Problem set \#2 solutions

Anton Wu

February 6, 2020

1

(a) This is an equivalence relation.

- R is reflexive: $x \mathrm{R} x$ for any $x \in \mathbb{Z}$, since $x+x=2 x$ is even for any $x \in \mathbb{Z}$.
- R is symmetric: if $x \mathrm{R} y$, then $y \mathrm{R} x$, since addition is commutative.
- R is transitive: if $x \mathrm{R} y$ and $y \mathrm{R} z$, then $x+y$ and $y+z$ are even, so $x+z=(x+y)+(y+z)-2 y$ is a sum of even numbers and is thus even, so $x \mathrm{R} z$.

The equivalence classes are \{even integers $\}$ and \{odd integers $\}$.
(b) This is not an equivalence relation.

- R is not reflexive: in fact, there is no $x \in \mathbb{Z}$ for which $x \mathrm{R} x$, since $x+x=2 x$ is even (i.e., not odd) for any $x \in \mathbb{Z}$.
- R is symmetric: if $x \mathrm{R} y$, then $y \mathrm{R} x$, since addition is commutative.
- R is not transitive: if $x \mathrm{R} y$ and $y \mathrm{R} z$, then $x+y$ and $y+z$ are odd, so $x+z=(x+y)+(y+z)-2 y$ is a sum of two odd numbers and an even number and is thus even, so $x \not R z$.
(c) This is an equivalence relation. [Recall that a rotation in \mathbb{R}^{3} can be represented by a 3×3 matrix M which satisfies $M^{\mathrm{T}}=M^{-1}$ and $\operatorname{det} M=1$.]
- R is reflexive: $x \mathrm{R} x$ for any $x \in \mathbb{R}^{3}$, since I_{3} is a rotation matrix which maps x to x.
- R is symmetric: if M is a rotation matrix which maps x to y, then M^{-1} is a matrix which maps y to x, and M^{-1} is a rotation because $\left(M^{-1}\right)^{\mathrm{T}}=\left(M^{\mathrm{T}}\right)^{-1}=\left(M^{-1}\right)^{-1}$ and $\operatorname{det}\left(M^{-1}\right)=(\operatorname{det} M)^{-1}=1$. Hence $x \mathrm{R} y$ implies $y \mathrm{R} x$ for any $x, y \in \mathbb{R}^{3}$.
- R is transitive: if M_{1} is a rotation matrix which maps x to y and M_{2} is a rotation matrix which maps y to z, then their product $M_{2} M_{1}$ is a matrix which maps x to z, and $M_{2} M_{1}$ is a rotation because $\left(M_{2} M_{1}\right)^{\mathrm{T}}=M_{1}^{\mathrm{T}} M_{2}^{\mathrm{T}}=M_{1}^{-1} M_{2}^{-1}=\left(M_{2} M_{1}\right)^{-1}$ and $\operatorname{det}\left(M_{2} M_{1}\right)=\left(\operatorname{det} M_{2}\right)\left(\operatorname{det} M_{1}\right)=1$. Hence for any $x, y, z \in \mathbb{R}^{3}$, if $x \mathrm{R} y$ and $y \mathrm{R} z$, then $x \mathrm{R} z$.

The equivalence classes are the spheres $\left\{x \in \mathbb{R}^{3}:|x|=r\right\}$ for each non-negative real number r. [This follows from the fact that any unit vector u can be extended to an orthonormal basis $\{u, v, w\}$ for \mathbb{R}^{3} (simply choose any unit vector v orthogonal to u and let w be the cross product $u \times v$); then the matrix with columns u, v, w is a rotation which maps $(1,0,0)$ to u, and now a rotation which maps v_{1} to v_{2}, where $\left|v_{1}\right|=\left|v_{2}\right|=r$, is found by composing the inverse of a rotation which maps $(1,0,0)$ to $\frac{1}{r} v_{1}$ with a rotation which maps $(1,0,0)$ to $\frac{1}{r} v_{2}$.]
(d) This is not an equivalence relation.

- R is reflexive: $x \mathrm{R} x$ for any $x \in \mathbb{R}$, since $x-x=0=0^{2}$ is the square of a real number.
- R is not symmetric: we have 1 R 0 since $1-0=1=1^{2}$, but $0 \not R 1$ since $0-1=-1$ is not the square of a real number.
- R is transitive: if $x \mathrm{R} y$ and $y \mathrm{R} z$, then $x-y$ and $y-z$ are non-negative, so $x-z=(x-y)+(y-z)$ is non-negative, so $x \mathrm{R} z$.

For ease of notation define the function $I: X \rightarrow \mathbb{R}$ given by $f \mapsto \int_{0}^{1} f(x) d x$, so that $f \mathrm{R} g$ iff $I(f)=I(g)$. We see that R is an equivalence relation on X because ' $=$ ' is an equivalence relation on \mathbb{R} :

- R is reflexive: $f \mathrm{R} f$ for any $f \in X$, since $I(f)=I(f)$.
- R is symmetric: if $f \mathrm{R} g$, then $I(f)=I(g)$, so $I(g)=I(f)$, and thus $g \mathrm{R} f$.
- R is transitive: if $f \mathrm{R} g$ and $g \mathrm{R} h$, then $I(f)=I(g)$ and $I(g)=I(h)$, so $I(f)=I(h)$, and thus $f \mathrm{R} h$.

The equivalence classes are the sets $I^{-1}(r):=\{f \in X: I(f)=r\}$ for each $r \in \mathbb{R}$. Note that $I^{-1}(r)$ is non-empty for each $r \in \mathbb{R}$ because the constant function $f_{r}:[0,1] \rightarrow \mathbb{R}$, given by $f_{r}(x)=r$, is in $I^{-1}(r)$. The set of equivalence classes is thus $X / \mathrm{R}=\left\{I^{-1}(r): r \in \mathbb{R}\right\}$.
The natural bijection F from \mathbb{R} to $X / \mathrm{R}=\left\{I^{-1}(r): r \in \mathbb{R}\right\}$ is given by $r \mapsto I^{-1}(r)$.
[The inverse bijection F^{-1} from X / R to \mathbb{R} is given by $S \mapsto I(s)$, where s is any function in S, which is well-defined by the definition of X / R. Observe that, analogously to problem 5 (b), we can write $I=F^{-1} \circ p$, where $p: X \rightarrow X / \mathrm{R}$ maps a function to its equivalence class.]

3

(i) If $a, b \in \mathbb{Z}$ are such that $[a]_{n m}=[b]_{n m}$, then by definition $a-b$ is a multiple of $n m$. Any multiple of $n m$ is a multiple of m, so $a-b$ is a multiple of m, and thus $[a]_{m}=[b]_{m}$. Hence f is well-defined.
(ii) For each residue class $[a]_{m} \in \mathbb{Z}_{m}$ we have $f\left([a]_{n m}\right)=[a]_{m}$, so f is surjective.
(iii) As in problem 2, ' \sim_{f} ' is an equivalence relation on $\mathbb{Z}_{n m}$ because ' $=$ ' is an equivalence relation on \mathbb{Z}_{m} :

- \sim_{f} is reflexive: $x \sim_{f} x$ for any $x \in \mathbb{Z}_{n m}$, since $f(x)=f(x)$.
- \sim_{f} is symmetric: if $x \sim_{f} y$, then $f(x)=f(y)$, so $f(y)=f(x)$, and thus $y \sim_{f} x$.
- \sim_{f} is transitive: if $x \sim_{f} y$ and $y \sim_{f} z$, then $f(x)=f(y)$ and $f(y)=f(z)$, so $f(x)=f(z)$, so $x \sim_{f} z$.

For each $0 \leq a<m$, there is an equivalence class $\left\{[a+k m]_{n m}: 0 \leq k<n\right\} \subset \mathbb{Z}_{n m}$ containing n elements.

4

(a) In $\mathbb{Z}_{7}:[0]^{2}=[0] ;[1]^{2}=[6]^{2}=[1] ;[2]^{2}=[5]^{2}=[4] ;[3]^{2}=[4]^{2}=[2]$, so the squares are $[0],[1],[2]$, [4].
(b) In $\mathbb{Z}_{41}:[14]+[33]=[47]=[6]$ and $[7] \cdot[8]=[56]=[15]$.
(c) In $\mathbb{Z}_{10}: 12 \cdot 12 \equiv 2 \cdot 2 \equiv 4(\bmod 10)$ and $107+413 \equiv 7+3 \equiv 10 \equiv 0(\bmod 10)$.

5

(a) Recall (from the law of cosines) that two triangles are congruent iff they have the same three side lengths. Thus, define the function $g: X \rightarrow \mathbb{R}^{3}$, which maps a triangle $T \in X$ to its three side lengths (a, b, c) (say, in non-descending order). Then $T_{1} \cong T_{2}$ iff $g\left(T_{1}\right)=g\left(T_{2}\right)$.
Thus, as before, ' \cong ' is an equivalence relation on X because ' $=$ ' is an equivalence relation on \mathbb{R}^{3}.
(b) We know that congruent triangles have equal areas; that is, if $T_{1} \cong T_{2}$, then $f\left(T_{1}\right)=f\left(T_{2}\right)$.

Therefore, f takes the same value on every triangle in a given equivalence class, which is to say that $\tilde{f}:(X / \cong) \rightarrow \mathbb{R}$, which maps the equivalence class S to $f(T)$ where T is any triangle in S, is well-defined. Hence $f=\tilde{f} \circ p$, where $p: X \rightarrow(X / \cong)$ maps a triangle T to its equivalence class.

6

(i) We have

$$
\begin{aligned}
\operatorname{gcd}(104,950) & =\operatorname{gcd}(950-9 \cdot 104,104)=\operatorname{gcd}(14,104)=\operatorname{gcd}(104-7 \cdot 14,14)=\operatorname{gcd}(6,14) \\
& =\operatorname{gcd}(14-2 \cdot 6,6)=\operatorname{gcd}(2,6)=\operatorname{gcd}(6-3 \cdot 2,2)=\operatorname{gcd}(0,2)=2
\end{aligned}
$$

and $\operatorname{lcm}(104,950)=104 \cdot 950 / 2=49400$.
(ii) We have
$\operatorname{gcd}(18,207)=\operatorname{gcd}(207-11 \cdot 18,18)=\operatorname{gcd}(9,18)=\operatorname{gcd}(18-2 \cdot 9,9)=\operatorname{gcd}(0,9)=9$
and $\operatorname{lcm}(18,207)=18 \cdot 207 / 9=414$.

