GU4041: Intro to Modern Algebra I

Professor Michael Harris

Solutions by Iris Rosenblum-Sellers

Homework 12

1) Let p be an odd prime number. Show that any group of order 2p is either cyclic or isomorphic to Dg,.

Proof. Let G be a group of order 2p. By Cauchy’s theorem/Sylow’s theorem, there exists a subgroup H of G such
that |H| = p. H is index 2, so it’s normal. Likewise, there exists a subgroup K of G of order 2. We note that K ¢ H;
this just follows from Lagrange’s theorem; since |H| = p,|K| = 2,|K| | |H|. Then K and H have trivial intersection, so
K H = G, so by the recognition principle for semidirect products, G & Zy xZ,,, for some isomorphism ¢ : K — Aut(H).
Such a homomorphism must map [1] to some order-2 automorphism of Z,; we know that all automorphisms of Z,
are of the form [k] — [ak], so we must have one such that ¢ 2 -1 mod p or a 2 1; we note that if a = b mod p,
then [k] — [ak] is the same automorphism as [k] — [bk], so as a result, we have that there are only two possible
semidirect product structures on G; the usual direct product, in which case, by the chinese remainder theorem, we
have G = Zy,, and otherwise, we have G = Zy x4 Z,, where ¢ is the inversion isomorphism; this has the presentation

1

<r,s5:82,rP srs=r"1 >=<r s:5% rP rsrs>, which is Dyy,. O

2) Let A be a finite abelian group of order N. Let p; < ps < ...p,, denote the distinct prime numbers dividing N.

a) Prove that A has a unique Sylow p-subgroup A; of order p$* for i =1,...n, for maximal a.

Proof. By Sylow’s first theorem, there exist subgroups of order pj* for each 7, and by the third, for a fixed i, each
are conjugate. Then let Hy, Hy ¢ G be subgroups of order p¢. Then 3g € A such that gH;g™' = Hy. Then since A is
abelian, gH,¢™' = Hy, so H, = Hy, so there is only one subgroup of order D5 O]

b) Show that
AﬁAIXAQX"'XAn

Proof. By the classification of finitely generated abelian groups, and since A is finite, A = ], quk, for g
positive integers, and ¢ not necessarily distinct primes. We note that for any i, we can define the subgroup
P, ={(x1,x2,xp) xp =0 < qi # pi}; we can also think of this as I'[;":i1 Zp?j, where we canonically identify prj as
a component of A with a subgroup of A. In any case, this is a maximal p;-group, so it’s 4;, and A = [T, P; still, so
A=TIL, A O

3) Construct Sylow p-subgroups for the symmetric group S5 and the alternating group As for p =2,3,5.

Note that |S5| = 23 x 3 x 5,|A45| = 2% x 3 x 5. Then a Sylow 2-subgroup of Sj is a subgroup of order 8; an example
of one is < (1234), (12)(34) >=<r,s: 7% 52 rsrs >, since (1234)(12)(34) = (13) has order 2. With this presentation,
it’s clear that this is isomorphic to Dg; moreover, if we think of the elements of S; as arbitrary permutations of the
vertices of a square, these two elements are a rotation by 90 degrees and a flip, so they ought to generate the dihedral
group that way as well. For As, a Sylow 2-subgroup is order 4; a suitable example is < (12)(34), (13)(24), (14)(23) >;
in Ay, this is the familiar normal subgroup; in As, it’s not normal, but it’s still a subgroup of order 4. Then for the
others, if we can come up with Sylow 3-subgroups and 5-subgroups of As, they will obviously work for S; as well.

Then these are easy; we can just pick cyclic subgroups generated by 3 and 5 cycles, since < (123) > and < (12345) >,



for example, are subgroups of the alternating group.
4)

Judson 1)

18 =2 x 32, so Sylow 2-subgroups are order 2, and Sylow 3-subgroups are order 9.
24 = 23 x 3, so Sylow 2-subgroups are order 8, and Sylow 3-subgroups are order 3.
54 = 2 x 3%, so Sylow 2-subgroups are order 2, and Sylow 3-subgroups are order 27.
72 = 23 x 32, so Sylow 2-subgroups are order 8, and Sylow 3-subgroups are order 9.

80 = 2% x 5, so Sylow 2-subgroups are order 16, and Sylow 5-subgroups are order 5.

Judson 3)

Proof. Let G be a group of order 45, and let H be a Sylow 3-subgroup; it has order 9 and exists by Sylow’s first
theorem. By Sylow’s third theorem, its normal iff there is only one such Sylow 3-subgroup, and the number of Sylow

3-subgroups ng divides 5 and is equivalent to 1 mod 3, so it’s 1, so H is normal. O
Judson 6)

Proof. 160 = 2° x 5. Then by Sylow’s first theorem, it has a subgroup of order 5, and by Sylow’s third theorem, the
number of such subgroups divides 32 and is equivalent to 1 mod 5, so it’s in {1,2,4,8,16,32} n{5Z + 1} = {1,16}.
If there is only one, then we’re good, since it’s normal; otherwise, there are 16. Denote the set of such subsets by
X (sometimes the notation Sylp(G) is used). Then there is a transitive action by G on X given by conjugation
by elements of G on the Sylow 5-groups. This takes the form of a surjective homomorphism ® from G to Syg; it’s
surjective, since by transitivity, for any transposition ¢ in Sig, there exists an element g € G such that ®(g) = ¢; since
the transpositions generate Sig, this means im(®) = S16. However, this implies |S16| < |G|, which is clearly false.

Therefore, G has a normal subgroup of order 5. O
Judson 7)

Proof. Let o be the multiplicity of p in the order of G We first show that H c S for some Sylow p-group S. If k£ = «

G, g~ This is a group of order |G|/p*; in particular,

then H clearly is a Sylow p-subgroup of G. Otherwise, consider
since H is not a Sylow p-subgroup of GG, we have that G, g has order a multiple of p®~*. Then we take a Sylow
p-subgroup of G/H, which we call S : |S] = p**. Let ®:G — G/H be the canonical projection homomorphism
g — gH. Then consider ®~1(S). This is a set of order |ker(®)||S| = p*p*~* = p®, and it’s a subgroup of G, since it’s
the preimage of a subgroup under a homomorphism. Moreover, it contains ®~!(eg /H) as a subgroup, which is of
course H. Then H is a subset of one Sylow p-group, S. We now use that each Sylow p-subgroup of G is conjugate.
Then for any Sylow p-subgroup S, there exists a g € G such that gSg~ = S’. In particular, since H c S, gHg ' c S'.

However, since H is normal, gHg™ ' = H, so Hc S'. O]
Judson 9)

Proof. By Sylow’s third theorem, we know that ng divides 11 and is equivalent to 1 mod 3. Then n3 € {1,11}n3Z+1 =
{1}. O



