Problem set #5 solutions

ANTON WU

February 28, 2020

1

$\S5.3$, exercise 1

(a) $\begin{pmatrix} 1\\ 2 \end{pmatrix}$	$\frac{2}{4}$	$\frac{3}{1}$	$\frac{4}{5}$	$\binom{5}{3} = (12453)$	(b)	$\begin{pmatrix} 1\\ 4 \end{pmatrix}$	$\frac{2}{2}$	$\frac{3}{5}$	$\frac{4}{1}$	$\binom{5}{3} = (14)(53)$
(c) $\begin{pmatrix} 1\\ 3 \end{pmatrix}$	$\frac{2}{5}$	$\frac{3}{1}$	$\frac{4}{4}$	$\binom{5}{2} = (13)(25)$	(d)	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	$\frac{2}{4}$	$\frac{3}{3}$	$\frac{4}{2}$	$\binom{5}{5} = (24)$

§5.3, exercise 2

(a) $(1345)(234) = (135)(24)$	(b) $(12)(1253) = (253)$
(c) $(143)(23)(24) = (14)(23)$	(d) $(1423)(34)(56)(1324) = (12)(56)$
(e) $(1254)(13)(25) = (1324)$	(f) $(1254)(13)(25)^2 = (13254)$

(j) $(1254)^{100} = [(1254)^4]^{25} = id^{25} = id$, since the *k*th power of a *k*-cycle is the identity.

$\mathbf{2}$

The permutation (1234) has order 4 in Σ_4 . Note that the elements of Σ_4 , when decomposed into cycles, are:

- the identity (which has order 1)
- 2-cycles (all of which have order 2)
- 3-cycles (all of which have order 3)
- 4-cycles (all of which have order 4)
- products of disjoint 2-cycles (all of which have order 2)

so the maximal order in Σ_4 is 4. Finally, (1234) is already a cycle, so it is the product of (one) disjoint cycle. [*Note*: The maximal order in Σ_n is not n, in general. For instance, (123)(45) $\in \Sigma_5$ has order 6.]

3

Consider $\sigma = (12) \in \Sigma_4$ and $\tau = (23) \in \Sigma_4$. Since σ and τ are both 2-cycles, we have $\sigma^2 = \tau^2 = \text{id.}$ But $\sigma \tau = (12)(23) = (123) \neq (132) = (23)(12) = \tau \sigma$.

4

Observe that if σ is a permutation in Σ_4 which 'preserves the square', then (since vertices 1 and 2 are adjacent) the vertices $\sigma(1)$ and $\sigma(2)$ must be adjacent, whereupon the vertices $\sigma(3)$ and $\sigma(4)$ are uniquely determined. Therefore, either $\sigma(1+i) - \sigma(1) \equiv i \pmod{4}$ for all *i*, or $\sigma(1+i) - \sigma(1) \equiv -i \pmod{4}$ for all *i*.

Now we will show that the subset $D := \{\sigma : \sigma(1+i) - \sigma(1) \equiv \pm i\} \subset \Sigma_4$ is a subgroup. [In this problem, the symbol ' \equiv ' will denote congruence modulo 4.]

• *D* is closed under multiplication: if $\sigma, \tau \in D$, with $\sigma(1+i) - \sigma(1) \equiv u_{\sigma}i$ and $\tau(1+i) - \tau(1) \equiv u_{\tau}i$, where $u_{\sigma}, u_{\tau} = \pm 1$, then

$$\tau(\sigma(1+i)) - \tau(\sigma(1)) = (\tau(\sigma(1+i)) - \tau(1)) - (\tau(\sigma(1)) - \tau(1))$$
$$\equiv u_{\tau}(\sigma(1+i) - 1) - u_{\tau}(\sigma(1) - 1)$$
$$= u_{\tau}(\sigma(1+i) - \sigma(1))$$
$$\equiv u_{\tau}u_{\tau}i$$

so $(\tau\sigma)(1+i) - (\tau\sigma)(1) \equiv u_{\tau}u_{\sigma}i$, which (since $u_{\tau}u_{\sigma} = \pm 1$) means $\tau\sigma \in D$.

- D contains the identity: we have id(1+i) id(1) = (1+i) 1 = +i for all i, so $id \in D$.
- D contains inverses: if $\sigma \in D$, with $\sigma(1+i) \sigma(1) \equiv u_{\sigma}i$ where $u_{\sigma} = \pm 1$, then

$$i = (1+i) - 1 = \sigma(\sigma^{-1}(1+i)) - \sigma(\sigma^{-1}(1))$$

= $(\sigma(\sigma^{-1}(1+i)) - \sigma(1)) - (\sigma(\sigma^{-1}(1)) - \sigma(1))$
= $u_{\sigma}(\sigma^{-1}(1+i) - 1) - u_{\sigma}(\sigma^{-1}(1) - 1)$
= $u_{\sigma}(\sigma^{-1}(1+i) - \sigma^{-1}(1))$

so $\sigma^{-1}(1+i) - \sigma^{-1}(1) \equiv u_{\sigma}^{-1}i$, which (since $u_{\sigma}^{-1} = u_{\sigma} = \pm 1$) means $\sigma^{-1} \in D$.

So $D \subset \Sigma_4$ is a subgroup.

Finally, we see that choosing an element $\sigma \in D$ entails choosing one of four possibilities for $\sigma(1)$ and choosing whether σ is order-preserving or order-reversing (i.e., whether $\sigma(1+i) - \sigma(1) \equiv i$ or $\sigma(1+i) - \sigma(1) \equiv -i$). Hence there are $4 \cdot 2 = 8$ different possibilities for $\sigma \in D$, so the order of $D \subset \Sigma_4$ is 8.

Indeed, one verifies that $D = \{ id, (1234), (13)(24), (1432), (13), (12)(34), (24), (14)(23) \} \subset \Sigma_4.$

[Note: This proof can be easily modified to show that the subset $D_n \subset \Sigma_n$ of permutations which preserve the regular *n*-gon is a subgroup of order 2n. The geometric view is that the order-preserving permutations in D_n are rotations of the *n*-gon, while the order-reversing permutations in D_n are reflections of the *n*-gon.]

$\mathbf{5}$

- (a) The 3-cycle $(132) \in \Sigma_3$ has order 3.
- (b) The 6-cycle $(125364) \in \Sigma_6$ generates a cyclic subgroup of order 6, which means $(125364)^2 = (156)(234)$ has order $\frac{6}{\gcd(2,6)} = 3$ in Σ_6 .

[Alternatively, we know the product of disjoint cycles in Σ_n of lengths ℓ_1, \ldots, ℓ_m has order lcm (ℓ_1, \ldots, ℓ_m) , so (156)(234) has order lcm (3, 3) = 3 in Σ_6 .]

(c) The 5-cycle $(14235) \in \Sigma_5$ generates a cyclic subgroup of order 5, so $(14235)^2$ has order $\frac{5}{\gcd(2,5)} = 5$ in Σ_5 . [Alternatively, $(14235)^2 = (12543)$ is also a 5-cycle and thus has order 5.]