GU4041: Intro to Modern Algebra I

Professor Michael Harris
Solutions by Iris Rosenblum-Sellers

Homework 12

1) Let p be an odd prime number. Show that any group of order $2 p$ is either cyclic or isomorphic to $D_{2 p}$.

Proof. Let G be a group of order $2 p$. By Cauchy's theorem/Sylow's theorem, there exists a subgroup H of G such that $|H|=p$. H is index 2, so it's normal. Likewise, there exists a subgroup K of G of order 2 . We note that $K \notin H$; this just follows from Lagrange's theorem; since $|H|=p,|K|=2,|K| V|H|$. Then K and H have trivial intersection, so $K H=G$, so by the recognition principle for semidirect products, $G \cong \mathbb{Z}_{2} \rtimes \mathbb{Z}_{p}$, for some isomorphism $\phi: K \rightarrow \operatorname{Aut}(H)$. Such a homomorphism must map [1] to some order-2 automorphism of \mathbb{Z}_{p}; we know that all automorphisms of \mathbb{Z}_{p} are of the form $[k] \rightarrow[a k]$, so we must have one such that $a \cong-1 \bmod p$ or $a \cong 1$; we note that if $a \cong b \bmod p$, then $[k] \rightarrow[a k]$ is the same automorphism as $[k] \rightarrow[b k]$, so as a result, we have that there are only two possible semidirect product structures on G; the usual direct product, in which case, by the chinese remainder theorem, we have $G \cong \mathbb{Z}_{2 p}$, and otherwise, we have $G \cong \mathbb{Z}_{2} \rtimes_{\phi} \mathbb{Z}_{p}$, where ϕ is the inversion isomorphism; this has the presentation $\left\langle r, s: s^{2}, r^{p}, s r s=r^{-1}\right\rangle=\left\langle r, s: s^{2}, r^{p}\right.$, rsrs $>$, which is $D_{2 p}$.
2) Let A be a finite abelian group of order N. Let $p_{1}<p_{2}<\ldots p_{n}$ denote the distinct prime numbers dividing N.
a) Prove that A has a unique Sylow p-subgroup A_{i} of order p_{i}^{α} for $i=1, \ldots n$, for maximal α.

Proof. By Sylow's first theorem, there exist subgroups of order p_{i}^{α} for each i, and by the third, for a fixed i, each are conjugate. Then let $H_{1}, H_{2} \subset G$ be subgroups of order p_{i}^{α}. Then $\exists g \in A$ such that $g H_{1} g^{-1}=H_{2}$. Then since A is abelian, $g H_{1} g^{-1}=H_{2}$, so $H_{1}=H_{2}$, so there is only one subgroup of order p_{i}^{α}.
b) Show that

$$
A \simeq A_{1} \times A_{2} \times \cdots \times A_{n}
$$

Proof. By the classification of finitely generated abelian groups, and since A is finite, $A \cong \prod_{k=1}^{m} \mathbb{Z}_{q_{k}^{\beta_{k}}}$, for β_{k} positive integers, and q_{k} not necessarily distinct primes. We note that for any i, we can define the subgroup $P_{i}=\left\{\left(x_{1}, x_{2}, \cdots x_{m}\right): x_{k}=0 \Leftarrow q_{k} \neq p_{i}\right\}$; we can also think of this as $\prod_{j=1}^{m_{i}} \mathbb{Z}_{p_{i}^{\beta_{j}}}$, where we canonically identify $\mathbb{Z}_{p_{i}^{\beta_{j}}}$ as a component of A with a subgroup of A. In any case, this is a maximal p_{i}-group, so it's A_{i}, and $A \cong \prod_{i=1}^{n} P_{i}$ still, so $A \cong \prod_{i=1}^{n} A_{i}$.
3) Construct Sylow p-subgroups for the symmetric group S_{5} and the alternating group A_{5} for $p=2,3,5$.

Note that $\left|S_{5}\right|=2^{3} \times 3 \times 5,\left|A_{5}\right|=2^{2} \times 3 \times 5$. Then a Sylow 2-subgroup of S_{5} is a subgroup of order 8 ; an example of one is $<(1234),(12)(34)>=<r, s: r^{4}, s^{2}, r s r s>$, since $(1234)(12)(34)=(13)$ has order 2 . With this presentation, it's clear that this is isomorphic to D_{8}; moreover, if we think of the elements of S_{4} as arbitrary permutations of the vertices of a square, these two elements are a rotation by 90 degrees and a flip, so they ought to generate the dihedral group that way as well. For A_{5}, a Sylow 2-subgroup is order 4; a suitable example is < (12)(34), (13)(24), (14)(23)>; in A_{4}, this is the familiar normal subgroup; in A_{5}, it's not normal, but it's still a subgroup of order 4 . Then for the others, if we can come up with Sylow 3 -subgroups and 5 -subgroups of A_{5}, they will obviously work for S_{5} as well. Then these are easy; we can just pick cyclic subgroups generated by 3 and 5 cycles, since $<(123)>$ and $<(12345)>$,
for example, are subgroups of the alternating group.
4)

Judson 1)

$18=2 \times 3^{2}$, so Sylow 2-subgroups are order 2, and Sylow 3 -subgroups are order 9 .
$24=2^{3} \times 3$, so Sylow 2-subgroups are order 8, and Sylow 3 -subgroups are order 3 .
$54=2 \times 3^{3}$, so Sylow 2-subgroups are order 2, and Sylow 3 -subgroups are order 27 .
$72=2^{3} \times 3^{2}$, so Sylow 2-subgroups are order 8, and Sylow 3 -subgroups are order 9 .
$80=2^{4} \times 5$, so Sylow 2-subgroups are order 16, and Sylow 5 -subgroups are order 5 .

Judson 3)
Proof. Let G be a group of order 45, and let H be a Sylow 3-subgroup; it has order 9 and exists by Sylow's first theorem. By Sylow's third theorem, its normal iff there is only one such Sylow 3-subgroup, and the number of Sylow 3 -subgroups n_{3} divides 5 and is equivalent to $1 \bmod 3$, so it's 1 , so H is normal.

Judson 6)
Proof. $160=2^{5} \times 5$. Then by Sylow's first theorem, it has a subgroup of order 5, and by Sylow's third theorem, the number of such subgroups divides 32 and is equivalent to $1 \bmod 5$, so it's in $\{1,2,4,8,16,32\} \cap\{5 \mathbb{Z}+1\}=\{1,16\}$. If there is only one, then we're good, since it's normal; otherwise, there are 16. Denote the set of such subsets by X (sometimes the notation $\operatorname{Syl}_{p}(G)$ is used). Then there is a transitive action by G on X given by conjugation by elements of G on the Sylow 5 -groups. This takes the form of a surjective homomorphism Φ from G to S_{16}; it's surjective, since by transitivity, for any transposition t in S_{16}, there exists an element $g \in G$ such that $\Phi(g)=t$; since the transpositions generate S_{16}, this means $\operatorname{im}(\Phi)=S_{16}$. However, this implies $\left|S_{16}\right| \leq|G|$, which is clearly false. Therefore, G has a normal subgroup of order 5 .

Judson 7)

Proof. Let α be the multiplicity of p in the order of G We first show that $H \subset S$ for some Sylow p-group S. If $k=\alpha$ then H clearly is a Sylow p-subgroup of G. Otherwise, consider $G^{\prime} H$. This is a group of order $|G| / p^{k}$; in particular, since H is not a Sylow p-subgroup of G, we have that ${ }^{G} / H$ has order a multiple of $p^{\alpha-k}$. Then we take a Sylow p-subgroup of $l_{/ H}$, which we call $\bar{S}:|\bar{S}|=p^{\alpha-k}$. Let $\Phi: G \rightarrow G / H$ be the canonical projection homomorphism $g \rightarrow g H$. Then consider $\Phi^{-1}(\bar{S})$. This is a set of order $|\operatorname{ker}(\Phi) \| \bar{S}|=p^{k} p^{\alpha-k}=p^{\alpha}$, and it's a subgroup of G, since it's the preimage of a subgroup under a homomorphism. Moreover, it contains $\Phi^{-1}\left(e_{G / H}\right)$ as a subgroup, which is of course H. Then H is a subset of one Sylow p-group, S. We now use that each Sylow p-subgroup of G is conjugate. Then for any Sylow p-subgroup S^{\prime}, there exists a $g \in G$ such that $g S g^{-1}=S^{\prime}$. In particular, since $H \subset S, g H g^{-1} \subset S^{\prime}$. However, since H is normal, $g H g^{-1}=H$, so $H \subset S^{\prime}$.

Judson 9)
Proof. By Sylow's third theorem, we know that n_{3} divides 11 and is equivalent to $1 \bmod 3$. Then $n_{3} \in\{1,11\} \cap 3 \mathbb{Z}+1=$ $\{1\}$.

