GU4041: Intro to Modern Algebra I

Professor Michael Harris
Solutions by Iris Rosenblum-Sellers

Homework 9

1) List the isomorphism classes of abelian groups of the following orders: $27,200,605,720$

Generally, the isomorphism classes of finite abelian groups of a given order are determined by the prime factorizations of the order; for a maximal prime power n such that p^{n} is a factor of $|G|$, and p^{n+1} is not, there are the partition function of n ways to permute the p-group components whose orders are powers of p. In practice, we permute each prime factor component individually, and mix-and-match.

27: $\mathbb{Z}_{27}, \mathbb{Z}_{3} \times \mathbb{Z}_{9}$, and $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. This one is easy, since it's a prime power; we have only one prime component to permute, so there are $p(3)=3$ options.

200: $200=2^{3} \times 5^{2}$, so we do each seperately; we should end up getting $p(3) \times p(2)=6$ options;

$$
\mathbb{Z}_{200}=\mathbb{Z}_{8} \times \mathbb{Z}_{25}, \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{25}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25}, \mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}, \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}
$$

605: $605=5 \times 11^{2}$. There are $p(1) \times p(2)$ options, so just $\mathbb{Z}_{5} \times \mathbb{Z}_{121}$, and $\mathbb{Z}_{5} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}$.
720: $720=5 \times 12^{2}$. Same deal with this one; $\mathbb{Z}_{5} \times \mathbb{Z}_{144}, \mathbb{Z}_{5} \times \mathbb{Z}_{12} \times \mathbb{Z}_{12}$.
2) Judson 13.3: 6,8

6: Let G be an abelian group of order m. If n divides m, prove that G has a subgroup of order n.

Proof. We first reduce to the case where $m=p^{\alpha}, p$ prime. To do this, suppose we had shown this statement for primes. Then if we let $m=\Pi p_{i}^{\alpha_{i}}$, the prime factorization of $m . n=\Pi p_{i}^{\beta_{i}}$, where each $\beta_{i} \leq \alpha_{i}$, because $n \mid m$. Then we view m as the product of $n p_{i}$-groups, which follows from the chinese remainder theorem. We call these P_{i}. By our assumption that the statement holds for p-groups, for each p_{i}-group P_{i}, we can pick a subgroup of P_{i} of order $p_{i}^{\beta_{i}}$, which we call Q_{i}. Then each of these Q_{i} 's are subgroups of G, and they're *normal*, since G is abelian. Then their product, $Q_{1} Q_{2} \ldots Q_{n}$ is a subgroup of G. Also, since these groups have trivial overlap, and G is abelian, we have $\left|Q_{1} Q_{2} \ldots Q_{n}\right|=n$. This amounts to saying that for any $g_{1}, g_{2} \in Q_{i}, h_{1}, h_{2} \in Q_{j} . g_{1} h_{1}=g_{2} h_{2} \Rightarrow g_{1}=g_{2}, h_{1}=h_{2}$; i.e. every tuple of elements of the Q_{i} 's is distinct. However, we know that they have trivial overlap, since they're subgroups of trivially overlapping P_{i} 's so $g_{1} g_{2}^{-1}=h_{1} h_{2}^{-1}$ implies that they're both the identity. So from the statement for prime powers, we have the general statement; it remains to show the statement for prime powers. We now reduce to the cyclic case similarly. Let $m=p^{\alpha}, n=p^{\beta}, \beta \leq \alpha$. An abelian group of order p^{α} is of the form $\prod_{i=1}^{n} \mathbb{Z}_{p^{k_{i}}}$, where $\sum k_{i}=\alpha$. If the proposition is true for cyclic groups, we pick $j_{i} \leq k_{i}: \sum j_{i}=\beta$, and let Q_{i} be subgroups of the $\mathbb{Z}_{p^{k_{i}}}$ of order $p^{j_{i}}$. We have the same situation as before where $Q_{1} Q_{2} \ldots Q_{n}$ is a subgroup of order $p^{\beta}=n$. It now remains to show for cyclic p-groups. Then let $G=\mathbb{Z}_{p^{\alpha}}$ for some α, and let $n=p^{\beta}$ for some $\beta \leq \alpha$. Let $H:=\left\langle\left[p^{\alpha-\beta}\right]\right\rangle$. We note that $\left[p^{\alpha-\beta}\right]^{p^{\beta}}=\left[p^{\beta} p^{\alpha-\beta}\right]=\left[p^{\alpha}\right]=[0]$, so $|H| \leq p^{\beta}$. However, $\left[p^{\alpha-\beta}\right]^{k}=[0] \Rightarrow k p^{\alpha-\beta}=q p^{\alpha} \Rightarrow k=q p^{\beta}$, for some $q \in \mathbb{Z}$, so $k>0 \Rightarrow k \geq p^{\beta} \Rightarrow|H| \geq p^{\beta} \Rightarrow|H|=p^{\beta}$.
8) Show that if G, H, K are finitely generated abelian groups, and $G \times H \cong G \times K$, then $H \cong K$. Give a counterexample to show that this is not true in general.

We split $G=\Pi G_{i}$ into a unique ordered decomposition form, where G_{i} are cyclic, $H=\Pi H_{i}, K=\Pi K_{i}$ likewise. Then we have $\Pi G_{i} \times \Pi H_{i} \cong \Pi G_{i} \times \Pi K_{i}$. By uniqueness of the decompositions, we have that each component of the left is isomorphic to the same-numbered component on the right, so each H_{i} is isomorphic to each K_{i}, so the product of the H_{i} 's, H is isomorphic to the product of the K_{i} 's, K. Then to show the converse in general, let $G=\prod_{k=1}^{\infty} \mathbb{Z}, H=\mathbb{Z}$, and let K be trivial. $G \times H \cong G \cong G \times K$, just by the principle " $\infty+1=\infty$ "; i.e., let $\Phi: G \times H \rightarrow G$ be defined by, if $\left(h, g_{1}, g_{2}, \cdots\right) \in H \times G, \Phi\left(h, g_{1}, g_{2}, \cdots\right)=\left(h, g_{1}, g_{2}, \cdots\right)$. This is an isomorphism. Of course, $H \nVdash K$.
3) Find the smallest $n>42$ such that there is exactly one isomorphism class of abelian groups of order n and exactly one isomorphism class of abelian groups of order $n+1$. Justify your answer, including why there is no smaller n.

We note that it is exactly equivalent for there to be exactly one isomorphism class of abelian groups of order n and for the prime factorization of n to have no multiplicities greater than 1 for a given prime, by the statement we expressed in 1 about the partition function. Then we just proceed in order from $n=43$. 43 is prime, but $44=2^{2} \times 7$, so that rules our both 43 and $44.45=5 \times 3^{2}$, which rules out 45 . 46 , however, is 23×2, which are both multiplicity 1 , and $46+1=47$ which is prime, so 46 works.
4) Let $n>1$ and $m>1$ be integers. In the next question, we recall that if $a \in \mathbb{Z}$ and $x \in \mathbb{Z}_{n}$, we can define $a x \in \mathbb{Z}_{n}$ by letting \tilde{x} be any element of \mathbb{Z} with residue class x modulo n and letting $a x$ denote the residue class of $a \tilde{x}$ modulo n.
a) Show that if a and d are integers such that $(a, n)=(d, m)=1$, then there is an automorphism $\alpha_{a, d}: \mathbb{Z}_{n} \times \mathbb{Z}_{m} \rightarrow$ $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$, such that for all $(x, y) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$, we have $\alpha_{a, d}(x, y)=(a x, d y)$.

Proof. We have the definition of α already; it suffices to show that it's an isomorphism. It is a homomorphism; we note that $\alpha_{a, d}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right)=\alpha_{a, d}\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=\left(a\left(x_{1}+x_{2}\right), d\left(y_{1}+y_{2}\right)\right)=\left(a x_{1}, d y_{1}\right)+\left(a x_{2}, d y_{2}\right)=\alpha_{a, d}\left(x_{1}, y_{1}\right)+$ $\alpha_{a, d}\left(x_{2}, y_{2}\right)$. Then it suffices to show that it's invertible. We consider $[a] \in \mathbb{Z}_{n}^{\times},[d] \in \mathbb{Z}_{m}^{\times}$. This is valid because they're relatively prime to n and m respectively by assumption. Then let $[b]: b \in[1, n-1] \cap \mathbb{Z},[b]:=[a]^{-1},[c]:=[d]^{-1}$ in this group. Then consider $\alpha_{b, c}$. It clearly commutes with $\alpha_{a, d}$ because multiplication does, and $\alpha_{b, c}\left(\alpha_{a, d}\right)(x, y)=$ ($a b x, c d y$). By assumption, $a b=k n+1, c d=j m+1$ for $k, j \in \mathbb{Z}$, so we have $\operatorname{RHS}=(k n x+x, j m y+y) \cong(x, y)$, so this is a proper inverse. Therefore, α is an automorphism.
b) Suppose $(n, m)=1$. Show that the group $\mathbb{Z}_{n m}$ has a unique subgroup A_{n} of order n and a unique subgroup A_{m} of order m. Write down an isomorphism $A_{n} \times A_{m} \xrightarrow{\sim} \mathbb{Z}_{n m}$

Proof. Existence is clear; let $A_{n}=\langle[m]\rangle, A_{m}=\langle[n]\rangle$. For uniqueness, we recall that any subgroup of a cyclic group is cyclic, so it suffices to show that if $|[x]|=n, x=k m$ for some k, and likewise for A_{m}; by symmetry, it suffices to show just for n. If $|[x]|=n$, then $n x=j n m$ for some j, which implies $x=j m$. Then let $\Phi: A_{n} \times A_{m} \xrightarrow{\sim} \mathbb{Z}_{n m}$ map $([1],[0])$ to $[m]$, and $([0],[1])$ to $[n]$. We require it to be a homomorphism from here; we note that this works because $|([1],[0])|=|[m]|=n$, and likwise for m. We note that the orders of the groups agree, so it suffices to show surjectivity, for which it suffices to write an inverse of a generator of $\mathbb{Z}_{n m}$, since it's cyclic. To do this, we simply use the greatest common divisor fact $\exists x, y: x n+y m=(n, m)=1$; then $\Phi([x],[y])=[1]$.
c)

Proof. Let Φ be an automorphism of $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$. We recall that homomorphisms are completely determined by where they send generators, and that isomorphisms preserve orders. We note that $\Phi([1],[0])=([a],[0])$ for some a; to
see this, we realize that if the latter component were nonzero, it would mean that $|([a],[x])|=n$, which means that $[x]^{n}=0$, which means that $n x=m k$ for some k, which means that $x=m$, since $(n, m)=1$. Likewise, $\Phi([0],[1])=([0],[d])$ for some d. This means that $\Phi([x],[y])=([a x],[d y])$. Finally, in order for Φ to preserve orders, we have to have $|[a]|=n,|[d]|=m$, which is equivalent to $(a, n)=(d, m)=1$, so we have that $\Phi=\alpha_{a, d}$.
d)

Proof. Let $\Phi: \mathbb{Z}_{3} \times \mathbb{Z}_{9} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{9}$ be given by $\Phi([x],[y])=([x],[3 x]+[y])$. This is well-defined; the only concern is in $[3 x]$, since $[x]$ is defined up to equivalence $\bmod 3$. However, if $x_{1}=x_{2}+3 k$ for some k, we have that $\left[3 x_{1}\right]=\left[3 x_{2}+9 k\right]=\left[3 x_{2}\right]$ since we're now in mod 9. It's also a homomorphism; $\Phi\left(\left(\left[x_{1}\right],\left[y_{1}\right]\right)+\left(\left[x_{2}\right],\left[y_{2}\right]\right)\right)=$ $\left(\left[x_{1}+x_{2}\right],\left[3\left(x_{1}+x_{2}\right)+y_{1}+y_{1}\right]\right)=\left(\left[x_{1}\right],\left[3 x_{1}+y_{1}\right]\right)+\left(\left[x_{2}\right],\left[3 x_{2}+y_{2}\right]\right)=\Phi\left(\left[x_{1}\right],\left[y_{1}\right]\right)+\Phi\left(\left[x_{2}\right],\left[y_{2}\right]\right)$. It's also a map from the same space to itself, so it suffices to show surjectivity. Let $([x],[y])$ in $\mathbb{Z}_{3} \times \mathbb{Z}_{9}$. Then $\Phi([x],[y]-[3 x])$, which is a well-defined element for the same reason $[3 x]$ was well-defined before, is equal to $([x],[3 x]+[y]-[3 x])=([x],[y])$.
e)

Proof. The somewhat surprising answer is that it is iff (a, b) and (c, d) are linearly independent when considered as vectors over \mathbb{Z}_{3}^{2}, which is in fact a vector space. To see this, we note that it's always a homomorphism; $M\left(\left(x_{1}, y_{1}\right)+\right.$ $\left.\left(x_{2}, y_{2}\right)\right)=\left(a\left(x_{1}+x_{2}\right)+b\left(y_{1}+y_{2}\right), c\left(x_{1}+x_{2}\right)+d\left(y_{1}+y_{2}\right)\right)=\left(a x_{1}+b y_{1}, c x_{1}+d y_{1}\right)+\left(a x_{2}+b y_{2}, c x_{2}+d y_{2}\right)=M\left(x_{1}, y_{1}\right)+$ $M\left(x_{2}, y_{2}\right)$. Then we can express any linear map from a vector space to itself by a square matrix; in this case, it's the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. This is bijective iff it's invertible; we know from linear algebra that it's invertible iff the rows are linearly independent, so that's the correct condition.

