ALGEBRAIC NUMBER THEORY W4043

Homework, week 4, due February 17

1. Let $d > 0$ be a square-free positive integer congruent to 2 (mod 4).
 (a) Every unit $u \in \mathbb{Z}[^d]$ is of the form $a - b \sqrt{d}$ where $a^2 - db^2 = \pm 1$, and
 the group Γ of units is the product of an infinite cyclic group with \{±1\}.
 Consider the subset Σ of Γ consisting of $u_i = a_i - b_i \sqrt{d}$ with $a_i > 0, b_i > 0$,
 ordered so that $b_1 \leq b_2 \leq b_3 \ldots$. Show that u_1 and -1 are generators of Γ.
 The element u_1 is called the fundamental unit of $\mathbb{Z}[^d]$.
 (b) Show that the following algorithm finds u_1: Letting $b = 1, 2, 3, \ldots$, consider
 the quantities $q^\pm(b) = db^2 \pm 1$. Let b_1 be the smallest positive integer such that either
 $q^+(b_1)$ or $q^-(b_1)$ is a perfect square. Let a_1 be the positive square root of $q(b_1)$; then
 $u_1 = a_1 - b_1 \sqrt{d}$.
 (c) Use this algorithm to find the fundamental units u_1 of $\mathbb{Z}[^6], \mathbb{Z}[^{10}], \mathbb{Z}[^{14}]$.
 In each case determine $N_{K/\mathbb{Q}}(u_1)$, where $K = \mathbb{Q}(\sqrt{d})$ in each case.

3. As Hindry shows on p. 99, the ring $R = \mathbb{Z}[^{10}]$, which is equal to
 the ring of integers in $\mathbb{Q}(\sqrt{10})$, is not a principal ideal domain. Indeed, the
 integer 9 has two inequivalent factorizations:
 $9 = 3^2 = (\sqrt{10} - 1)(\sqrt{10} + 1)$.

 (a) Use the computation in 2 (c) to confirm that the two factorizations
 are indeed inequivalent.
 (b) The integer 10 is definitely a square modulo 3. What is the prime
 factorization of the ideal $(3) \subset R$?

4. Let R be a Dedekind ring with only finitely many prime ideals. Show
 that R is a PID. (Hint: say p_1, p_2, \ldots, p_r are the prime ideals. Find an
 element $x_i \in p_i$ that is not in any of the p_j with $j \neq i$, and factor the ideal
 (x_i). Another piece of information is necessary.)

5. List the squares modulo 8.
 (1) Show by testing all possibilities that the equation $x^2 - 11y^2 = 7$ has
 no solution modulo 8.
 (2) Use this to show that every unit in the ring of integers of $\mathbb{Q}(\sqrt{11})$
 has norm 1.