
HW 10 Solutions

April 21, 2020

1. 14.4.2. Compute all Xg and Gx for the following permutation groups:
(a) X = {1, 2, 3}, G = S3.
(b) X = {1, 2, 3, 4, 5, 6}, G = {(1), (12), (345), (354), (12)(345), (12)(354)}.
14.4.3. Compute the G-equivalence classes of X for each of the G-sets in

Exercise 14.4.2. For each x ∈ X verify that |G| = |Ox| · |Gx|.
Solution. 14.4.2. (a) X1 = X,X(12) = {3}, X(13) = {2}, X(23) = 1, X(123) =

∅, X(132) = ∅. G1 = 〈(23)〉, G2 = 〈(13)〉, G3 = 〈(12)〉.
(b)X1 = X,X(12) = {3, . . . , 6}, X(345) = {1, 2, 6}, X(354) = {1, 2, 6}, X(12)(344) =

{6}, X(12)(354) = {6}. G1 = 〈(345)〉, G2 = 〈(345)〉, G3 = 〈(12)〉 = G4 = G5, G6 =
G.

14.4.3. (a) For each x, Ox = X and Gx has two elements as we saw above.
Thus in all cases the equation reads 6 = 3 · 2.

(b) The orbits (or G-equivalence classes) are {1, 2}, {3, 4, 5}, {6}. For x =
1, 2, |Ox| = 2 and |Gx| = 3. For x = 3, 4, 5 |Ox| = 3 and |Gx| = 2, and for
x = 6, |Ox| = 6 and |Gx| = 1. In all cases the product is 6 = |G|.

2. List the conjugacy classes of the groups Q8,Z12, D14. Determine the number
of elements in each conjugacy class and verify the class equation for each group.

Solution. We recall that if g is in the center of a group G, then its conjugacy
class is {g}. Therefore for G = Z12, the conjugacy classes are the one-element
subsets: {[0]}, {[1]}, . . . , {[11]}. In this case the class equation says

12 = #Z12 =

11∑
i=0

#{[i]} =

11∑
i=0

1,

which is true.
For Q8, the center is {±1}, so two of the conjugacy classes are {1}, {−1}.

Next, take any element y not in the center. Then for every x ∈ Q8, either x
commutes with y, in which case xyx−1 = y, or xy = −yx, which is equivalent
to xyx−1 = −y. Thus the non-trivial conjugacy classes are {±i}, {±j}, {±k}.
In this case, the class equation reads

8 = #Q8 = #{1}+ #{−1}+ #{±i}+ #{±j}+ #{±k} = 1 + 1 + 2 + 2 + 2.

Finally for D14 = 〈s, r|r7 = s2 = 1, sr = r6s〉, the conjugacy class of 1 is {1}
of course. If we take a rotation ri, i = 1, . . . , 6, then ri commutes with all other
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rj , and
(rjs)ri(rjs)−1 = rj(sris−1)r−j = rjr−ir−j = r−i.

Thus the conjugacy class of ri is {ri, r−i}. Let’s compute the conjugacy class of
s. We have

risr−i = r2is.

Since 7 is odd, all rotations rk can be written as r2i for some i. Thus all rks are
conjugate. Note also that (ris)s(ris)−1 = r2is. Thus the last conjugacy class
consists of all the reflections ris. We have

14 = #D14 = #{1}+ #{r, r6}+ #{r2, r5}#{r3, r4}+ #{s, rs, . . . , r6s}
= 1 + 2 + 2 + 2 + 7.

3. Let A be a set with n elements, and let P (A) denote the set of subsets of
A.

(i) How many elements does P (A) have?
(ii) Number the elements of A from 1 to n and let the symmetric group Σn

act on A by permuting the elements. Thus if n = 5, the element

σ =

(
1 2 3 4 5
2 3 1 5 4

)
takes the first element to the second element, the second element to the third
element, and so on. How many orbits does this action have?

(iii) Show that the action defined in (ii) defines an action of Σn on P (A).
How many orbits does this action have? How many elements are in each orbit?
Justify your answer.

(iv) Write P (A) as the union of the orbits described in (iii):

P (A) =
∐
i∈I

Oi.

Write |P (A)| =
∑

i∈I |Oi|. Use the binomial theorem to give another proof of
this equality.

Solution. (i) It is well known that |P (A)| = 2n, in fact, there is a nice
bijection between P (A) and the set of functions A → {0, 1}. (ii) The action is
transitive, i.e., there is only one orbit. In fact, (1j) takes the first element to
the jth element, so 1 and j are in the same orbit for every j. (iii) For σ ∈ Σn

and a subset B = {a1, . . . , ak} ⊂ A, we define

σB = {σa1, . . . , σak}.

This is an action:

1 ·B = {1 · a1, . . . , 1 · ak} = {a1, . . . , ak}
(στ)B = {(στ)a1, . . . , (στ)ak} = {σ(τa1), . . . , σ(τak)}

= σ(τB).
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Here we have used only the fact that Σn acts on A. For each k = 0, 1, . . . , n,
there is an orbit Ok consisting of the set of subsets with k elements, and these
are all the orbits. To prove this, since the sets Ok clearly partition P (A), it
will be enough to show that the Ok are in fact orbits. First, if B ⊂ A then σB
has the same number of elements as B. In fact, b 7→ σb is a bijection B → σB
whose inverse is c 7→ σ−1c. Next we have to show the action of Σn on Ok is
transitive. For this, it will be convenient to actually identify A with {1, . . . , n}.
Then if {a1, . . . , ak} is a subset of {1, . . . , n} with k elements with complement
{b1, . . . , bn−k}, define σ ∈ Σn by

σ =

(
1 · · · k k + 1 · · · n
a1 · · · ak b1 · · · bn−k

)
.

Then {a1, . . . , ak} = σ{1, . . . , k}. Thus we’ve shown Ok = Σn · {1, . . . , k}, as
needed. (iv) We know from combinatorics that |Ok| =

(
n
k

)
, so

2n = |P (A)| =
n∑

k=0

|Ok| =
n∑

k=0

(
n

k

)
.

We can also prove this using the binomial theorem:

2n = (1 + 1)n =

n∑
k=0

(
n

k

)
1k · 1n−k =

n∑
k=0

(
n

k

)
.

4. Describe all of the finite groups with exactly two conjugacy classes, and
prove your claim.

Solution. Suppose G is such a group. Then {e} is one conjugacy class, and
therefore G \ {e} is the other. Then by the orbit stabilizer formula, #G \ {e} =
#G− 1 divides #G. But an integer n > 0 is divisible by n− 1 iff n = 2. Thus
G has two elements so G ∼= Z/2.
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