Problem set #2 solutions

Anton Wu

February 6, 2020

1

(a) This is an equivalence relation.

- R is reflexive: x R x for any $x \in \mathbb{Z}$, since x + x = 2x is even for any $x \in \mathbb{Z}$.
- R is symmetric: if xRy, then yRx, since addition is commutative.
- R is transitive: if x Ry and y Rz, then x + y and y + z are even, so x + z = (x + y) + (y + z) 2y is a sum of even numbers and is thus even, so x Rz.

The equivalence classes are {even integers} and {odd integers}.

- (b) This is not an equivalence relation.
 - R is not reflexive: in fact, there is no $x \in \mathbb{Z}$ for which x R x, since x + x = 2x is even (i.e., not odd) for any $x \in \mathbb{Z}$.
 - R is symmetric: if xRy, then yRx, since addition is commutative.
 - R is not transitive: if x Ry and y Rz, then x + y and y + z are odd, so x + z = (x + y) + (y + z) 2y is a sum of two odd numbers and an even number and is thus even, so x Rz.
- (c) This is an equivalence relation. [Recall that a rotation in \mathbb{R}^3 can be represented by a 3×3 matrix M which satisfies $M^{\mathrm{T}} = M^{-1}$ and det M = 1.]
 - R is reflexive: x R x for any $x \in \mathbb{R}^3$, since I_3 is a rotation matrix which maps x to x.
 - R is symmetric: if M is a rotation matrix which maps x to y, then M^{-1} is a matrix which maps y to x, and M^{-1} is a rotation because $(M^{-1})^{\mathrm{T}} = (M^{\mathrm{T}})^{-1} = (M^{-1})^{-1}$ and det $(M^{-1}) = (\det M)^{-1} = 1$. Hence $x \mathrm{R} y$ implies $y \mathrm{R} x$ for any $x, y \in \mathbb{R}^3$.
 - R is transitive: if M_1 is a rotation matrix which maps x to y and M_2 is a rotation matrix which maps y to z, then their product M_2M_1 is a matrix which maps x to z, and M_2M_1 is a rotation because $(M_2M_1)^{\mathrm{T}} = M_1^{\mathrm{T}}M_2^{\mathrm{T}} = M_1^{-1}M_2^{-1} = (M_2M_1)^{-1}$ and det $(M_2M_1) = (\det M_2)(\det M_1) = 1$. Hence for any $x, y, z \in \mathbb{R}^3$, if x R y and y R z, then x R z.

The equivalence classes are the spheres $\{x \in \mathbb{R}^3 : |x| = r\}$ for each non-negative real number r. [This follows from the fact that any unit vector u can be extended to an orthonormal basis $\{u, v, w\}$ for \mathbb{R}^3 (simply choose any unit vector v orthogonal to u and let w be the cross product $u \times v$); then the matrix with columns u, v, w is a rotation which maps (1, 0, 0) to u, and now a rotation which maps v_1 to v_2 , where $|v_1| = |v_2| = r$, is found by composing the inverse of a rotation which maps (1, 0, 0) to $\frac{1}{r}v_1$ with a rotation which maps (1, 0, 0) to $\frac{1}{r}v_2$.]

- (d) This is not an equivalence relation.
 - R is reflexive: x R x for any $x \in \mathbb{R}$, since $x x = 0 = 0^2$ is the square of a real number.
 - R is not symmetric: we have 1 R 0 since $1 0 = 1 = 1^2$, but 0 R 1 since 0 1 = -1 is not the square of a real number.
 - R is transitive: if xRy and yRz, then x y and y z are non-negative, so x z = (x y) + (y z) is non-negative, so xRz.

For ease of notation define the function $I: X \to \mathbb{R}$ given by $f \mapsto \int_0^1 f(x) dx$, so that $f \mathbb{R}g$ iff I(f) = I(g). We see that \mathbb{R} is an equivalence relation on X because '=' is an equivalence relation on \mathbb{R} :

- R is reflexive: f R f for any $f \in X$, since I(f) = I(f).
- R is symmetric: if f R g, then I(f) = I(g), so I(g) = I(f), and thus g R f.
- R is transitive: if f Rg and g Rh, then I(f) = I(g) and I(g) = I(h), so I(f) = I(h), and thus f Rh.

The equivalence classes are the sets $I^{-1}(r) := \{f \in X : I(f) = r\}$ for each $r \in \mathbb{R}$. Note that $I^{-1}(r)$ is non-empty for each $r \in \mathbb{R}$ because the constant function $f_r : [0, 1] \to \mathbb{R}$, given by $f_r(x) = r$, is in $I^{-1}(r)$. The set of equivalence classes is thus $X/\mathbb{R} = \{I^{-1}(r) : r \in \mathbb{R}\}.$

The natural bijection F from \mathbb{R} to $X/\mathbb{R} = \{I^{-1}(r) : r \in \mathbb{R}\}$ is given by $r \mapsto I^{-1}(r)$.

[The inverse bijection F^{-1} from X/\mathbb{R} to \mathbb{R} is given by $S \mapsto I(s)$, where s is any function in S, which is well-defined by the definition of X/\mathbb{R} . Observe that, analogously to problem 5(b), we can write $I = F^{-1} \circ p$, where $p: X \to X/\mathbb{R}$ maps a function to its equivalence class.]

3

- (i) If $a, b \in \mathbb{Z}$ are such that $[a]_{nm} = [b]_{nm}$, then by definition a b is a multiple of nm. Any multiple of nm is a multiple of m, so a b is a multiple of m, and thus $[a]_m = [b]_m$. Hence f is well-defined.
- (ii) For each residue class $[a]_m \in \mathbb{Z}_m$ we have $f([a]_{nm}) = [a]_m$, so f is surjective.
- (iii) As in problem 2, ' \sim_f ' is an equivalence relation on \mathbb{Z}_{nm} because '=' is an equivalence relation on \mathbb{Z}_m :
 - \sim_f is reflexive: $x \sim_f x$ for any $x \in \mathbb{Z}_{nm}$, since f(x) = f(x).
 - \sim_f is symmetric: if $x \sim_f y$, then f(x) = f(y), so f(y) = f(x), and thus $y \sim_f x$.
 - \sim_f is transitive: if $x \sim_f y$ and $y \sim_f z$, then f(x) = f(y) and f(y) = f(z), so f(x) = f(z), so $x \sim_f z$.

For each $0 \le a < m$, there is an equivalence class $\{[a+km]_{nm} : 0 \le k < n\} \subset \mathbb{Z}_{nm}$ containing n elements.

4

(a) In \mathbb{Z}_7 : $[0]^2 = [0]; [1]^2 = [6]^2 = [1]; [2]^2 = [5]^2 = [4]; [3]^2 = [4]^2 = [2]$, so the squares are [0], [1], [2], [4].

- (b) In \mathbb{Z}_{41} : [14] + [33] = [47] = [6] and $[7] \cdot [8] = [56] = [15]$.
- (c) In \mathbb{Z}_{10} : $12 \cdot 12 \equiv 2 \cdot 2 \equiv 4 \pmod{10}$ and $107 + 413 \equiv 7 + 3 \equiv 10 \equiv 0 \pmod{10}$.

$\mathbf{5}$

(a) Recall (from the law of cosines) that two triangles are congruent iff they have the same three side lengths. Thus, define the function $g: X \to \mathbb{R}^3$, which maps a triangle $T \in X$ to its three side lengths (a, b, c) (say, in non-descending order). Then $T_1 \cong T_2$ iff $g(T_1) = g(T_2)$.

Thus, as before, ' \cong ' is an equivalence relation on X because '=' is an equivalence relation on \mathbb{R}^3 .

- (b) We know that congruent triangles have equal areas; that is, if $T_1 \cong T_2$, then $f(T_1) = f(T_2)$.
 - Therefore, f takes the same value on every triangle in a given equivalence class, which is to say that $\tilde{f}: (X/\cong) \to \mathbb{R}$, which maps the equivalence class S to f(T) where T is any triangle in S, is well-defined. Hence $f = \tilde{f} \circ p$, where $p: X \to (X/\cong)$ maps a triangle T to its equivalence class.

6

(i) We have

$$gcd(104, 950) = gcd(950 - 9 \cdot 104, 104) = gcd(14, 104) = gcd(104 - 7 \cdot 14, 14) = gcd(6, 14)$$
$$= gcd(14 - 2 \cdot 6, 6) = gcd(2, 6) = gcd(6 - 3 \cdot 2, 2) = gcd(0, 2) = 2$$

and lcm(104, 950) = $104 \cdot 950/2 = 49400$.

(ii) We have

 $gcd(18, 207) = gcd(207 - 11 \cdot 18, 18) = gcd(9, 18) = gcd(18 - 2 \cdot 9, 9) = gcd(0, 9) = 9$ and $lcm(18, 207) = 18 \cdot 207/9 = 414$.