Problem set #8 solutions

ANTON WU

March 31, 2020

- (a) By definition f(a) = 0 iff n divides a; likewise g(a) = 0 iff m divides a. Therefore, (f × g)(a) = (0, 0) iff both n and m divide a; equivalently, iff nm divides a, since gcd(n, m) = 1.
 Hence ker(f × g) = nmZ. ∥
- (b) Recall the first isomorphism theorem, which states the following:

Suppose $f: G_1 \to G_2$ is a group homomorphism. Then $\operatorname{im} f \subseteq G_2$ is a subgroup and $\ker f \leq G_1$ is a normal subgroup, with $G_1/\ker f \cong \operatorname{im} f$.

Applying this to $(f \times g) : \mathbb{Z} \to \mathbb{Z}_n \times \mathbb{Z}_m$, we have that $\mathbb{Z} / \ker(f \times g) = \mathbb{Z} / nm\mathbb{Z} \cong \mathbb{Z}_{nm}$ is isomorphic to $\operatorname{im}(f \times g)$, which is a subgroup of $\mathbb{Z}_n \times \mathbb{Z}_m$.

But \mathbb{Z}_{nm} has nm elements, as has $\mathbb{Z}_n \times \mathbb{Z}_m$; so having already shown that \mathbb{Z}_{nm} is isomorphic to a subgroup of $\mathbb{Z}_n \times \mathbb{Z}_m$, we can in fact conclude that $\mathbb{Z}_{nm} \cong \mathbb{Z}_n \times \mathbb{Z}_m$.

(c) Suppose n = m. Then f(a) = 0 and g(a) = 0 iff n divides a, so ker $(f \times g) = n\mathbb{Z}$; and it is readily seen that $\operatorname{im}(f \times g) = \{(a, a) : a \in \mathbb{Z}_n\} \subset \mathbb{Z}_n \times \mathbb{Z}_n$.

An isomorphism from \mathbb{Z}_n to the image $\{(a, a) : a \in \mathbb{Z}_n\}$ is given by $a \leftrightarrow (a, a)$.

Hence $\mathbb{Z}/\ker(f \times g) = \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$ is isomorphic to $\operatorname{im}(f \times g) \cong \mathbb{Z}_n$, as expected. //

$\mathbf{2}$

If (i) is true, then $H \subset N$, so $HN := \{hn : h \in H, n \in N\}$ must be equal to N, not G; thus, (ii) is false. //Conversely, suppose (i) is false. Recall the second isomorphism theorem, which states the following:

Suppose $H \subseteq G$ is a subgroup and $N \trianglelefteq G$ is a normal subgroup. Then $HN \subseteq G$ is a subgroup and $(H \cap N) \trianglelefteq H$ is a normal subgroup, with $H/(H \cap N) \cong HN/N$.

So $HN \subseteq G$ is a subgroup. Clearly $N \subseteq HN$, whereas $H \not\subset N$, so there exists $h \in H \subseteq HN$ with $h \notin N$; thus, $N \subsetneq HN$. Now consider $N \subsetneq HN \subseteq G$. Since $N \triangleleft G$, we can apply the correspondence theorem, which yields $\{1\} \subsetneq HN/N \subseteq G/N$; but |HN/N| divides |G/N| = [G:N] = p by Lagrange's theorem, and since 1 < |HN/N|, we deduce that |HN/N| = p. Hence HN/N = G/N, and HN = G.

Finally, we have $H/(H \cap N) \cong HN/N$; hence $[H : (H \cap N)] = |H/(H \cap N)| = |HN/N| = p$.

Thus, (ii) is true.

Having proven both "(i) is true implies (ii) is false" and "(i) is false implies (ii) is true", we conclude that exactly one of (i) and (ii) must be true. \blacksquare

- 3
- (a) Let $f: G \to G/N$ and $g: G \to G/M$ be the two natural maps, and define $(f \times g): G \to (G/N) \times (G/M)$. Then, as in problem 1, we have f(a) = 1 iff $a \in N$, and g(a) = 1 iff $a \in M$. Therefore, $(f \times g)(a) = (1, 1)$ iff $a \in N$ and $a \in M$; that is, iff $a \in (N \cap M)$. Hence ker $(f \times g) = (N \cap M)$. Also, $(f \times g)$ is surjective: Let $(xN, yM) \in (G/N) \times (G/M)$ be any element. Since $yx^{-1} \in G = NM$, we can write $yx^{-1} = nm$ with $n \in N$ and $m \in M$. Let $a := xn = ym^{-1}$; then f(a) = aN = xnN = xN and $g(a) = aM = ym^{-1}M = yM$. Hence $(f \times g)(a) = (xN, yM)$, and $(f \times g)$ is surjective.

By the first isomorphism theorem, $G/\ker(f \times g) = G/(N \cap M)$ is isomorphic to $(G/N) \times (G/M)$.

(b) By the second isomorphism theorem, we have $N/(N \cap M) \cong NM/M$ and $M/(M \cap N) \cong MN/N$. Note, since $M \triangleleft G$, that any $x = nm \in NM$ where $n \in N$ and $m \in M$ can be written as $x = (nmn^{-1})n$ with $nmn^{-1} \in M$, so $x \in MN$; so NM = G implies MN = G. Thus, if NM = G and $(N \cap M) = \{1\}$, then $N \cong G/M$ and $M \cong G/N$. Hence $G = G/(N \cap M) \cong (G/N) \times (G/M) \cong M \times N$, as desired. //

4

§11.3, exercise 14

We know that $\varphi: G \to G/N$ is a homomorphism, and that H is a subgroup. We must show that $\varphi^{-1}(H)$ is closed under multiplication, contains the identity, and contains inverses.

- If $g_1, g_2 \in \varphi^{-1}(H)$, then $\varphi(g_1), \varphi(g_2) \in H$; so $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2) \in H$, which means $g_1g_2 \in \varphi^{-1}(H)$.
- Clearly $\varphi(1)$ is the identity coset, which must be in H; so $1 \in \varphi^{-1}(H)$.
- If $g \in \varphi^{-1}(H)$, then $\varphi(g) \in H$, so $\varphi(g^{-1}) = \varphi(g)^{-1} \in H$, which means $g^{-1} \in \varphi^{-1}(H)$.

Hence $\varphi^{-1}(H)$ is a subgroup. //

Finally, each element $h \in H$ is a coset containing |N| elements of G, and φ maps these |N| elements to h. Since different cosets are disjoint, $\varphi^{-1}(H)$ contains |H||N| elements of G. //

§11.3, exercise 17

False. Consider $G_1 = \mathbb{Z}_6$ and $G_2 = \mathbb{Z}_2$; these are abelian, so all subgroups are normal. Then let $\varphi : G_1 \to G_2$ be reduction mod 2; that is, $\varphi([0]) = \varphi([2]) = \varphi([4]) = [0]$ and $\varphi([1]) = \varphi([3]) = \varphi([5]) = [1]$.

Then let $H_1 := \{[0], [3]\} \leq G_1$ and $H_2 := \mathbb{Z}_2 \leq G_2$; we check that $\varphi(H_1) = H_2$.

However, $|G_1/H_1| = [G_1:H_1] = 3 \neq 1 = [G_2:H_2] = |G_2/H_2|$, so G_1/H_1 is not isomorphic to G_2/H_2 .