Solvable and nilpotent groups

GU4041

Columbia University

April 11, 2020

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶

Solvable groups Nilpotent groups

GU4041 Solvable and nilpotent groups

≺ 臣 ▶

$$[g,h] = ghg^{-1}h^{-1}.$$

If g and h commute, then

$$[g,h] = ghg^{-1}h^{-1} = h(gg^{-1})h^{-1} = hh^{-1} = e.$$

So [g,h] is trivial for all g and h if G is abelian. If $f: G \rightarrow A$ is a homomorphism, then

$$f([g,h]) = [f(g),f(h)]$$

for all g, h. So if A is abelian, then $[g, h] \in \text{ker}(f)$ for all g, h.

- **- - - - -**

$$[g,h] = ghg^{-1}h^{-1}.$$

If g and h commute, then

$$[g,h] = ghg^{-1}h^{-1} = h(gg^{-1})h^{-1} = hh^{-1} = e.$$

So [g,h] is trivial for all g and h if G is abelian. If $f: G \rightarrow A$ is a homomorphism, then

$$f([g,h]) = [f(g),f(h)]$$

for all g, h. So if A is abelian, then $[g, h] \in \text{ker}(f)$ for all g, h.

$$[g,h] = ghg^{-1}h^{-1}.$$

If g and h commute, then

$$[g,h] = ghg^{-1}h^{-1} = h(gg^{-1})h^{-1} = hh^{-1} = e.$$

So [g, h] is trivial for all g and h if G is abelian. If $f : G \to A$ is a homomorphism, then

$$f([g,h]) = [f(g),f(h)]$$

for all g, h. So if A is abelian, then $[g, h] \in \text{ker}(f)$ for all g, h.

- **- - - - -**

$$[g,h] = ghg^{-1}h^{-1}.$$

If g and h commute, then

$$[g,h] = ghg^{-1}h^{-1} = h(gg^{-1})h^{-1} = hh^{-1} = e.$$

So [g, h] is trivial for all g and h if G is abelian. If $f : G \to A$ is a homomorphism, then

$$f([g,h]) = [f(g),f(h)]$$

for all g, h. So if A is abelian, then $[g, h] \in \text{ker}(f)$ for all g, h.

Commutator subgroup

Definition

The **commutator subgroup** $[G, G] \subset G$ is the subgroup of *G* generated by all the elements [g, h] for all $g, h \in G$.

We also call [G, G] the **derived subgroup** and denote it G', or D(G).

Proposition

Let $f : G \to A$ be a homomorphism with A abelian. Then $[G, G] \subseteq \text{ker}(f)$.

Proof.

It suffices to show that if $g, h \in G$ then $[g, h] \in ker(f)$; but we already saw that on the last slide.

Commutator subgroup

Definition

The **commutator subgroup** $[G, G] \subset G$ is the subgroup of *G* generated by all the elements [g, h] for all $g, h \in G$.

We also call [G, G] the **derived subgroup** and denote it G', or D(G).

Proposition

Let $f : G \to A$ be a homomorphism with A abelian. Then $[G, G] \subseteq \text{ker}(f)$.

Proof.

It suffices to show that if $g, h \in G$ then $[g, h] \in ker(f)$; but we already saw that on the last slide.

Commutator subgroup

Definition

The **commutator subgroup** $[G, G] \subset G$ is the subgroup of *G* generated by all the elements [g, h] for all $g, h \in G$.

We also call [G, G] the **derived subgroup** and denote it G', or D(G).

Proposition

Let $f : G \to A$ be a homomorphism with A abelian. Then $[G, G] \subseteq \text{ker}(f)$.

Proof.

It suffices to show that if $g, h \in G$ then $[g, h] \in ker(f)$; but we already saw that on the last slide.

イロト イポト イラト イラト

Abelianization

Proposition

Let G be a group. Then [G,G] is a normal subgroup. Moreover, G/[G,G] is abelian.

Proof.

The grSuppose $g, h, j \in G$. It is easy to compute that the conjugate of a commutator is a commutator:

$$j[g,h]j^{-1} = [jgj^{-1},jhj^{-1}].$$

Moreover, the conjugate of the product of two commutators is the product of two commutators: if $g, h, g', h', j \in G$, then

$$j[g,h][g',h']j^{-1} = [jgj^{-1},jhj^{-1}][jg'j^{-1},jh'j^{-1}].$$

Abelianization

Proposition

Let G be a group. Then [G,G] is a normal subgroup. Moreover, G/[G,G] is abelian.

Proof.

The grSuppose $g, h, j \in G$. It is easy to compute that the conjugate of a commutator is a commutator:

$$j[g,h]j^{-1} = [jgj^{-1}, jhj^{-1}].$$

Moreover, the conjugate of the product of two commutators is the product of two commutators: if $g, h, g', h', j \in G$, then

$$j[g,h][g',h']j^{-1} = [jgj^{-1},jhj^{-1}][jg'j^{-1},jh'j^{-1}].$$

Abelianization

Proposition

Let G be a group. Then [G,G] is a normal subgroup. Moreover, G/[G,G] is abelian.

Proof.

The grSuppose $g, h, j \in G$. It is easy to compute that the conjugate of a commutator is a commutator:

$$j[g,h]j^{-1} = [jgj^{-1}, jhj^{-1}].$$

Moreover, the conjugate of the product of two commutators is the product of two commutators: if $g, h, g', h', j \in G$, then

$$j[g,h][g',h']j^{-1} = [jgj^{-1},jhj^{-1}][jg'j^{-1},jh'j^{-1}].$$

Proof.

It follows that the conjugate of any product of commutators is again a product of commutators; thus the conjugate of any element of [G, G] is again in [G, G]. Now consider the quotient map $f : G \to G/[G, G]$. Let $\overline{g}, \overline{h} \in G/[G, G]$, and suppose $\overline{g} = f(g), \overline{h} = f(h)$. Then

$$[\bar{g},\bar{h}]=f([g,h]);$$

but since $[g,h] \in \text{ker}(f)$, we see that \overline{g} and \overline{h} commute. Thus G/[G,G] is abelian.

Proof.

It follows that the conjugate of any product of commutators is again a product of commutators; thus the conjugate of any element of [G, G] is again in [G, G]. Now consider the quotient map $f : G \to G/[G, G]$. Let $\bar{g}, \bar{h} \in G/[G, G]$, and suppose $\bar{g} = f(g), \bar{h} = f(h)$. Then

$$[\bar{g},\bar{h}]=f([g,h]);$$

but since $[g,h] \in \text{ker}(f)$, we see that \overline{g} and \overline{h} commute. Thus G/[G,G] is abelian.

Proof.

It follows that the conjugate of any product of commutators is again a product of commutators; thus the conjugate of any element of [G, G] is again in [G, G]. Now consider the quotient map $f : G \to G/[G, G]$. Let $\bar{g}, \bar{h} \in G/[G, G]$, and suppose $\bar{g} = f(g), \bar{h} = f(h)$. Then

$$[\bar{g},\bar{h}]=f([g,h]);$$

but since $[g, h] \in \text{ker}(f)$, we see that \overline{g} and \overline{h} commute. Thus G/[G, G] is abelian.

Proof.

It follows that the conjugate of any product of commutators is again a product of commutators; thus the conjugate of any element of [G, G] is again in [G, G]. Now consider the quotient map $f : G \to G/[G, G]$. Let $\bar{g}, \bar{h} \in G/[G, G]$, and suppose $\bar{g} = f(g), \bar{h} = f(h)$. Then

$$[\bar{g},\bar{h}]=f([g,h]);$$

but since $[g, h] \in \text{ker}(f)$, we see that \overline{g} and \overline{h} commute. Thus G/[G, G] is abelian.

Definition

The group G is *solvable* if there is a finite sequence of subgroups

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$$

such that

(1) Each G_{i+1} is a normal subgroup of G_i , and

(2) Each group G_i/G_{i+1} is abelian.

In particular, each $G_{i+1} \supseteq [G_i, G_i]$.

Definition

The group G is *solvable* if there is a finite sequence of subgroups

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$$

such that

- (1) Each G_{i+1} is a normal subgroup of G_i , and
- (2) Each group G_i/G_{i+1} is abelian.

In particular, each $G_{i+1} \supseteq [G_i, G_i]$.

For a solvable group, $G_{i+1} \supseteq D(G_i)$. So we have an equivalent definition: Let $D(G) = D^1(G) = [G, G]$, $D^2(G) = [D(G), D(G)]$, and define $D^{i+1}(G) = [D^i(G), D^i(G)]$ for $i \ge 1$.

Lemma

G is solvable if and only if, for some $r \ge 1$, $D^r(G) = \{e\}$.

Proof.

If $D^r(G) = \{e\}$ we can take $G_i = D^i(G)$ in the definition of solvable. Conversely, since we have $D(G_i) \subseteq G_{i+1}$ for each *i*, we see by induction that

$D(G) \subseteq G_1, D^2(G) \subseteq D(G_1) \subseteq G_2$

For a solvable group, $G_{i+1} \supseteq D(G_i)$. So we have an equivalent definition: Let $D(G) = D^1(G) = [G, G]$, $D^2(G) = [D(G), D(G)]$, and define $D^{i+1}(G) = [D^i(G), D^i(G)]$ for $i \ge 1$.

Lemma

G is solvable if and only if, for some $r \ge 1$, $D^r(G) = \{e\}$.

Proof.

If $D^r(G) = \{e\}$ we can take $G_i = D^i(G)$ in the definition of solvable. Conversely, since we have $D(G_i) \subseteq G_{i+1}$ for each *i*, we see by induction that

 $D(G) \subseteq G_1, D^2(G) \subseteq D(G_1) \subseteq G_2$

For a solvable group, $G_{i+1} \supseteq D(G_i)$. So we have an equivalent definition: Let $D(G) = D^1(G) = [G, G]$, $D^2(G) = [D(G), D(G)]$, and define $D^{i+1}(G) = [D^i(G), D^i(G)]$ for $i \ge 1$.

Lemma

G is solvable if and only if, for some $r \ge 1$, $D^r(G) = \{e\}$.

Proof.

If $D^r(G) = \{e\}$ we can take $G_i = D^i(G)$ in the definition of solvable. Conversely, since we have $D(G_i) \subseteq G_{i+1}$ for each *i*, we see by induction that

$$D(G) \subseteq G_1, D^2(G) \subseteq D(G_1) \subseteq G_2$$

For a solvable group, $G_{i+1} \supseteq D(G_i)$. So we have an equivalent definition: Let $D(G) = D^1(G) = [G, G]$, $D^2(G) = [D(G), D(G)]$, and define $D^{i+1}(G) = [D^i(G), D^i(G)]$ for $i \ge 1$.

Lemma

G is solvable if and only if, for some $r \ge 1$, $D^r(G) = \{e\}$.

Proof.

If $D^r(G) = \{e\}$ we can take $G_i = D^i(G)$ in the definition of solvable. Conversely, since we have $D(G_i) \subseteq G_{i+1}$ for each *i*, we see by induction that

$$D(G) \subseteq G_1, D^2(G) \subseteq D(G_1) \subseteq G_2$$

We will later use the Sylow theorems to prove:

Proposition

Let p < q be prime numbers, and let G be a group of order pq. Then G contains a normal subgroup of order q.

Admitting this proposition, we have

Theorem

Let $p \neq q$ be prime numbers. Then any group G of order pq is solvable.

Proof.

We will later use the Sylow theorems to prove:

Proposition

Let p < q be prime numbers, and let G be a group of order pq. Then G contains a normal subgroup of order q.

Admitting this proposition, we have

Theorem

Let $p \neq q$ be prime numbers. Then any group G of order pq is solvable.

Proof.

We will later use the Sylow theorems to prove:

Proposition

Let p < q be prime numbers, and let G be a group of order pq. Then G contains a normal subgroup of order q.

Admitting this proposition, we have

Theorem

Let $p \neq q$ be prime numbers. Then any group G of order pq is solvable.

Proof.

We will later use the Sylow theorems to prove:

Proposition

Let p < q be prime numbers, and let G be a group of order pq. Then G contains a normal subgroup of order q.

Admitting this proposition, we have

Theorem

Let $p \neq q$ be prime numbers. Then any group G of order pq is solvable.

Proof.

More about solvable groups

The importance of solvable groups becomes clearer in the study of Galois theory. It turns out that A_5 is the smallest group that is not solvable. This is used in Galois theory to show that the general polynomial of degree 5 cannot be solved by radicals. One of the most difficult theorems in finite group theory is

Theorem (Feit-Thompson theorem)

Any finite group of odd order is solvable.

More about solvable groups

The importance of solvable groups becomes clearer in the study of Galois theory. It turns out that A_5 is the smallest group that is not solvable. This is used in Galois theory to show that the general polynomial of degree 5 cannot be solved by radicals. One of the most difficult theorems in finite group theory is

Theorem (Feit-Thompson theorem)

Any finite group of odd order is solvable.

Properties of solvable groups

Theorem

Every subgroup of a solvable group is solvable.

Theorem

Every quotient group of a solvable group is solvable.

The corresponding theorems where *solvable* is replaced by *abelian* are obvious. We will use this observation in proving the theorems.

Properties of solvable groups

Theorem

Every subgroup of a solvable group is solvable.

Theorem

Every quotient group of a solvable group is solvable.

The corresponding theorems where *solvable* is replaced by *abelian* are obvious. We will use this observation in proving the theorems.

Properties of solvable groups

Theorem

Every subgroup of a solvable group is solvable.

Theorem

Every quotient group of a solvable group is solvable.

The corresponding theorems where *solvable* is replaced by *abelian* are obvious. We will use this observation in proving the theorems.

Let G be solvable and let

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$$

be a sequence of subgroups with $G_{i+1} \leq G_i$ and G_i/G_{i+1} abelian. Let $H \subseteq G$ and define $H_i = H \cap G_i$. Then H_{i+1} is normal in H_i (check) and

$$H_{i+1} = H \cap G_{i+1} = H_i \cap G_{i+1}.$$

Thus

$$H_i/H_{i+1} = H_i/(H_i \cap G_{i+1}) \xrightarrow{\sim} G_{i+1} \cdot H_i/G_{i+1}$$

by the Second Isomorphism Theorem. But $G_{i+1} \cdot H_i \subseteq G_i$, so

$$G_{i+1} \cdot H_i/G_{i+1} \subset G_i/G_{i+1},$$

Let G be solvable and let

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$$

be a sequence of subgroups with $G_{i+1} \leq G_i$ and G_i/G_{i+1} abelian. Let $H \subseteq G$ and define $H_i = H \cap G_i$. Then H_{i+1} is normal in H_i (check) and

$$H_{i+1}=H\cap G_{i+1}=H_i\cap G_{i+1}.$$

Thus

$$H_i/H_{i+1} = H_i/(H_i \cap G_{i+1}) \xrightarrow{\sim} G_{i+1} \cdot H_i/G_{i+1}$$

by the Second Isomorphism Theorem. But $G_{i+1} \cdot H_i \subseteq G_i$, so

$$G_{i+1} \cdot H_i/G_{i+1} \subset G_i/G_{i+1},$$

Let G be solvable and let

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$$

be a sequence of subgroups with $G_{i+1} \leq G_i$ and G_i/G_{i+1} abelian. Let $H \subseteq G$ and define $H_i = H \cap G_i$. Then H_{i+1} is normal in H_i (check) and

$$H_{i+1}=H\cap G_{i+1}=H_i\cap G_{i+1}.$$

Thus

$$H_i/H_{i+1} = H_i/(H_i \cap G_{i+1}) \xrightarrow{\sim} G_{i+1} \cdot H_i/G_{i+1}$$

by the Second Isomorphism Theorem. But $G_{i+1} \cdot H_i \subseteq G_i$, so

$$G_{i+1} \cdot H_i/G_{i+1} \subset G_i/G_{i+1},$$

Let G be solvable and let

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$$

be a sequence of subgroups with $G_{i+1} \leq G_i$ and G_i/G_{i+1} abelian. Let $H \subseteq G$ and define $H_i = H \cap G_i$. Then H_{i+1} is normal in H_i (check) and

$$H_{i+1}=H\cap G_{i+1}=H_i\cap G_{i+1}.$$

Thus

$$H_i/H_{i+1} = H_i/(H_i \cap G_{i+1}) \xrightarrow{\sim} G_{i+1} \cdot H_i/G_{i+1}$$

by the Second Isomorphism Theorem. But $G_{i+1} \cdot H_i \subseteq G_i$, so

$$G_{i+1} \cdot H_i/G_{i+1} \subset G_i/G_{i+1},$$

Quotients of solvable groups

Let $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$ as above, and let $N \trianglelefteq G$, $H = G/N, f : G \to H$ the quotient map. Let $H_i = f(G_i)$ be the image. Obviously $H_{i+1} \trianglelefteq H_i$; we need to show H_i/H_{i+1} is abelian. We use $H_i = f(G_i) = G_i \cdot N/N$, so

 $H_i/H_{i+1} = (G_i \cdot N/N)/(G_{i+1} \cdot N/N) \xrightarrow{\sim} (G_i \cdot N)/(G_{i+1} \cdot N)$

by the Third Isomorphism Theorem. But $G_{i+1} \subseteq G_i$, so

 $(G_i \cdot N)/(G_{i+1} \cdot N) = G_i \cdot (G_{i+1} \cdot N)/(G_{i+1} \cdot N) \xrightarrow{\sim} G_i/G_i \cap (G_{i+1} \cdot N)$

by the Second Isomorphism Theorem. By the Third Isomorphism Theorem again we have

 $G_i/G_i \cap (G_{i+1} \cdot N) \xrightarrow{\sim} (G_i/G_{i+1})/(G_i \cap G_{i+1} \cdot N)/G_{i+1}).$

This is a quotient group of the abelian group G_i/G_{i+1} , hence is abelian.

Let $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$ as above, and let $N \trianglelefteq G$, $H = G/N, f : G \to H$ the quotient map. Let $H_i = f(G_i)$ be the image. Obviously $H_{i+1} \trianglelefteq H_i$; we need to show H_i/H_{i+1} is abelian. We use $H_i = f(G_i) = G_i \cdot N/N$, so

 $H_i/H_{i+1} = (G_i \cdot N/N)/(G_{i+1} \cdot N/N) \xrightarrow{\sim} (G_i \cdot N)/(G_{i+1} \cdot N)$

by the Third Isomorphism Theorem. But $G_{i+1} \subseteq G_i$, so

 $(G_i \cdot N)/(G_{i+1} \cdot N) = G_i \cdot (G_{i+1} \cdot N)/(G_{i+1} \cdot N) \xrightarrow{\sim} G_i/G_i \cap (G_{i+1} \cdot N)$

by the Second Isomorphism Theorem. By the Third Isomorphism Theorem again we have

 $G_i/G_i \cap (G_{i+1} \cdot N) \xrightarrow{\sim} (G_i/G_{i+1})/(G_i \cap G_{i+1} \cdot N)/G_{i+1}).$

Let $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$ as above, and let $N \trianglelefteq G$, $H = G/N, f : G \to H$ the quotient map. Let $H_i = f(G_i)$ be the image. Obviously $H_{i+1} \trianglelefteq H_i$; we need to show H_i/H_{i+1} is abelian. We use $H_i = f(G_i) = G_i \cdot N/N$, so

$$H_i/H_{i+1} = (G_i \cdot N/N)/(G_{i+1} \cdot N/N) \xrightarrow{\sim} (G_i \cdot N)/(G_{i+1} \cdot N)$$

by the Third Isomorphism Theorem. But $G_{i+1} \subseteq G_i$, so

 $(G_i \cdot N)/(G_{i+1} \cdot N) = G_i \cdot (G_{i+1} \cdot N)/(G_{i+1} \cdot N) \xrightarrow{\sim} G_i/G_i \cap (G_{i+1} \cdot N)$

by the Second Isomorphism Theorem. By the Third Isomorphism Theorem again we have

$$G_i/G_i \cap (G_{i+1} \cdot N) \xrightarrow{\sim} (G_i/G_{i+1})/(G_i \cap G_{i+1} \cdot N)/G_{i+1}).$$

Let $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$ as above, and let $N \trianglelefteq G$, $H = G/N, f : G \to H$ the quotient map. Let $H_i = f(G_i)$ be the image. Obviously $H_{i+1} \trianglelefteq H_i$; we need to show H_i/H_{i+1} is abelian. We use $H_i = f(G_i) = G_i \cdot N/N$, so

$$H_i/H_{i+1} = (G_i \cdot N/N)/(G_{i+1} \cdot N/N) \xrightarrow{\sim} (G_i \cdot N)/(G_{i+1} \cdot N)$$

by the Third Isomorphism Theorem. But $G_{i+1} \subseteq G_i$, so

$$(G_i \cdot N)/(G_{i+1} \cdot N) = G_i \cdot (G_{i+1} \cdot N)/(G_{i+1} \cdot N) \xrightarrow{\sim} G_i/G_i \cap (G_{i+1} \cdot N)$$

by the Second Isomorphism Theorem. By the Third Isomorphism Theorem again we have

$G_i/G_i \cap (G_{i+1} \cdot N) \xrightarrow{\sim} (G_i/G_{i+1})/(G_i \cap G_{i+1} \cdot N)/G_{i+1}).$

Let $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$ as above, and let $N \trianglelefteq G$, $H = G/N, f : G \to H$ the quotient map. Let $H_i = f(G_i)$ be the image. Obviously $H_{i+1} \trianglelefteq H_i$; we need to show H_i/H_{i+1} is abelian. We use $H_i = f(G_i) = G_i \cdot N/N$, so

$$H_i/H_{i+1} = (G_i \cdot N/N)/(G_{i+1} \cdot N/N) \xrightarrow{\sim} (G_i \cdot N)/(G_{i+1} \cdot N)$$

by the Third Isomorphism Theorem. But $G_{i+1} \subseteq G_i$, so

$$(G_i \cdot N)/(G_{i+1} \cdot N) = G_i \cdot (G_{i+1} \cdot N)/(G_{i+1} \cdot N) \xrightarrow{\sim} G_i/G_i \cap (G_{i+1} \cdot N)$$

by the Second Isomorphism Theorem. By the Third Isomorphism Theorem again we have

$$G_i/G_i \cap (G_{i+1} \cdot N) \xrightarrow{\sim} (G_i/G_{i+1})/(G_i \cap G_{i+1} \cdot N)/G_{i+1}).$$

Let $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$ as above, and let $N \trianglelefteq G$, $H = G/N, f : G \to H$ the quotient map. Let $H_i = f(G_i)$ be the image. Obviously $H_{i+1} \trianglelefteq H_i$; we need to show H_i/H_{i+1} is abelian. We use $H_i = f(G_i) = G_i \cdot N/N$, so

$$H_i/H_{i+1} = (G_i \cdot N/N)/(G_{i+1} \cdot N/N) \xrightarrow{\sim} (G_i \cdot N)/(G_{i+1} \cdot N)$$

by the Third Isomorphism Theorem. But $G_{i+1} \subseteq G_i$, so

$$(G_i \cdot N)/(G_{i+1} \cdot N) = G_i \cdot (G_{i+1} \cdot N)/(G_{i+1} \cdot N) \xrightarrow{\sim} G_i/G_i \cap (G_{i+1} \cdot N)$$

by the Second Isomorphism Theorem. By the Third Isomorphism Theorem again we have

$$G_i/G_i \cap (G_{i+1} \cdot N) \xrightarrow{\sim} (G_i/G_{i+1})/(G_i \cap G_{i+1} \cdot N)/G_{i+1}).$$

Nilpotent groups

Definition

The group G is nilpotent if there is a finite sequence of subgroups

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$$

such that

- (1) Each G_{i+1} is a normal subgroup of G_i , and
- (2) Each group G_i/G_{i+1} is contained in the center of G/G_{i+1} .

Any nilpotent group is solvable, and any abelian group is nilpotent.

Nilpotent groups

Definition

The group G is nilpotent if there is a finite sequence of subgroups

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$$

such that

- (1) Each G_{i+1} is a normal subgroup of G_i , and
- (2) Each group G_i/G_{i+1} is contained in the center of G/G_{i+1} .

Any nilpotent group is solvable, and any abelian group is nilpotent.

Nilpotent groups

Definition

The group G is nilpotent if there is a finite sequence of subgroups

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_r = \{e\}$$

such that

- (1) Each G_{i+1} is a normal subgroup of G_i , and
- (2) Each group G_i/G_{i+1} is contained in the center of G/G_{i+1} .

Any nilpotent group is solvable, and any abelian group is nilpotent.

Theorem

Let G be a finite p-group. Then G is nilpotent (and in particular solvable).

Proof.

We induct from below. Let Z = Z(G). Since G is a p-group, we know that Z is of order at least p. Now G/Z is again a finite p-group. So by induction it has a *central series*

$$G/Z = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{r-1} = \{e\}$$

Theorem

Let G be a finite p-group. Then G is nilpotent (and in particular solvable).

Proof.

We induct from below. Let Z = Z(G). Since G is a p-group, we know that Z is of order at least p. Now G/Z is again a finite p-group. So by induction it has a *central series*

$$G/Z = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{r-1} = \{e\}$$

Theorem

Let G be a finite p-group. Then G is nilpotent (and in particular solvable).

Proof.

We induct from below. Let Z = Z(G). Since G is a p-group, we know that Z is of order at least p. Now G/Z is again a finite p-group. So by induction it has a *central series*

$$G/Z = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{r-1} = \{e\}$$

Theorem

Let G be a finite p-group. Then G is nilpotent (and in particular solvable).

Proof.

We induct from below. Let Z = Z(G). Since G is a p-group, we know that Z is of order at least p. Now G/Z is again a finite p-group. So by induction it has a *central series*

$$G/Z = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{r-1} = \{e\}$$

Theorem

Let G be a finite p-group. Then G is nilpotent (and in particular solvable).

Proof.

We induct from below. Let Z = Z(G). Since G is a p-group, we know that Z is of order at least p. Now G/Z is again a finite p-group. So by induction it has a *central series*

$$G/Z = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{r-1} = \{e\}$$

Properties of nilpotent groups

By copying the proofs of the hereditary properties of solvable groups, we obtain the corresponding properties for nilpotent groups:

Theorem

Every subgroup of a nilpotent group is nilpotent.

Theorem

Every quotient group of a nilpotent group is nilpotent.

Challenge

Prove these theorems.

Properties of nilpotent groups

By copying the proofs of the hereditary properties of solvable groups, we obtain the corresponding properties for nilpotent groups:

Theorem

Every subgroup of a nilpotent group is nilpotent.

Theorem

Every quotient group of a nilpotent group is nilpotent.

Challenge

Prove these theorems.

Properties of nilpotent groups

By copying the proofs of the hereditary properties of solvable groups, we obtain the corresponding properties for nilpotent groups:

Theorem

Every subgroup of a nilpotent group is nilpotent.

Theorem

Every quotient group of a nilpotent group is nilpotent.

Challenge

Prove these theorems.