.5, fe.1.1.3 is Lemma III.3.10, and IV.1.1.4 is Corollary III.3.7.

It remains to prove that ρ0,Q is a deformation of type ∅ and that ρ1,Q is a
deformation of type Q. First, ρ?,Q is crystalline because each of its components
is crystalline and because ` is assumed greater than n and unramified in K. The
second condition of IV.1.5.1 follows from the corresponding fact for the residual
representation, and from Nakayama’s lemma. Condition IV.1.5.3 for primes in SC
is an immediate consequence of the last assertion of Proposition III.1.3. The only
other possible ramification is at primes of E, and at primes above r. For the former
set of primes, IV.1.5.3 follows easily from Theorem III.1.5 (since ` > n > 2 and the
ramification group at such primes is of order 2). The non-ramification at r follows
from Lemma IV.6.1, in view of Hypothesis V.1.2 (ii).

This leaves IV.1.5.2. Let π be an automorphic representation contributing to
T?,Q. For q ∈ Q, πq is in (a) or (c) of Proposition I.2.10 for ? = 0; for T1,Q we also
have case (b). We claim

(V.1.3.1) Under hypothesis IV.5.3 (d), case (c) cannot occur.

Admit (V.1.3.1) for the moment. Theorem III.1.5 then implies that rρ0,Q
is

unramified outside SC ∪ `, hence is a deformation of type ∅. Now let M1,Q denote
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the free rank n T1,Q-module on which rρ1,Q
acts. Fix q ∈ Q and a Frobenius

element Fq in the decomposition group Zq, and let M ′ ⊂ M1,Q be the submodule
of eigenvectors for Fq with eigenvalue congruent to αq (mod m). Then it follows
from Corollary IV.5.10.3 and Nakayama’s lemma, and our hypothesis that αq has
multiplicity one in the residual representation, that M ′ is a free rank one direct
summand of M1,Q and that the quotient M1,Q/M

′ is unramified. This is what we
need to verify IV.1.5.1.

The claim (V.1.3.1) is a consequence of the following Lemma.

Lemma V.1.4. Fix q ∈ Q and suppose π′ is a cohomological automorphic rep-
resentation of J(A) such that π′q has a K0,q-fixed vector but no GL(n,Oq)-fixed
vector. Then π′ does not contribute to L0,Q.

Proof. Assume π′ contributes to L0,Q, and let π′q be its local component at q. It is
a subquotient of the representation I(χ′) induced from some unramified n-tuple of
characters χ′. Now (π′q)

K0,q has a non-trivial Uq-eigenspace V ′ with eigenvalue α′,
where α′ ≡ α (mod mO). Moreover, the Hecke operators Vi,q act on V ′ with eigen-
values congruent to bi(χ;χ1) (mod mO). It follows that the reductions (mod mO)
of I(χ′) and I(χ) have a common subquotient. But the characters χi are distinct
(mod mO), hence the reduction (mod mO) of I(χ) is irreducible by Proposition
II.1.6 (i). It follows that I(χ′) is irreducible, hence π′q is spherical.

Corollary V.1.5. For any set Q as in IV.1.4, there are surjective homomorphisms

φ0,Q : R∅→T0,Q;

φ1,Q : RQ→T1,Q.

Proof. The existence of the homomorphisms φ0,Q and φ1,Q is a consequence of
Proposition V.1.2 and the universal property of RQ. To prove surjectivity it suffices

to prove surjectivity mod m, by Nakayama’s lemma. But mod m the generator T
(i)
p

of T?,Q is given by trace ∧i rρ(γ) for some γ ∈ Gal(E/E). To show that T
(i)
p is

in the image of φ?,Q mod m, it therefore suffices to recall that the coefficients of
the characteristic polynomial of ρQ(γ) belong to RQ. Indeed, it follows as in [W,
p. 510] from [M, §1.8] and IV.2.8 that RQ is generated by traces, but we do not
need this fact.

We also have to show that Uq and the Vi,q are in the image of φ?,Q mod m. But
these are given respectively by χq(Frobq) and by the coefficients of the characteristic
polynomial of r′q(Frobq), in the notation of IV.1.5.2.

Via φ0,Q (resp. φ1,Q) the module L0,Q (resp. L1,Q) becomes an R∅-module
(resp. an RQ-module). Write T = T0,Q, R = R∅. We can finally state our main
theorem.

Theorem V.1.6. Let ρ : GE→G̃(Fl) be a representation satisfying Hypotheses
V.1.1 and IV.5.2. We assume ` > n and, for all v ∈ SC, we assume ` is banal
for GL(n,Ev). Finally, assume r has been chosen to satisfy Hypothesis V.1.2 (ii).
Then the homomorphism

φ0,∅ : R→T
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is an isomorphism. Moreover, R (and therefore T) is a complete intersection of
dimension zero, and L0,∅ is a free R-module.

The proof of this theorem, which occupies the folllowing section, is based on
a recent improvement of the method of [TW], found independently and nearly
simultaneously by Diamond and Fujiwara [D,Fu]. The interest of Theorem V.1.6,
of course, lies in the following corollary:

Theorem V.1.7. Let ρ : GE→G̃(Fl) be a representation satisfying conditions the
hypotheses of Theorem V.1.6. Then any deformation of ρ of type ∅, as in IV.1.5.1-
3, is modular. Specifically, suppose ρ : GE→G̃(O′) is a deformation of ρ of type ∅,
where O′ is the ring of integers in a finite extension K′of the fraction field K of O.
Then there is an automorphic representation π′ of G such that ρ′ = ρ(π′).

Other corollaries are derived in §V.4.

V.2. Application of the theorem of Diamond and Fujiwara.

For each integer m > 0 we now choose a set Qm as in Theorem IV.5.3. In
particular, there is an integer r such that each Qm consists of r elements. For each
such Q = Qm we have an RQ module L1,Q which is free and finite over Z`. Define
∆Q as in IV.1.4, and for any Z`[∆Q]-module N let N∆Q

denote the module of
coinvariants. Then we have:

Theorem V.2.1. ( [D, Lemma 2.1;Fu, Theorem 1.2]) Suppose that
(i) L0,∅ 6= {0};
(ii) For each Q = Qm,

(a) RQ can be topologically generated by r elements,
(b) L1,Q is a free O[∆Q]-module and
(c) there are isomorphisms

(L1,Q)∆Q

∼−→ L0,∅

as RQ-modules, via the natural map RQ→R = R∅.
Then R is a complete intersection and L0,∅ is a free R-module. In particular R

is isomorphic to its image T in the endomorphism algebra of L0,∅.

The theorem as stated here is closer to Fujiwara’s formulation. In order to apply
Fujiwara’s axioms, we need

Lemma V.2.2. For each q ∈ Q let δq be a generator of ∆q. Let mQ ⊂ O[∆Q] be
the ideal generated by {δq, q ∈ Q}. Then the projection RQ→R defines a natural
isomorphism

RQ/mQ
∼−→ R.

Proof. The quotient RQ/mQ is tautologically the universal ring for `-adic deforma-
tions of ρ of type Q on which the inertia groups at primes in Q act trivially. This
is just R.

We turn to the proof of Theorem V.1.6. Condition (i) of Theorem V.2.1 is
Hypothesis V.1.1. Condition (ii) (a) is a consequence of Theorems IV.2.2 and
IV.5.3, combined with Proposition V.1.3. Theorem V.1.6 is now a consequence of
Theorem V.2.1 and the following two propositions.
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Proposition V.2.3. For each Q = Qm, L1,Q is a free O[∆Q]-module.

Proposition V.2.4. For each Q = Qm,

(L1,Q)∆Q

∼−→ L∅

as RQ-modules, via the natural map RQ→R.

Proof of Proposition V.2.3. We return to the notation of §I.2. The hypotheses
of Theorem V.1.6 imply that ` does not divide the order of K1,Q/K, hence the
hypotheses of Corollary I.2.15 are verified in our situation. It follows from Corollary
I.2.17 that A`(J,ΛWσ

, K1,Q) is a free O[∆Q]-module. But the localization L1,Q at
m is a direct summand in A`(J,ΛWσ

, K1,Q) (cf. [DDT, p. 98]), hence L1,Q is also
free over O[∆Q].

Proof of Proposition V.2.4. Corollary I.2.17 and Proposition V.2.3 imply that
(L1,Q)∆Q

∼−→ L0,Q as RQ-modules. So we need to construct an RQ-isomorphism
L∅→L0,Q.

For each q ∈ Q, let X∞,q be the operator constructed in Lemma II.1.11, and let
X∞,Q =

∏

q ∈ QX∞,q. This defines a homomorphism

(V.2.3.1) X∞,Q : L∅→L0,Q

that commutes with all unramified Hecke operators outside Sbad, hence with T0,Q

and, via φ0,Q, with R∅. Each X∞,q is injective (mod `) by construction, since it
just takes the spherical vector to the selected Uq-eigenvector. So to prove X∞,Q

defines an isomorphism it suffices to check that it becomes an isomorphism after
tensoring with Q`.

Now, Lemma V.1.3 implies that the J(Af)-representation generated by L0,Q⊗Q`

is generated by the vectors spherical at q for all q ∈ Q. So it suffices to prove that,
if π′ is an irreducible cohomological automorphic representation of J(A) contained
in Am (cf. the discussion following Hypothesis V.1.1) and spherical at all q ∈ Q,
then the the operator X∞,q maps the spherical subspace of π′q onto the space of
Uq-eigenvectors with eigenvalue congruent (mod `) to αq. But for any π′ ⊂ Am,
it follows from IV.1.4.3 that the space of Uq-eigenvectors of π′q with eigenvalue
congruent (mod `) to αq, is one-dimensional. Thus it suffices to show that the
operator X∞,q is non-trivial on the spherical subspace, and this follows from the
injectivity of (V.2.3.1).

Remark V.2.5. Looking more closely at the results in [D] and [Fu], it fol-
lows from Proposition V.2.3 that, with our choice of Q = Qm, equality holds
in Theorem IV.2.2. Tracing through the proof of Theorem IV.2.2, it follows that

the +1-eigenspace of c in ad rρ must have dimension precisely equal to n(n−1)
2

in IV.1.1.3. It follows that in Lemma III.3.4 the matrix B must be symmet-
ric. We can thus improve Corollary III.3.7, and conclude that the composite
ν ◦ ρ(π) : Gal(E/E)→G̃(O) equals ω1−n.

This provides an unexpected proof of the fact that the representations ρ(π)
considered here correspond to Langlands parameters of the unitary group. Indeed,
let Φn be the n× n anti-diagonal matrix with entries

(Φn)ij = (−1)1+iδi,n+1−j .
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Define the L-group LG by analogy with the definition of G̃ in (I.1.4-6); we replace

G̃0 by

Ĝ = {g = (g1, g2) ∈ GL(n)×GL(n) | ∃a ∈ GL(1) such that g2 = a ·Φn · tg−1
1 Φ−1

n }.

Let r̂ρ(π) : GK→Ĝ be defined by

r̂ρ(π)(g) = (rρ(π)(g),Φn · (rρ(π)c(g)Φ−1
n · ω1−n(g)).

It follows from Lemma 15.1.2 of [R1], as corrected on p. 419 of [R2], that the
existence of an L-homomorphism Lρ(π) : GE→LG, extending r̂ρ(π), is equivalent
to the symmetry of the matrix B.

V.3. Examples for Hypotheses IV.5.2.

Our hypotheses IV.5.2 on the image of the residual representation are certainly
stronger than necessary. We chose them for convenience, as the shortest list of
conditions we found that guarantee existence of the sets Qm and the prime r.

Hypothesis IV.5.2 (a) can in some instances be checked purely locally. For
example, this is the case if the local Galois extension generated by rρ at some
v ∈ SC is disjoint from Ev(ζ`). Hypothesis IV.5.2 (b) seems the most unnatural,
and ought to be a consequence of a more general condition.

If the complement Ad(ρ)0 of the trace subspace of Ad ρ is absolutely irreducible,
then IV.5.2 (c) follows immediately from Lemma IV.4.9. We do not have a good
criterion for irreducibility of Ad(ρ)0. On the other hand, for applications, we are
interested in cases when Ad(ρ)0 is highly reducible. The following Lemma will be
applied to the problem of constructing automorphic tensor products.

Lemma V.3.1. Let G be a group, H ⊂ G a normal subgroup of index b, with G/H
cyclic of order b, and let τ : G→GL(a, k), χ : H→GL(1, k) be representations of
degree a and 1, respectively. Suppose rρ = τ ⊗ IndGHχ is absolutely irreducible and
that the map G→Im(τ)×Im(IndGHχ) is surjective. Suppose Ad τ satisfies the ana-
logue of Hypothesis IV.5.2(c), and suppose the elements s with distinct eigenvalues
in τ have eigenvalues of order prime to b. Then Ad rρ satisfies Hypothesis IV.5.2
(c).

Proof. Let D be a set of coset representatives for H in G, and for δ ∈ D let χδ be
the δ-conjugate of χ. Our hypotheses imply that the χδ are all distinct. Then we
see easily that

(V.3.2) Ad rρ
∼−→ Ad τ ⊗

⊕

δ∈D

IndGHχ
1−δ,

Say Ad τ = ⊕i∈IVi. For any δ ∈ D, let G(δ) ⊃ H be the stabilizer of χ1−δ, and let
X(δ) denote the set of extensions of χ1−δ to a character of G(δ), so that

IndGHχ
1−δ = ⊕x∈X(δ)Ind

G
G(δ)x.

Then the irreducible summands of Ad rρ are indexed by {(i, δ, x)|i ∈ I, δ ∈ D, x ∈
X(δ)}. Let G1 = Im(τ), G2 = Im(IndGHχ). For each triple (i, δ, x), it suffices to
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find pairs (s1, s2) ∈ G1 × G2 where s1 satisfies Hypothesis IV.5.2 (c) for Vi with
eigenvalues of order prime to b, and s2 satisfies Hypothesis IV.5.2 (c) for IndGG(δ)x.

But the existence of s1 is given, and we can take always take s2 to be a generator
of G/H.

The awkward hypothesis about the orders of the eigenvalues is easy to verify in
examples.

V.4. Examples of automorphic tensor products, and other applications

We now introduce two positive integers, n and n′, and define unitary similitude
groups Gn and Gn′ attached to division algebras Dn and Dn′ of dimension n2 and
(n′)2, respectively, over K, as in I.1. Let π and π′ be cohomological automorphic
representations of Gn and Gn′ , respectively. Let Π and Π′ denote the base changes
to GL(n,K) and GL(n′,K), respectively; these are the representations denoted
BC(π)1 and BC(π′)1 in I.3.

We suppose ` > n ·n′. Define the modular representations rρ(π) and rρ(π
′) over

an appropriate finite field k of characteristic `. Our hypothesis on ` ensures that
both rρ(π) and rρ(π

′) are Fontaine-Laffaille representations, with (Hodge-Tate)
weights (a1 < · · · < an) and (b1 < · · · < bn′), respectively. Suppose

(V.4.1) {ai + bj | 1 ≤ i ≤ n; 1 ≤ j ≤ n′} = {0, 1, . . . , n · n′ − 1}.

For example, this is the case if π has cohomology with respect to the trivial rep-
resentation, so {a1, . . . , an} = {0, . . . , n − 1}, and if bj = (n − 1)j + 1 for all j.
Next, we suppose there is a cyclic extension K′ of K of degree n′, a complete local
W (k)-algebra O with residue field k, and an algebraic Hecke character χ of K′,
with values in O, such that

(V.4.2) rρ(π
′) ∼= IndK′/Kχ.

Here χ is the reduction of (the λ-adic representation associated to) χ modulo the
maximal ideal of O.

For any cyclic extensionK ′/K of number fields and any integer n, we let BCK′/K

(resp. AIK′/K) denote the base change (resp. automorphic induction) map of
Arthur-Clozel [AC] from automorphic representations of GL(n,K) to automorphic
representations of GL(n,K ′) (resp. from automorphic representations of GL(n,K ′)
to automorphic representations of GL(n[K ′ : K], K ′). The same notation is used
for cyclic extensions of local fields. We make the following additional hypotheses.

Hypotheses V.4.2. (a) Let π(χ) denote the automorphic induction of χ from K′
to K, as an automorphic representation of GL(n′,K). Then π(χ) is cuspidal and

satisfies π(χ)c
∼−→ π̌(χ)).

(b) For every finite place v of K, Πv is either unramified or supercuspidal. If Πv

is supercuspidal, then v is split over E, and π(χ)v is also supercuspidal. At such
places, ` is prime to |GL(n · n′, k(v))|.

(c) The set of places v at which Πv is supercuspidal is non-empty and contains
at least two elements non-conjugate over E if [E : Q] is odd and n · n′ is congruent
to 2 (mod 4).
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(d) If Πv is unramified but v is ramified over E, let v0 denote the restriction of
v to E. Then the automorphic induction AIK′/K(BCK′/Kπv) ⊗ χv descends to a
representation π0 of the quasi-split unitary group Gnn′,v0 of degree n · n′ over Ev0
such that π0 is spherical with respect to the conjugacy class of very special maximal
compact subgroups.

Theorem V.4.3. Suppose π, π′, χ, and ` satisfy Hypotheses V.4.2. Suppose rρ(π)
and rρ(π

′) satisfy (V.4.1), rρ(π) satisfies Hypothesis IV.5.2, and the tensor product
rρ(π)⊗rρ(π′) satisfies Hypotheses IV.5.2 (a) and (b) and the hypotheses of Lemma
V.3.1. Then there exists a cohomological cuspidal automorphic representation Π �

Π′ of GL(n · n′,K) such that, for almost all places v of K, the local Euler factor of
Π � Π′ satisfies

L(s, (Π � Π′)v) = L(s,Πv ×Π′v),

where the right-hand side is the local Rankin-Selberg convolution.

Proof. Let ρ = rρ(π) ⊗ rρ(π
′), and let rρ denote the residual representation on

GL(n ·n′, k). We have set things up so that Π�Π(χ)
def
= AIK′/K(BCK′/Kπ)⊗χ is

a cuspidal automorphic representation of GL(n ·n′,K), cohomological with respect
to the trivial representation. Our hypotheses V.4.2 (a) and (b) guarantee that
(Π � Π(χ))v is either unramified or supercuspidal at all places v, and V.4.2 (c)
guarantees the existence of a unitary similitude group Gn·n′ of degree n · n′, as in
§I.1, such that Π � Π(χ) descends to an automorphic representation Π′′ of Gn·n′ .
Lemma V.3.1 then implies that rρ(Π

′′) satisfies Hypothesis IV.5.2. Moreover,

rρ
∼−→ rρ(Π

′′).

The theorem is thus a consequence of Theorem V.1.7.

In a later draft, we hope to include numerical examples of Theorem V.4.3. We
will also indicate applications to non-solvable base change and automorphic induc-
tion, generalizing the results of Clozel and Hida for GL(2).
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un anneau local complet, in B. Mazur and G. Stevens, eds., p-adic monodromy and
the Birch and Swinnerton-Dyer conjecture, Contemp. Math., 165, 213-237 (1994).

[C1] Clozel, L.: Représentations Galoisiennes associées aux représentations auto-
morphes autoduales de GL(n), Publ. Math. I.H.E.S., 73, 97-145 (1991).

[C2] Clozel, L.: On the cohomology of Kottwitz’s arithmetic varieties, Duke Math.
J., 72 , 757-795 (1993).

[CL] Clozel, L. et J.-P. Labesse: Changement de base pour les représentations
cohomologiques de certains groupes unitaires, appendix to [L] (manuscript, 1998).

[DKV] Deligne, P., D. Kazhdan, and M.-F. Vignéras: Représentations des algèbres
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