
GU4041: Intro to Modern Algebra I

Professor Michael Harris

Solutions by Iris Rosenblum-Sellers

Homework 12

1) Let p be an odd prime number. Show that any group of order 2p is either cyclic or isomorphic to D2p.

Proof. Let G be a group of order 2p. By Cauchy’s theorem/Sylow’s theorem, there exists a subgroup H of G such

that ∣H ∣ = p. H is index 2, so it’s normal. Likewise, there exists a subgroup K of G of order 2. We note that K ⊄H;

this just follows from Lagrange’s theorem; since ∣H ∣ = p, ∣K ∣ = 2, ∣K ∣ /∣ ∣H ∣. Then K and H have trivial intersection, so

KH = G, so by the recognition principle for semidirect products, G ≅ Z2⋊Zp, for some isomorphism φ ∶K → Aut(H).
Such a homomorphism must map [1] to some order-2 automorphism of Zp; we know that all automorphisms of Zp
are of the form [k] → [ak], so we must have one such that a ≅ −1 mod p or a ≅ 1; we note that if a ≅ b mod p,

then [k] → [ak] is the same automorphism as [k] → [bk], so as a result, we have that there are only two possible

semidirect product structures on G; the usual direct product, in which case, by the chinese remainder theorem, we

have G ≅ Z2p, and otherwise, we have G ≅ Z2 ⋊φ Zp, where φ is the inversion isomorphism; this has the presentation

< r, s ∶ s2, rp, srs = r−1 >=< r, s ∶ s2, rp, rsrs >, which is D2p.

2) Let A be a finite abelian group of order N . Let p1 < p2 < ...pn denote the distinct prime numbers dividing N .

a) Prove that A has a unique Sylow p-subgroup Ai of order pαi for i = 1, . . . n, for maximal α.

Proof. By Sylow’s first theorem, there exist subgroups of order pαi for each i, and by the third, for a fixed i, each

are conjugate. Then let H1,H2 ⊂ G be subgroups of order pαi . Then ∃g ∈ A such that gH1g
−1 =H2. Then since A is

abelian, gH1g
−1 =H2, so H1 =H2, so there is only one subgroup of order pαi .

b) Show that

A ≃ A1 ×A2 × ⋅ ⋅ ⋅ ×An

Proof. By the classification of finitely generated abelian groups, and since A is finite, A ≅ ∏mk=1Zqβk
k

, for βk

positive integers, and qk not necessarily distinct primes. We note that for any i, we can define the subgroup

Pi = {(x1, x2,⋯xm) ∶ xk = 0⇐ qk ≠ pi}; we can also think of this as ∏mij=1Zpβji
, where we canonically identify Z

p
βj
i

as

a component of A with a subgroup of A. In any case, this is a maximal pi-group, so it’s Ai, and A ≅ ∏ni=1 Pi still, so

A ≅ ∏ni=1Ai.

3) Construct Sylow p-subgroups for the symmetric group S5 and the alternating group A5 for p = 2,3,5.

Note that ∣S5∣ = 23 × 3 × 5, ∣A5∣ = 22 × 3 × 5. Then a Sylow 2-subgroup of S5 is a subgroup of order 8; an example

of one is < (1234), (12)(34) >=< r, s ∶ r4, s2, rsrs >, since (1234)(12)(34) = (13) has order 2. With this presentation,

it’s clear that this is isomorphic to D8; moreover, if we think of the elements of S4 as arbitrary permutations of the

vertices of a square, these two elements are a rotation by 90 degrees and a flip, so they ought to generate the dihedral

group that way as well. For A5, a Sylow 2-subgroup is order 4; a suitable example is < (12)(34), (13)(24), (14)(23) >;

in A4, this is the familiar normal subgroup; in A5, it’s not normal, but it’s still a subgroup of order 4. Then for the

others, if we can come up with Sylow 3-subgroups and 5-subgroups of A5, they will obviously work for S5 as well.

Then these are easy; we can just pick cyclic subgroups generated by 3 and 5 cycles, since < (123) > and < (12345) >,
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for example, are subgroups of the alternating group.

4)

Judson 1)

18 = 2 × 32, so Sylow 2-subgroups are order 2, and Sylow 3-subgroups are order 9.

24 = 23 × 3, so Sylow 2-subgroups are order 8, and Sylow 3-subgroups are order 3.

54 = 2 × 33, so Sylow 2-subgroups are order 2, and Sylow 3-subgroups are order 27.

72 = 23 × 32, so Sylow 2-subgroups are order 8, and Sylow 3-subgroups are order 9.

80 = 24 × 5, so Sylow 2-subgroups are order 16, and Sylow 5-subgroups are order 5.

Judson 3)

Proof. Let G be a group of order 45, and let H be a Sylow 3-subgroup; it has order 9 and exists by Sylow’s first

theorem. By Sylow’s third theorem, its normal iff there is only one such Sylow 3-subgroup, and the number of Sylow

3-subgroups n3 divides 5 and is equivalent to 1 mod 3, so it’s 1, so H is normal.

Judson 6)

Proof. 160 = 25 × 5. Then by Sylow’s first theorem, it has a subgroup of order 5, and by Sylow’s third theorem, the

number of such subgroups divides 32 and is equivalent to 1 mod 5, so it’s in {1,2,4,8,16,32} ∩ {5Z + 1} = {1,16}.

If there is only one, then we’re good, since it’s normal; otherwise, there are 16. Denote the set of such subsets by

X (sometimes the notation Sylp(G) is used). Then there is a transitive action by G on X given by conjugation

by elements of G on the Sylow 5-groups. This takes the form of a surjective homomorphism Φ from G to S16; it’s

surjective, since by transitivity, for any transposition t in S16, there exists an element g ∈ G such that Φ(g) = t; since

the transpositions generate S16, this means im(Φ) = S16. However, this implies ∣S16∣ ≤ ∣G∣, which is clearly false.

Therefore, G has a normal subgroup of order 5.

Judson 7)

Proof. Let α be the multiplicity of p in the order of G We first show that H ⊂ S for some Sylow p-group S. If k = α
then H clearly is a Sylow p-subgroup of G. Otherwise, consider GÒH. This is a group of order ∣G∣/pk; in particular,

since H is not a Sylow p-subgroup of G, we have that GÒH has order a multiple of pα−k. Then we take a Sylow

p-subgroup of GÒH, which we call S̄ ∶ ∣S̄∣ = pα−k. Let Φ ∶ G → GÒH be the canonical projection homomorphism

g → gH. Then consider Φ−1(S̄). This is a set of order ∣ker(Φ)∣∣S̄∣ = pkpα−k = pα, and it’s a subgroup of G, since it’s

the preimage of a subgroup under a homomorphism. Moreover, it contains Φ−1(eGÒH) as a subgroup, which is of

course H. Then H is a subset of one Sylow p-group, S. We now use that each Sylow p-subgroup of G is conjugate.

Then for any Sylow p-subgroup S′, there exists a g ∈ G such that gSg−1 = S′. In particular, since H ⊂ S, gHg−1 ⊂ S′.
However, since H is normal, gHg−1 =H, so H ⊂ S′.

Judson 9)

Proof. By Sylow’s third theorem, we know that n3 divides 11 and is equivalent to 1 mod 3. Then n3 ∈ {1,11}∩3Z+1 =
{1}.
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