Problem set \#5 solutions

Anton Wu

February 28, 2020

1

$\S 5.3$, exercise 1

(a) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3\end{array}\right)=(12453)$
(b) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3\end{array}\right)=(14)(53)$
(c) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2\end{array}\right)=(13)(25)$
(d) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5\end{array}\right)=(24)$

§5.3, exercise 2

(a) $(1345)(234)=(135)(24)$
(b) $(12)(1253)=(253)$
(c) $(143)(23)(24)=(14)(23)$
(d) $(1423)(34)(56)(1324)=(12)(56)$
(e) $(1254)(13)(25)=(1324)$
(f) $(1254)(13)(25)^{2}=(13254)$
(j) $(1254)^{100}=\left[(1254)^{4}\right]^{25}=\mathrm{id}^{25}=\mathrm{id}$, since the k th power of a k-cycle is the identity.

2

The permutation (1234) has order 4 in Σ_{4}. Note that the elements of Σ_{4}, when decomposed into cycles, are:

- the identity (which has order 1)
- 2-cycles (all of which have order 2)
- 3-cycles (all of which have order 3)
- 4-cycles (all of which have order 4)
- products of disjoint 2 -cycles (all of which have order 2)
so the maximal order in Σ_{4} is 4 . Finally, (1234) is already a cycle, so it is the product of (one) disjoint cycle. [Note: The maximal order in Σ_{n} is not n, in general. For instance, $(123)(45) \in \Sigma_{5}$ has order 6.]

3

Consider $\sigma=(12) \in \Sigma_{4}$ and $\tau=(23) \in \Sigma_{4}$.
Since σ and τ are both 2-cycles, we have $\sigma^{2}=\tau^{2}=$ id. But $\sigma \tau=(12)(23)=(123) \neq(132)=(23)(12)=\tau \sigma$.

Observe that if σ is a permutation in Σ_{4} which 'preserves the square', then (since vertices 1 and 2 are adjacent) the vertices $\sigma(1)$ and $\sigma(2)$ must be adjacent, whereupon the vertices $\sigma(3)$ and $\sigma(4)$ are uniquely determined. Therefore, either $\sigma(1+i)-\sigma(1) \equiv i(\bmod 4)$ for all i, or $\sigma(1+i)-\sigma(1) \equiv-i(\bmod 4)$ for all i.
Now we will show that the subset $D:=\{\sigma: \sigma(1+i)-\sigma(1) \equiv \pm i\} \subset \Sigma_{4}$ is a subgroup. [In this problem, the symbol ' \equiv ' will denote congruence modulo 4.]

- D is closed under multiplication: if $\sigma, \tau \in D$, with $\sigma(1+i)-\sigma(1) \equiv u_{\sigma} i$ and $\tau(1+i)-\tau(1) \equiv u_{\tau} i$, where $u_{\sigma}, u_{\tau}= \pm 1$, then

$$
\begin{aligned}
\tau(\sigma(1+i))-\tau(\sigma(1)) & =(\tau(\sigma(1+i))-\tau(1))-(\tau(\sigma(1))-\tau(1)) \\
& \equiv u_{\tau}(\sigma(1+i)-1)-u_{\tau}(\sigma(1)-1) \\
& =u_{\tau}(\sigma(1+i)-\sigma(1)) \\
& \equiv u_{\tau} u_{\sigma} i
\end{aligned}
$$

so $(\tau \sigma)(1+i)-(\tau \sigma)(1) \equiv u_{\tau} u_{\sigma} i$, which (since $\left.u_{\tau} u_{\sigma}= \pm 1\right)$ means $\tau \sigma \in D$.

- D contains the identity: we have $\mathrm{id}(1+i)-\mathrm{id}(1)=(1+i)-1=+i$ for all i, so id $\in D$.
- D contains inverses: if $\sigma \in D$, with $\sigma(1+i)-\sigma(1) \equiv u_{\sigma} i$ where $u_{\sigma}= \pm 1$, then

$$
\begin{aligned}
i=(1+i)-1 & =\sigma\left(\sigma^{-1}(1+i)\right)-\sigma\left(\sigma^{-1}(1)\right) \\
& =\left(\sigma\left(\sigma^{-1}(1+i)\right)-\sigma(1)\right)-\left(\sigma\left(\sigma^{-1}(1)\right)-\sigma(1)\right) \\
& \equiv u_{\sigma}\left(\sigma^{-1}(1+i)-1\right)-u_{\sigma}\left(\sigma^{-1}(1)-1\right) \\
& =u_{\sigma}\left(\sigma^{-1}(1+i)-\sigma^{-1}(1)\right)
\end{aligned}
$$

so $\sigma^{-1}(1+i)-\sigma^{-1}(1) \equiv u_{\sigma}^{-1} i$, which (since $\left.u_{\sigma}^{-1}=u_{\sigma}= \pm 1\right)$ means $\sigma^{-1} \in D$.
So $D \subset \Sigma_{4}$ is a subgroup.
Finally, we see that choosing an element $\sigma \in D$ entails choosing one of four possibilities for $\sigma(1)$ and choosing whether σ is order-preserving or order-reversing (i.e., whether $\sigma(1+i)-\sigma(1) \equiv i$ or $\sigma(1+i)-\sigma(1) \equiv-i)$. Hence there are $4 \cdot 2=8$ different possibilities for $\sigma \in D$, so the order of $D \subset \Sigma_{4}$ is 8 .
Indeed, one verifies that $D=\{\mathrm{id},(1234),(13)(24),(1432),(13),(12)(34),(24),(14)(23)\} \subset \Sigma_{4}$.
[Note: This proof can be easily modified to show that the subset $D_{n} \subset \Sigma_{n}$ of permutations which preserve the regular n-gon is a subgroup of order $2 n$. The geometric view is that the order-preserving permutations in D_{n} are rotations of the n-gon, while the order-reversing permutations in D_{n} are reflections of the n-gon.]

5

(a) The 3-cycle (132) $\in \Sigma_{3}$ has order 3 .
(b) The 6 -cycle $(125364) \in \Sigma_{6}$ generates a cyclic subgroup of order 6 , which means $(125364)^{2}=(156)(234)$ has order $\frac{6}{\operatorname{gcd}(2,6)}=3$ in Σ_{6}.
[Alternatively, we know the product of disjoint cycles in Σ_{n} of lengths $\ell_{1}, \ldots, \ell_{m}$ has order lcm $\left(\ell_{1}, \ldots, \ell_{m}\right)$, so $(156)(234)$ has order $\operatorname{lcm}(3,3)=3$ in Σ_{6}.]
(c) The 5 -cycle $(14235) \in \Sigma_{5}$ generates a cyclic subgroup of order 5 , so $(14235)^{2}$ has order $\frac{5}{\operatorname{gcd}(2,5)}=5$ in Σ_{5}. [Alternatively, $(14235)^{2}=(12543)$ is also a 5 -cycle and thus has order 5.]

