HW 13 Solutions

May 10, 2020

1. Let p > 3 be a prime number. Show that every group of order 3p is
solvable.

Solution. Let G have order 3p. The number of p-Sylow subgroups ( <=
cyclic subgroups of order p) is = 1 (mod p), and thus equal to either
1,1+ p, or 1 +2p. Any two distinct ones intersect in the trivial subgroup
(since there are no non-trivial proper subgroups of a group of order p).
So if there are n p-Sylow subgroups, there are (p — 1)n elements of order
pinG. Ifn>14+pthen (p—1n > (p-11A+p > 4p > |G| a
contradiction. Thus there is only one p-Sylow subgroup H and it follows
that H < G. Then G/H = Z/3Z and H = Z/pZ, so G is an extension of
abelian groups, i.e., solvable.

2. 11. Up to a rotation, how many ways can the faces of a cube be colored
with three different colors?

12. Consider 12 straight wires of equal lengths with their ends soldered
together to form the edges of a cube. Either silver or copper wire can be
used for each edge. How many different ways can the cube be constructed?

Solution. 11. Let X be the set of functions {Faces of the Cube} —

{Red, Blue, Green}. Thus X has 3% = 729 elements. Let G = S, be the
group of rigid motions of R3 preserving the cube. Then G acts on X by
o-f=foo~!. We are asked to find the number of orbits of this action.
By Burnside’s theorem, this is equal to the average size of a fixed point set
X,, the average taken over all 0 € GG. Since conjugate elements of G have
the same number of fixed points, it suffices to count the size of X, for one
o from each conjugacy class: First o = e, its fixed set is all of X. Next,
o = (1234) corresponds to a 90° rotation fixing a face. For a coloring in
X, the two fixed faces can be any color but the moving faces all must be
the same color. Thus there are 3% = 27 elements of X, (also note that
the conjugacy class of o has 6 elements). If o = (13)(24) = (1234)? then
o corresponds to a 180° rotation fixing a face. Here the fixed faces can be
any color and of the four moving faces, the ones on opposite sides must
be the same color. Thus we get 3* = 81 elements of X,, and here the
conjugacy class of o has 3 elements. If o = (12) then o corresponds to a
180° rotation whose axis is the line joining midpoints of a pair of opposite



edges (cf. Theorem 5.27 in Judson’s notes). This o fixes no face so pairs
up faces of the same color. There are 3 pairs so there are 3% elements of X,
and there are 6 transpositions. Finally, if o = (123) then o corresponds
to a rotation whose axis is a line through opposite vertices. Again this
fixes no face, but this time the three faces neighboring one fixed vertex
all must have the same color, and likewise for the other. Thus there are
32 = 9 fixed colorings. There are 8 3-cycles. Thus:

1
Number ofOrbits:ﬂ(729—|—6-27+3-81—|—6-27+8-9):57.

12. This time the same G acts on the 2'2 element set X of colorings of the
edges, where there are two possible colors. Again e fixes all colorings. If
o = (1234) then o splits the edges into three sets of uniform color, so X,
has 23 = 8 elements. If o = (13)(24) then o then instead there are 6 sets
of uniform color, so X, has 26 = 64 elements. If o = (12) then two edges
are fixed and the other 10 are paired up so X, has 27 = 128 elements.
Finally, if 0 = (123) then no edges are fixed and the twelve edges are split
into 4 sets of uniform color, so there are 2* = 16 edges in the fixed set.
Thus:

1
Number of Orbits = ﬂ(Ql2 +6-843-64+6-128+8-16) = 218.
. Show that no group of order 64 or 96 is simple. Construct two distinct
non-abelian groups of each order.

Solution. Suppose G has order 64. Then G is a 2-group of order > 2,
hence not simple (for instance it has Z(G) # 1, so either Z(G) itself gives
a non-trivial normal subgroup or Z(G) = G in which case any subgroup
is normal). Two examples of such groups are Dgy and Z/8Z x Qs. To
show they are not isomorphic, we can note that Z(Dg4) has 2 elements
but Z(Z/8Z x Qg) = Z(Z/8Z) x Z(Qs) has 16.

Now suppose G has order 96 = 2° - 3. Let H be a 2-Sylow subgroup.
Then G acts on G/H by g(¢’H) = g¢’H. Since the action is non-trivial
(transitive even), it determines a non-trivial homomorphism G — S5 (3
= |G/H]|). Then the kernel of G — Ss is a normal subgroup of index < 6,
so G is not simple. Two such groups are Qg X Z/12Z and Dgg. They are
not isomorphic since the center of the first has 24 elements but the center
of the second has only 2.

. 20. What is the smallest possible order of a group G such that G is
nonabelian and |G| is odd? Can you find such a group?

22. Show that if the order of GG is p™¢q where p and ¢ are primes and p > ¢,
then G contains a normal subgroup.

23. Prove that the number of distinct conjugates of a subgroup H of a
finite group G is [G : N(H)].



Solution. 20. Every group of order 1,3,5,7,9,11,13,17,19 is abelian
because these numbers are either 1, prime, or a prime squared. Every
group of order 15 is abelian because 3 /5 — 1. There is a non-abelian
group of order 21 however, we may take G = Z/7Z x4 Z/3Z where ¢ is
any non-trivial homomorphism Z/3Z — Aut(Z/7Z) = Z/6Z.

22. Let H be a p-Sylow subgroup. Then the index of H in G is equal to
the smallest prime dividing |G|. This implies that H is normal in G: Let
G act on G/H by translation. This induces a homomorphism G — S,
where p = [G : H] is the smallest prime dividing the order of G. The
kernel K is contained in H, and since G/K < S, we get that [G : K]|pl.
But [G: K] =[G: H|[H : K| =p[H : K|, so [H : K] must be a product
of primes less than p. But this is only possible if [H : K] = 1 by our
assumption on |G|. Thus H = K < G.

23. Let G act on the set of subgroups of G by conjugation. The orbit
of H is the set of subgroups conjugate to H, and the stabilizer is the set
of g € G such that gHg~! = H. This is Ng(H). By the orbit stabilizer
formula, the number of subgroups conjugate to H is [G : Ng(H)].

. Show that no group of order 112 is simple. (Hint: if the group G is simple
then it admits an injective homomorphism to the symmetric group S,
where r is the number of 2-Sylow subgroups.)

Solution. Suppose G is simple of order 112 = 24-7. Let G act on the set of
2-Sylow subgroups by conjugation. This action determines a permutation
homomorphism G — S, where r is the number of 2-Sylow subgroups. Let
K <G be the kernel. Then K =1 or K = G by simplicity. If K = G then
the permutation homomorphism is trivial, so the action is trivial. But
we know the action is transitive by the Sylow theorems, hence it would
follow that » = 1 and so the unique 2-Sylow subgroup is normal. This
is a contradiction since G is assumed simple. It follows that K = 1 and
we have an injective homomorphism G — S,.. Thus we know: (a) r =1
(mod 2), (b) r|112 and (c) 112|r!. For (c) to occur we must have r > 7.
Then using (a) and (b) it follows that the only such number is » = 7. To
get a contradiction, we will show that in fact G < S7 has image contained
in A7: GNA7; <G since A7 <1S7. Thus either GNA; =1or GNA; =G.
If the former holds, then G = G/GN A7 2 G- A7/A; = S; /A7 = {1},
a contradiction. Thus G N A7 = A7 so G C A. But this implies 112|7!/2
which is false!



