Problem set \#8 solutions

Anton Wu

March 31, 2020

1

(a) By definition $f(a)=0$ iff n divides a; likewise $g(a)=0$ iff m divides a. Therefore, $(f \times g)(a)=(0,0)$ iff both n and m divide a; equivalently, iff $n m$ divides a, since $\operatorname{gcd}(n, m)=1$.
Hence $\operatorname{ker}(f \times g)=n m \mathbb{Z}$. //
(b) Recall the first isomorphism theorem, which states the following:

Suppose $f: G_{1} \rightarrow G_{2}$ is a group homomorphism.
Then $\operatorname{im} f \subseteq G_{2}$ is a subgroup and $\operatorname{ker} f \unlhd G_{1}$ is a normal subgroup, with $G_{1} / \operatorname{ker} f \cong \operatorname{im} f$.
Applying this to $(f \times g): \mathbb{Z} \rightarrow \mathbb{Z}_{n} \times \mathbb{Z}_{m}$, we have that $\mathbb{Z} / \operatorname{ker}(f \times g)=\mathbb{Z} / n m \mathbb{Z} \cong \mathbb{Z}_{n m}$ is isomorphic to $\operatorname{im}(f \times g)$, which is a subgroup of $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$.
But $\mathbb{Z}_{n m}$ has $n m$ elements, as has $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$; so having already shown that $\mathbb{Z}_{n m}$ is isomorphic to a subgroup of $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$, we can in fact conclude that $\mathbb{Z}_{n m} \cong \mathbb{Z}_{n} \times \mathbb{Z}_{m}$. //
(c) Suppose $n=m$. Then $f(a)=0$ and $g(a)=0$ iff n divides a, so $\operatorname{ker}(f \times g)=n \mathbb{Z}$; and it is readily seen that $\operatorname{im}(f \times g)=\left\{(a, a): a \in \mathbb{Z}_{n}\right\} \subset \mathbb{Z}_{n} \times \mathbb{Z}_{n}$.
An isomorphism from \mathbb{Z}_{n} to the image $\left\{(a, a): a \in \mathbb{Z}_{n}\right\}$ is given by $a \leftrightarrow(a, a)$.
Hence $\mathbb{Z} / \operatorname{ker}(f \times g)=\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$ is isomorphic to $\operatorname{im}(f \times g) \cong \mathbb{Z}_{n}$, as expected. //

2

If (i) is true, then $H \subset N$, so $H N:=\{h n: h \in H, n \in N\}$ must be equal to N, not G; thus, (ii) is false. // Conversely, suppose (i) is false. Recall the second isomorphism theorem, which states the following:

Suppose $H \subseteq G$ is a subgroup and $N \unlhd G$ is a normal subgroup.
Then $H N \subseteq G$ is a subgroup and $(H \cap N) \unlhd H$ is a normal subgroup, with $H /(H \cap N) \cong H N / N$.
So $H N \subseteq G$ is a subgroup. Clearly $N \subseteq H N$, whereas $H \not \subset N$, so there exists $h \in H \subseteq H N$ with $h \notin N$; thus, $N \subsetneq H N$. Now consider $N \subsetneq H N \subseteq G$. Since $N \triangleleft G$, we can apply the correspondence theorem, which yields $\{1\} \subsetneq H N / N \subseteq G / N$; but $|H N / N|$ divides $|G / N|=[G: N]=p$ by Lagrange's theorem, and since $1<|H N / N|$, we deduce that $|H N / N|=p$. Hence $H N / N=G / N$, and $H N=G$.
Finally, we have $H /(H \cap N) \cong H N / N$; hence $[H:(H \cap N)]=|H /(H \cap N)|=|H N / N|=p$.
Thus, (ii) is true. //
Having proven both "(i) is true implies (ii) is false" and "(i) is false implies (ii) is true", we conclude that exactly one of (i) and (ii) must be true.
(a) Let $f: G \rightarrow G / N$ and $g: G \rightarrow G / M$ be the two natural maps, and define $(f \times g): G \rightarrow(G / N) \times(G / M)$. Then, as in problem 1, we have $f(a)=1$ iff $a \in N$, and $g(a)=1$ iff $a \in M$. Therefore, $(f \times g)(a)=(1,1)$ iff $a \in N$ and $a \in M$; that is, iff $a \in(N \cap M)$. Hence $\operatorname{ker}(f \times g)=(N \cap M)$.
Also, $(f \times g)$ is surjective: Let $(x N, y M) \in(G / N) \times(G / M)$ be any element. Since $y x^{-1} \in G=N M$, we can write $y x^{-1}=n m$ with $n \in N$ and $m \in M$. Let $a:=x n=y m^{-1}$; then $f(a)=a N=x n N=x N$ and $g(a)=a M=y m^{-1} M=y M$. Hence $(f \times g)(a)=(x N, y M)$, and $(f \times g)$ is surjective.
By the first isomorphism theorem, $G / \operatorname{ker}(f \times g)=G /(N \cap M)$ is isomorphic to $(G / N) \times(G / M)$. //
(b) By the second isomorphism theorem, we have $N /(N \cap M) \cong N M / M$ and $M /(M \cap N) \cong M N / N$.

Note, since $M \triangleleft G$, that any $x=n m \in N M$ where $n \in N$ and $m \in M$ can be written as $x=\left(n m n^{-1}\right) n$ with $n m n^{-1} \in M$, so $x \in M N$; so $N M=G$ implies $M N=G$. Thus, if $N M=G$ and $(N \cap M)=\{1\}$, then $N \cong G / M$ and $M \cong G / N$. Hence $G=G /(N \cap M) \cong(G / N) \times(G / M) \cong M \times N$, as desired. //

4

§11.3, exercise 14

We know that $\varphi: G \rightarrow G / N$ is a homomorphism, and that H is a subgroup. We must show that $\varphi^{-1}(H)$ is closed under multiplication, contains the identity, and contains inverses.

- If $g_{1}, g_{2} \in \varphi^{-1}(H)$, then $\varphi\left(g_{1}\right), \varphi\left(g_{2}\right) \in H$; so $\varphi\left(g_{1} g_{2}\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right) \in H$, which means $g_{1} g_{2} \in \varphi^{-1}(H)$.
- Clearly $\varphi(1)$ is the identity coset, which must be in H; so $1 \in \varphi^{-1}(H)$.
- If $g \in \varphi^{-1}(H)$, then $\varphi(g) \in H$, so $\varphi\left(g^{-1}\right)=\varphi(g)^{-1} \in H$, which means $g^{-1} \in \varphi^{-1}(H)$.

Hence $\varphi^{-1}(H)$ is a subgroup. //
Finally, each element $h \in H$ is a coset containing $|N|$ elements of G, and φ maps these $|N|$ elements to h. Since different cosets are disjoint, $\varphi^{-1}(H)$ contains $|H||N|$ elements of G. //

$\S 11.3$, exercise 17

False. Consider $G_{1}=\mathbb{Z}_{6}$ and $G_{2}=\mathbb{Z}_{2}$; these are abelian, so all subgroups are normal. Then let $\varphi: G_{1} \rightarrow G_{2}$ be reduction $\bmod 2$; that is, $\varphi([0])=\varphi([2])=\varphi([4])=[0]$ and $\varphi([1])=\varphi([3])=\varphi([5])=[1]$.
Then let $H_{1}:=\{[0],[3]\} \unlhd G_{1}$ and $H_{2}:=\mathbb{Z}_{2} \unlhd G_{2}$; we check that $\varphi\left(H_{1}\right)=H_{2}$.
However, $\left|G_{1} / H_{1}\right|=\left[G_{1}: H_{1}\right]=3 \neq 1=\left[G_{2}: H_{2}\right]=\left|G_{2} / H_{2}\right|$, so G_{1} / H_{1} is not isomorphic to G_{2} / H_{2}.

