Problem set \#11 solutions

Anton Wu

April 23, 2020

1

First we claim the following:
Claim: Let H be a group of order p^{k}, where $k>1$. Then H is not simple.
Proof: Consider $\mathcal{Z}(H)$, the center of H; we know $\mathcal{Z}(H)$ is a normal subgroup of H. By the class equation,

$$
|H|=|\mathcal{Z}(H)|+\sum_{A}\left[H: \mathcal{C}_{H}(A)\right]
$$

where A runs over the non-singleton conjugacy classes of H, and $\mathcal{C}_{H}(A)$ is the centralizer in H of A. For each A, we have $\left[H: \mathcal{C}_{H}(A)\right]$ divides $|H|=p^{k}$, so p divides $\left[H: \mathcal{C}_{H}(A)\right]$. Since p divides $|H|$, we see from the class equation that p must divide $|\mathcal{Z}(H)|$; that is, $\mathcal{Z}(H) \neq\{1\}$.
This leaves two possibilities: either $\{1\} \subsetneq \mathcal{Z}(H) \subsetneq H$, or $\mathcal{Z}(H)=H$.
In the former case, $\mathcal{Z}(H)$ is a normal subgroup of H which is neither $\{1\}$ nor H, so H is not simple. In the latter case, H is abelian. The fact that $|H|=p^{k}$ with $k>1$ guarantees H has a subgroup which is neither $\{1\}$ nor H. In an abelian group, any subgroup is normal; so H is not simple.
Hence in either case H is not simple. //
Now, for a group G of order p^{r}, let $G=H_{n} \supsetneq H_{n-1} \supsetneq \cdots \supsetneq H_{1} \supsetneq H_{0}=\{1\}$ be any composition series.
For any $i=1, \ldots, n$, we know $\left|H_{i}\right|,\left|H_{i-1}\right|$ divide $|G|=p^{r}$ and are thus powers of p; then so is $\left[H_{i}: H_{i-1}\right]$. Then H_{i} / H_{i-1} is a simple group of order p^{k} for some $k>0$, so by the Claim, we have $k=1$; so H_{i} / H_{i-1} has order p, and is therefore isomorphic to \mathbb{Z}_{p}.
Hence every composition factor of G is isomorphic to \mathbb{Z}_{p}. There must be r such factors.

2

§13.3, exercise 4

a) A composition series for \mathbb{Z}_{n} corresponds naturally to the prime factorization of n.

For \mathbb{Z}_{12}, the composition series are

$$
\begin{aligned}
& \mathbb{Z}_{12} \supsetneq\langle 2\rangle \supsetneq\langle 4\rangle \supsetneq\{0\} \\
& \mathbb{Z}_{12} \supsetneq\langle 2\rangle \supsetneq\langle 6\rangle \supsetneq\{0\} \\
& \mathbb{Z}_{12} \supsetneq\langle 3\rangle \supsetneq\langle 6\rangle \supsetneq\{0\}
\end{aligned}
$$

b) For \mathbb{Z}_{48}, the composition series are

$$
\begin{aligned}
& \mathbb{Z}_{48} \supsetneq\langle 2\rangle \supsetneq\langle 4\rangle \supsetneq\langle 8\rangle \supsetneq\langle 16\rangle \supsetneq\{0\} \\
& \mathbb{Z}_{48} \supsetneq\langle 2\rangle \supsetneq\langle 4\rangle \supsetneq\langle 8\rangle \supsetneq\langle 24\rangle \supsetneq\{0\} \\
& \mathbb{Z}_{48} \supsetneq\langle 2\rangle \supsetneq\langle 4\rangle \supsetneq\langle 12\rangle \supsetneq\langle 24\rangle \supsetneq\{0\} \\
& \mathbb{Z}_{48} \supsetneq\langle 2\rangle \supsetneq\langle 6\rangle \supsetneq\langle 12\rangle \supsetneq\langle 24\rangle \supsetneq\{0\} \\
& \mathbb{Z}_{48} \supsetneq\langle 3\rangle \supsetneq\langle 6\rangle \supsetneq\langle 12\rangle \supsetneq\langle 24\rangle \supsetneq\{0\}
\end{aligned}
$$

c) The subgroups of Q_{8} are $\{1\},\langle-1\rangle,\langle i\rangle,\langle j\rangle,\langle k\rangle, Q_{8}$, all of which are normal in Q_{8}. For each of these we need to check whether the quotient group is simple and, if so, build the composition series from there.
The composition series are

$$
\begin{aligned}
& Q_{8} \supsetneq\langle i\rangle \supsetneq\langle-1\rangle \supsetneq\{1\} \\
& Q_{8} \supsetneq\langle j\rangle \supsetneq\langle-1\rangle \supsetneq\{1\} \\
& Q_{8} \supsetneq\langle k\rangle \supsetneq\langle-1\rangle \supsetneq\{1\}
\end{aligned}
$$

d) The normal subgroups of $D_{4}:=\left\langle r, s \mid r^{4}=s^{2}=\mathrm{id}, s r s^{-1}=r^{-1}\right\rangle$ are $\{1\},\left\langle r^{2}\right\rangle,\langle r\rangle,\left\langle s, r^{2}\right\rangle,\left\langle s r, s r^{3}\right\rangle, D_{4}$.

The composition series are

$$
\begin{aligned}
& D_{4} \supsetneq\langle r\rangle \supsetneq\left\langle r^{2}\right\rangle \supsetneq\{1\} \\
& D_{4} \supsetneq\left\langle s, r^{2}\right\rangle \supsetneq\langle s\rangle \supsetneq\{1\} \\
& D_{4} \supsetneq\left\langle s, r^{2}\right\rangle \supsetneq\left\langle r^{2}\right\rangle \supsetneq\{1\} \\
& D_{4} \supsetneq\left\langle s, r^{2}\right\rangle \supsetneq\left\langle s r^{2}\right\rangle \supsetneq\{1\} \\
& D_{4} \supsetneq\left\langle s r, s r^{3}\right\rangle \supsetneq\langle s r\rangle \supsetneq\{1\} \\
& D_{4} \supsetneq\left\langle s r, s r^{3}\right\rangle \supsetneq\left\langle s r^{3}\right\rangle \supsetneq\{1\} \\
& D_{4} \supsetneq\left\langle s r, s r^{3}\right\rangle \supsetneq\left\langle r^{2}\right\rangle \supsetneq\{1\}
\end{aligned}
$$

e) The normal subgroups of S_{3} are $\{\mathrm{id}\}, A_{3}, S_{3}$, and the normal subgroups of \mathbb{Z}_{4} are $\{0\},\langle 2\rangle, \mathbb{Z}_{4}$.

The composition series are

$$
\begin{aligned}
& S_{3} \times \mathbb{Z}_{4} \supsetneq S_{3} \times\langle 2\rangle \supsetneq S_{3} \times\{0\} \supsetneq A_{3} \times\{0\} \supsetneq\{\mathrm{id}\} \times\{0\} \\
& S_{3} \times \mathbb{Z}_{4} \supsetneq S_{3} \times\langle 2\rangle \supsetneq A_{3} \times\langle 2\rangle \supsetneq A_{3} \times\{0\} \supsetneq\{\mathrm{id}\} \times\{0\} \\
& S_{3} \times \mathbb{Z}_{4} \supsetneq S_{3} \times\langle 2\rangle \supsetneq A_{3} \times\langle 2\rangle \supsetneq\{\mathrm{id}\} \times\langle 2\rangle \supsetneq\{\mathrm{id}\} \times\{0\} \\
& S_{3} \times \mathbb{Z}_{4} \supsetneq A_{3} \times \mathbb{Z}_{4} \supsetneq A_{3} \times\langle 2\rangle \supsetneq A_{3} \times\{0\} \supsetneq\{\mathrm{id}\} \times\{0\} \\
& S_{3} \times \mathbb{Z}_{4} \supsetneq A_{3} \times \mathbb{Z}_{4} \supsetneq A_{3} \times\langle 2\rangle \supsetneq\{\mathrm{id}\} \times\langle 2\rangle \supsetneq\{\mathrm{id}\} \times\{0\} \\
& S_{3} \times \mathbb{Z}_{4} \supsetneq A_{3} \times \mathbb{Z}_{4} \supsetneq\{\mathrm{id}\} \times \mathbb{Z}_{4} \supsetneq\{\mathrm{id}\} \times\langle 2\rangle \supsetneq\{\mathrm{id}\} \times\{0\}
\end{aligned}
$$

f) The normal subgroups of S_{4} are $\{\mathrm{id}\}, K$ (the subgroup of all products of two disjoint 2-cycles), A_{4}, S_{4}. The composition series are

$$
\begin{aligned}
& S_{4} \supsetneq A_{4} \supsetneq K \supsetneq\langle(12)(34)\rangle \supsetneq\{\mathrm{id}\} \\
& S_{4} \supsetneq A_{4} \supsetneq K \supsetneq\langle(13)(24)\rangle \supsetneq\{\mathrm{id}\} \\
& S_{4} \supsetneq A_{4} \supsetneq K \supsetneq\langle(14)(23)\rangle \supsetneq\{\mathrm{id}\}
\end{aligned}
$$

[Remark: All of the factor groups are abelian, which means S_{4} is solvable. In Galois theory one uses this to show that every degree-4 polynomial equation with rational coefficients is solvable by radicals.]
g) Knowing that A_{n} is simple for $n \geq 5$, we see that the only composition series of S_{n} is

$$
S_{n} \supsetneq A_{n} \supsetneq\{\mathrm{id}\}
$$

[Remark: This means S_{n} is not solvable for $n \geq 5$; and in general, degree- n polynomial equations are not solvable by radicals.]
[Note: The Jordan-Hölder theorem states that for any finite group, the composition series are isomorphic, in the sense that the set of composition factors is the same up to ordering. One checks that this is true for the groups above.]
h) We claim that there is no composition series for \mathbb{Q}.

Suppose $\mathbb{Q} \supsetneq H_{1} \supsetneq \cdots \supsetneq H_{n} \supsetneq\{0\}$ is a composition series. To derive a contradiction, we construct a subgroup H_{n+1} of H_{n} which is neither $\{0\}$ or H_{n}; since \mathbb{Q} is abelian, any subgroup is a normal subgroup. To do this, choose some non-zero $x \in H_{n}$ and consider two cases:
If $x / m \in H_{n}$ for all non-zero $m \in \mathbb{Z}$, then H_{n} must be the entire group \mathbb{Q}, in which case we let $H_{n+1}:=\mathbb{Z}$. Otherwise, there exists a non-zero $m \in \mathbb{Z}$ with $x / m \notin H_{n}$. Define $H_{n+1}:=\left\{m h: h \in H_{n}\right\}$. This is a subgroup of H_{n} since $m h \in H_{n}$ for any $h \in H_{n}$; and $H_{n+1} \neq H_{n}$, since $x \in H_{n}$ but $x \notin H_{n+1}$.
Thus, in either case we have constructed a subgroup H_{n+1} with $H_{n} \supsetneq H_{n+1} \supsetneq\{0\}$, and we have the desired contradiction. Hence our supposition is false and \mathbb{Q} has no composition series.

§13.3, exercise 12

Given a group G and a normal subgroup N, the correspondence theorem states that there is a one-to-one correspondence between subgroups $H \subseteq N$ and subgroups $N \subseteq H^{\prime} \subseteq G$.
Moreover, $H_{1}, H_{2} \subseteq N$ satisfy $H_{1} \unlhd H_{2}$ if and only if the corresponding $N \subseteq H_{1}^{\prime}, H_{2}^{\prime} \subseteq G$ satisfy $H_{1}^{\prime} \unlhd H_{2}^{\prime}$, in which case $H_{2} / H_{1} \cong H_{2}^{\prime} / H_{1}^{\prime}$.
Now suppose $N \supseteq H_{1} \supseteq \cdots \supseteq H_{r-1} \supseteq\{1\}$ and $G / N \supseteq G_{1} \supseteq \cdots \supseteq G_{s-1} \supseteq\{1\}$ are composition series for N and G / N, respectively. Then we can use the correspondence theorem to lift the composition series for N to get $G \supseteq H_{1}^{\prime} \supseteq \cdots \supseteq H_{r-1}^{\prime} \supseteq G / N$. Then a composition series for G is

$$
G \supseteq H_{1}^{\prime} \supseteq \cdots \supseteq H_{r-1}^{\prime} \supseteq G / N \supseteq G_{1} \supseteq \cdots \supseteq G_{s-1} \supseteq\{1\}
$$

The first r composition factors are isomorphic to the composition factors of N; the remaining s composition factors are the composition factors of G / N. Since these are all abelian (as N and G / N are solvable), we conclude that G is solvable.

3

Let G be a solvable group, with $G \supseteq G_{1} \supseteq \cdots \supseteq G_{n} \supseteq\{1\}$ be a subnormal series for G, and let $H \subseteq G$ be any subgroup.
Define $H_{i}:=\left(H \cap G_{i}\right)$ for $i=1, \ldots, n$; then $H_{i} \subseteq G_{i}$ is a subgroup. Also, $G_{i+1} \unlhd G_{i}$ is a normal subgroup, so by the second isomorphism theorem, $\left(H_{i} \cap G_{i+1}\right)=H_{i+1}$ is a normal subgroup of H_{i}, and G_{i+1} is a normal subgroup of $H_{i} G_{i+1}$ (which is a subgroup of G_{i}); and $H_{i} / H_{i+1} \cong H_{i} G_{i+1} / G_{i+1} \subseteq G_{i} / G_{i+1}$. Since G is solvable, G_{i} / G_{i+1} is an abelian group, so H_{i} / H_{i+1} is also an abelian group.
Hence $H \supseteq H_{1} \supseteq \cdots \supseteq H_{n} \supseteq\{1\}$ is a subnormal series for H that shows that H is solvable.

4

An example is S_{3}. The factor groups in the subnormal series $S_{3} \supsetneq A_{3} \supsetneq\{\mathrm{id}\}$ are, respectively, isomorphic to \mathbb{Z}_{2} and \mathbb{Z}_{3}, which are abelian, so S_{3} is solvable; but the center of S_{3} is trivial.

5

a) To show that $H \subseteq \mathrm{GL}_{3}(\mathbb{R})$ is a subgroup, we verify that H is closed under multiplication and contains the identity and inverses:

- H is closed under multiplication, since $u\left(x_{1}, y_{1}, z_{1}\right) u\left(x_{2}, y_{2}, z_{2}\right)=u\left(x_{1}+x_{2}, y_{1}+y_{2}, x_{1} y_{2}+z_{1}+z_{2}\right)$.
- H contains id, since the identity of $\mathrm{GL}_{3}(\mathbb{R})$ is $u(0,0,0)$.
- H contains inverses, since (using the above) the inverse of $u(x, y, z)$ is $u(-x,-y,-z+x y)$.

Hence $H \subseteq \mathrm{GL}_{3}(\mathbb{R})$ is a subgroup.
b) Suppose $u\left(x_{0}, y_{0}, z_{0}\right) \in \mathcal{Z}(H)$, and let $u(x, y, z) \in H$ be any element. Then

$$
\begin{aligned}
u\left(x_{0}, y_{0}, z_{0}\right) u(x, y, z) & =u\left(x_{0}+x, y_{0}+y, x_{0} y+z_{0}+z\right) \\
\text { and } \quad u(x, y, z) u\left(x_{0}, y_{0}, z_{0}\right) & =u\left(x+x_{0}, y+y_{0}, x y_{0}+z+z_{0}\right)
\end{aligned}
$$

are equal if and only if $x_{0} y=x y_{0}$. Since $x, y \in \mathbb{R}$ are arbitrary, we must have $x_{0}=y_{0}=0$.
Hence the center of H is $\mathcal{Z}(H)=\{u(0,0, z): z \in \mathbb{R}\}$.
c) The descending central series is given by $H=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots$, where $H_{i}=\left[H_{i-1}, H\right]$.

Thus, $H_{1}=[H, H]$. The commutator of $u\left(x_{1}, y_{1}, z_{1}\right)$ and $u\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\begin{aligned}
& u\left(x_{1},\right. \\
& \left.\quad y_{1}, z_{1}\right) u\left(x_{2}, y_{2}, z_{2}\right) u\left(x_{1}, y_{1}, z_{1}\right)^{-1} u\left(x_{2}, y_{2}, z_{2}\right)^{-1} \\
& \quad=u\left(x_{1}, y_{1}, z_{1}\right) u\left(x_{2}, y_{2}, z_{2}\right) u\left(-x_{1},-y_{1},-z_{1}+x_{1} y_{1}\right) u\left(-x_{2},-y_{2},-z_{2}+x_{2} y_{2}\right) \\
& \quad=u\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+x_{1} y_{2}\right) u\left(-x_{1}-x_{2},-y_{1}-y_{2},-z_{1}-z_{2}+x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{2}\right) \\
& \quad=u\left(0,0,2 x_{1} y_{2}+x_{1} y_{1}+x_{2} y_{2}+\left(x_{1}+x_{2}\right)\left(-y_{1}-y_{2}\right)\right) \\
& \quad=u\left(0,0, x_{1} y_{2}-x_{2} y_{1}\right)
\end{aligned}
$$

so the commutator is always in $\mathcal{Z}(H)$. Moreover, any element of $\mathcal{Z}(H)$ can be realized as a commutator, for example, by setting $x_{1}=1$ and $y_{1}=0$. Since $\mathcal{Z}(H)$ is a group, this means $[H, H]=\mathcal{Z}(H)$.
Now, since any element of $\mathcal{Z}(H)$ commutes with any element of H, the commutator subgroup $[\mathcal{Z}(H), H]$ is trivial. Hence H is nilpotent and the descending central series is $H \supseteq \mathcal{Z}(H) \supseteq\{\mathrm{id}\}$.
d) Possible answers include $H_{0}=\{\operatorname{id}\}, H_{1}=\{u(0,0, q): q \in \mathbb{Q}\}, H_{2}=\{u(x, x, z): x, z \in \mathbb{R}\}$.

