
GU4041: Intro to Modern Algebra I

Professor Michael Harris

Solutions by Iris Rosenblum-Sellers

Homework 3

1) Let X be a set with two elements, e and f .

a) Can you define a binary operation

⋆ ∶X ×X →X

that is not associative?

Answer: Yes; for example, let ⋆ be given by the multiplication table

⋆ e f

e f e

f f e

Then we have e ⋆ (e ⋆ f) = e ⋆ e = f , but (e ⋆ e) ⋆ f = f ⋆ f = e.

b) Suppose e is a two-sided identity for ⋆, in other words

e ⋆ e = e, e ⋆ f = f, f ⋆ e = f

(Here we write e⋆ e rather than ⋆(e, e), as usual). How many operations are there? Are they all necessarily commu-

tative? Associative?

Answer: In the general case of a, we have four choices to make; where we send each element of the mul-

tiplication table. By making e a two-sided identity, we remove three of the choices: e ⋆ e, e ⋆ f , and f ⋆ e, leaving

only f ⋆ f . Since we can map f ⋆ f to either e or f , we have precisely two operations satisfying this. It is clear

that each are commutative; an element always commutes with itself, so our only option for noncommutativity was

to map e ⋆ f and f ⋆ e to different elements. Since they’re each mapped to f , either operation is commutative. For

associativity, we realize that any expression (x ⋆ y) ⋆ z or x ⋆ (y ⋆ z) is equivalent to one with all of the copies of e

removed, since they’re the identity. Therefore, if a “possibly nonassociative expression” has at least one copy of e

in it, such as (f ⋆ f) ⋆ e, is compared to f ⋆ (f ⋆ e), we may immediately see that dropping the copy of e leads us

to comparing the product of two elements, and any expression involving two elements always associates. Therefore,

the only expression that we might consider being nonassociative is the one with no copies of e in it, (f ⋆ f) ⋆ f , as

compared with f ⋆ (f ⋆ f). However, recognizing that f ⋆ f ∈ X, and that we already showed that commutativity

holds, means that the two expressions are equal.

2)

a) Let (X,⋆) and (Y, ○) be two sets with binary operations. Suppose

f ∶X → Y

is a bijection that defines an isomorphism of binary structures, i.e.

f(x1 ⋆ x2) = f(x1) ○ f(x2).
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Show that f−1 ∶ Y →X is also an isomorphism of binary structures.

Answer:

Proof. Let y1, y2 ∈ Y . Since f is an isomorphism, we know that f(f−1(y1)⋆f
−1

(y2)) = f(f
−1

(y1))○f(f
−1

(y2)) = y1○y2.

Then we apply f−1 to each side, and obtain f−1(f(f−1(y1) ⋆ f
−1

(y2))) = f−1(y1 ○ y2). The left side reduces to

f−1(y1) ⋆ f
−1

(y2), so the expression reduces to f−1(y1 ○ y2) = f
−1

(y1) ⋆ f
−1

(y2), so f−1 is also an isomorphism.

b) Deduce from (a) that if X = Y and ⋆ = ○, then the identity map from X to itself defines an isomorphism of

binary structures.

Answer:

Proof. (Easy way): We note idX is certainly a bijection, as for any x ∈ X, idX(x) = x, giving us surjectivity, and if

x1 ≠ x2, then idX(x1) ≠ idX(x2), so we have bijectivity. It also respects binary operation structure: idX(x1 ⋆ x2) =

x1 ⋆ x2 = idX(x1) ⋆ idX(x2). Therefore, it’s an isomorphism

Proof. (Harder way): We note that for any isomorphisms, their composition is an isomorphism. It is a set theory

fact that the composition of two functions, the former of which is injective, yields an injective function, and the

composition of two functions, the latter of which is surjective, yields a surjective function, so the composition of

two bijections is a bijective function. Then let f ∶ X → Y, g ∶ Y → Z be isomorphisms, with respect to structures ⋆

on X, ○ on Y , and ∗ on Z. Then (g ○ f)(x1 ⋆ x2) = g(f(x1 ⋆ x2)) = g(f(x1) ○ f(x2)) = g(f(x1)) ∗ g(f(x2)), so the

composition of two isomorphisms is an isomorphism. Then it’s clear by part a that if f ∶ X → Y is an isomorphism,

then f−1 ○ f ∶X →X = idX is also an isomorphism.

3) Let n ≥ 3 be an integer. Let ∆n be a regular polygon with n sides in the complex plane, with one vertex at the

point 1 and the other vertices on the unit circle x2 + y2 = 1. Let µn denote the set of vertices of ∆n.

a) Use either the exponential function or trigonometric functions to list the coordinates of the points in µn

Answer: It is clear that the vertices of ∆n will be equidistant around the unit circle from one another.

Then they should differ by some eik, where k is a real constant. Since the first coordinate is at 1, we should also see

that tracing out the distance n times (but no fewer) takes us back to 1, i.e. eikn = 1, and in particular kn = 2π, such

that this is the first time this occurs. Then k = 2π
n

, so each has the form e
2πim
n . So µn = {e

2πim
n ,m ∈ Z}.

Note that if we’d prefer to use trigonometric functions, we simply use Euler’s formula to rewrite the valid points as

cos ( 2πim
n

) + i sin (
2πim
n

).

b) Show that the subset µn ⊂ C is a group under multiplication.

Answer: We first show that multiplication is a well-defined binary operation from µn ×µn to µn, i.e. that the

set is closed under multiplication. To see this, we note e
2πim1
n e

2πim2
n = e

2πi(m1+m2)

n , and since m1 +m2 ∈ Z, this is in

µn. We know that ordinary multiplication is associative. We now note that 1 = e
2πi0
n is the multiplicative identity

for ordinary multiplication, so it is for elements of µn as well. Lastly, we note that for any element of µn, e
2πim
n , we

have e
2πi(−m)

n e
2πim
n = e0 = 1 = e

2πim
n e

−2πim
n . Therefore, (µn,×) is a group.

c) Define an isomorphism of groups f ∶ Z/nZ→ µn.

Answer: We will see in part d that there are several acceptable solutions, but the most natural one is

f([m]) = e
2πim
n . We have to check well-definedness; it could be the case that taking different representatives of [m]

yields different values of f , but we see that this is not the case; any representative of [m] will be of the form kn+m0,

where k ∈ Z,m0 ∈ Z, and 0 ≤m0 < n. Then we note

e
2πim
n = e

2πi(nk+m0)

n = e
2πnk
n e

2πim0
n = (e2π)ke

2πim0
n = (1)ke

2πim0
n = e

2πim0
n
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Then this is a well-defined function. It remains to show that it is a group homomorphism:

f([m1] + [m2]) = e
2πi(m1+m2)

n = e
2πim1
n e

2πim2
n = f([m1])f([m2])

d) Does part (c) have a unique solution? Explain.

Answer: Part c does not have a unique solution. In general, if we want an isomorphism between two cyclic

groups, we have to map a generator in the domain to a generator in the codomain, and the rest is done for us. The

generators of the cyclic group of n elements are the equivalence classes of numbers which are relatively prime with

n. In particular, [1] always works, as does [−1]. If n is prime, everything but [0] works. However, in a case like 12,

only [1], [5], [7] and [11] work.

4) List all subgroups of the Klein 4-group and of the cyclic group Z/4Z. How many subgroups contain 3 elements in

each case?

Answer:

Z/2Z × Z/2Z ⩽ Z/2Z × Z/2Z;{([1], [0]), ([0], [0])} ⩽ Z/2Z × Z/2Z;{([0], [1]), ([0], [0])} ⩽ Z/2Z × Z/2Z

{([1], [1]), ([0], [0])} ⩽ Z/2Z × Z/2Z;{([0], [0])} ⩽ Z/2Z × Z/2Z

Z/4Z ⩽ Z/4Z;{[2], [0]} ⩽ Z/4Z;{[0]} ⩽ Z/4Z

Note that no subgroups contain exactly 3 elements.

5) Let X be a set with 3 elements. How many distinct binary operations

X ×X →X

are there?

Answer: We have 32 = 9 choices to make, since we need to pick one of the elements, and then another one

(and order does matter). For each choice, we can map the two elements chosen to any of the three elements, so we

have 3 options for each choice. Then 3 options for each choice, to the power of 9 choices, is 39 = 1983. 6)

A 2 × 2 matrix A =

⎛

⎝

a b

c d

⎞

⎠

is idempotent if A2
= A.

a) Check that the matrices
⎛

⎝

0 0

0 0

⎞

⎠

and
⎛

⎝

1 0

0 1

⎞

⎠

are both idempotents (you don’t need to write this down). Find

an idempotent matrix that is not equal to either of these.

Answer: An idempotent matrix not equal to either of these is
⎛

⎝

0 −1

0 1

⎞

⎠

. b) Suppose A is idempotent and

invertible. Show that A =

⎛

⎝

1 0

0 1

⎞

⎠

.

Answer: Let A be idempotent and invertible. Then A2
= A, so A−1A2

= A−1A. Then (A−1A)A = (A−1A), so

IA = I, so A = I.
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