Simplicity of A_{n}

GU4041

Columbia University

April 27, 2020

The alternating group A_{n} is simple

We have already proved the case $n=5$ of the following theorem:
Theorem (Camille Jordan, 1875)
For any $n \geq 5$, the alternating group $A_{n} \subset S_{n}$ is a simple group of order $\frac{n!}{2}$.

Some conjugacy classes in A_{n}

Lemma
The group A_{n} is generated by 3-cycles.
Proof: We know that A_{n} is generated by products $\sigma \cdot \tau$ where σ and τ are transpositions. So it suffices to show that any such product is also a product of 3-cycles.
First case: $\sigma=(a b), \tau=(c d)$ disjoint. Then

$$
(a b)(c d)=(d a c)(a b d)
$$

Indeed, the second product is $\left(\begin{array}{llll}a & b & c & d \\ c & b & d & a\end{array}\right) \cdot\left(\begin{array}{llll}a & b & c & d \\ b & d & c & a\end{array}\right)$, so $a \rightarrow b \rightarrow b ; b \rightarrow d \rightarrow a ; c \rightarrow c \rightarrow d ; d \rightarrow a \rightarrow c$. And this is exactly $(a b)(c d)$.

Some conjugacy classes in A_{n}

Lemma

The group A_{n} is generated by 3-cycles.
Proof: We know that A_{n} is generated by products $\sigma \cdot \tau$ where σ and τ are transpositions. So it suffices to show that any such product is also a product of 3-cycles.
First case: $\sigma=(a b), \tau=(c d)$ disjoint. Then

$$
(a b)(c d)=(d a c)(a b d)
$$

Indeed, the second product is

Some conjugacy classes in A_{n}

Lemma

The group A_{n} is generated by 3-cycles.
Proof: We know that A_{n} is generated by products $\sigma \cdot \tau$ where σ and τ are transpositions. So it suffices to show that any such product is also a product of 3-cycles.
First case: $\sigma=(a b), \tau=(c d)$ disjoint. Then

$$
(a b)(c d)=(d a c)(a b d)
$$

Indeed, the second product is

Some conjugacy classes in A_{n}

Lemma

The group A_{n} is generated by 3-cycles.
Proof: We know that A_{n} is generated by products $\sigma \cdot \tau$ where σ and τ are transpositions. So it suffices to show that any such product is also a product of 3-cycles.
First case: $\sigma=(a b), \tau=(c d)$ disjoint. Then

$$
(a b)(c d)=(d a c)(a b d)
$$

Indeed, the second product is $\left(\begin{array}{llll}a & b & c & d \\ c & b & d & a\end{array}\right) \cdot\left(\begin{array}{llll}a & b & c & d \\ b & d & c & a\end{array}\right)$,

Some conjugacy classes in A_{n}

Lemma

The group A_{n} is generated by 3-cycles.
Proof: We know that A_{n} is generated by products $\sigma \cdot \tau$ where σ and τ are transpositions. So it suffices to show that any such product is also a product of 3-cycles.
First case: $\sigma=(a b), \tau=(c d)$ disjoint. Then

$$
(a b)(c d)=(d a c)(a b d)
$$

Indeed, the second product is $\left(\begin{array}{llll}a & b & c & d \\ c & b & d & a\end{array}\right) \cdot\left(\begin{array}{llll}a & b & c & d \\ b & d & c & a\end{array}\right)$, so $a \rightarrow b \rightarrow b ; b \rightarrow d \rightarrow a ; c \rightarrow c \rightarrow d ; d \rightarrow a \rightarrow c$. And this is exactly $(a b)(c d)$.

Some conjugacy classes in A_{n}

Second case: $\sigma=(a b), \tau=(a c), c \neq b$. Then

$$
(a b)(a c)=(a c b)
$$

If $\{a, b\}=\{c, d\}$ then $(a b)(c d)=(a b)^{2}$ is the identity. So there is no third case.
This completes the proof.
Note: this is a proof inside A_{4}.

Some conjugacy classes in A_{n}

Second case: $\sigma=(a b), \tau=(a c), c \neq b$. Then

$$
(a b)(a c)=(a c b)
$$

If $\{a, b\}=\{c, d\}$ then $(a b)(c d)=(a b)^{2}$ is the identity. So there is no third case.
This completes the proof.

Some conjugacy classes in A_{n}

Second case: $\sigma=(a b), \tau=(a c), c \neq b$. Then

$$
(a b)(a c)=(a c b)
$$

If $\{a, b\}=\{c, d\}$ then $(a b)(c d)=(a b)^{2}$ is the identity. So there is no third case.
This completes the proof.
Note: this is a proof inside A_{4}.

More conjugacy classes in A_{n}

Lemma
Suppose $n \geq 5$. Then A_{n} is generated by elements of the form $\sigma \cdot \tau$, where σ and τ are disjoint transpositions.
Proof
By the n revious result, we need to show that any 3-cycle in A_{n} can be written as a product $g_{1} \cdot g_{2}$, where $g_{1}=\sigma_{1} \cdot \tau_{1} ; g_{2}=\sigma_{2} \cdot \tau_{2}$, in each case disjoint.
This is a calculation in S_{5} :

$$
(a b c)=[(a b)(d e)][(d e)(b c)]
$$

Check: the right hand side $b \rightarrow c \rightarrow c ; c \rightarrow b \rightarrow a ; d \rightarrow e \rightarrow d$;

More conjugacy classes in A_{n}

Lemma

Suppose $n \geq 5$. Then A_{n} is generated by elements of the form $\sigma \cdot \tau$, where σ and τ are disjoint transpositions.

Proof.

By the previous result, we need to show that any 3-cycle in A_{n} can be written as a product $g_{1} \cdot g_{2}$, where $g_{1}=\sigma_{1} \cdot \tau_{1} ; g_{2}=\sigma_{2} \cdot \tau_{2}$, in each case disjoint.

$$
(a b c)=[(a b)(d e)][(d e)(b c)] .
$$

Check: the right hand side $b \rightarrow c \rightarrow c ; c \rightarrow b \rightarrow a ; d \rightarrow e \rightarrow d$;

More conjugacy classes in A_{n}

Lemma

Suppose $n \geq 5$. Then A_{n} is generated by elements of the form $\sigma \cdot \tau$, where σ and τ are disjoint transpositions.

Proof.

By the previous result, we need to show that any 3-cycle in A_{n} can be written as a product $g_{1} \cdot g_{2}$, where $g_{1}=\sigma_{1} \cdot \tau_{1} ; g_{2}=\sigma_{2} \cdot \tau_{2}$, in each case disjoint.
This is a calculation in S_{5} :

$$
(a b c)=[(a b)(d e)][(d e)(b c)] .
$$

Check: the right hand side $b \rightarrow$

More conjugacy classes in A_{n}

Lemma

Suppose $n \geq 5$. Then A_{n} is generated by elements of the form $\sigma \cdot \tau$, where σ and τ are disjoint transpositions.

Proof.

By the previous result, we need to show that any 3-cycle in A_{n} can be written as a product $g_{1} \cdot g_{2}$, where $g_{1}=\sigma_{1} \cdot \tau_{1} ; g_{2}=\sigma_{2} \cdot \tau_{2}$, in each case disjoint.
This is a calculation in S_{5} :

$$
(a b c)=[(a b)(d e)][(d e)(b c)] .
$$

Check: the right hand side $b \rightarrow c \rightarrow c ; c \rightarrow b \rightarrow a ; d \rightarrow e \rightarrow d$; $e \rightarrow d \rightarrow e ; a \rightarrow a \rightarrow b$.

All 3 cycles are conjugate in $A_{n}, n \geq 5$

Lemma
Let $n \geq 5$. Then any two 3-cycles in A_{n} are conjugate in A_{n}.

Proof
Let $g=(a b c), h=(i j k)$. We know there is $\sigma \in S_{n}$ such that

If σ is even, we're done. If not, σ is odd. So choose $d, e \notin\{a, b, c\}$, and let $\sigma^{\prime}=\sigma \cdot(d e)$. This is an element of A_{n}, and (de) commutes with g. So

$$
\sigma^{\prime} g \sigma^{\prime,-1}=\sigma g \sigma^{-1}=h
$$

All 3 cycles are conjugate in $A_{n}, n \geq 5$

Lemma
Let $n \geq 5$. Then any two 3-cycles in A_{n} are conjugate in A_{n}.

Proof.
Let $g=(a b c), h=(i j k)$. We know there is $\sigma \in S_{n}$ such that

$$
\sigma g \sigma^{-1}=h
$$

If σ is even, we're done. If not, σ is odd. So choose $d, e \notin\{a, b, c\}$, and let $\sigma^{\prime}=\sigma \cdot(d e)$. This is an element of A_{n}, and (de) commutes with g. So

All 3 cycles are conjugate in $A_{n}, n \geq 5$

Lemma
Let $n \geq 5$. Then any two 3-cycles in A_{n} are conjugate in A_{n}.

Proof.
Let $g=(a b c), h=(i j k)$. We know there is $\sigma \in S_{n}$ such that

$$
\sigma g \sigma^{-1}=h
$$

If σ is even, we're done. If not, σ is odd. So choose $d, e \notin\{a, b, c\}$, and let $\sigma^{\prime}=\sigma \cdot(d e)$.
with g. So

All 3 cycles are conjugate in $A_{n}, n \geq 5$

Lemma

Let $n \geq 5$. Then any two 3-cycles in A_{n} are conjugate in A_{n}.

Proof.

Let $g=(a b c), h=(i j k)$. We know there is $\sigma \in S_{n}$ such that

$$
\sigma g \sigma^{-1}=h
$$

If σ is even, we're done. If not, σ is odd. So choose $d, e \notin\{a, b, c\}$, and let $\sigma^{\prime}=\sigma \cdot(d e)$. This is an element of A_{n}, and (de) commutes with g. So

$$
\sigma^{\prime} g \sigma^{\prime,-1}=\sigma g \sigma^{-1}=h
$$

Note that (123) and (132) $=(123)^{-1}$ are not conjugate in A_{4}.

Conjugacy in A_{6}

Lemma
All permutations with cycle decomposition $(4,2)$ are conjugate in A_{6}.
It's the same argument: if $g=(a b c d)(e f)$ is conjugate to h in S_{6} by τ, then either τ is even or $\tau \cdot(e f)$ is. And

$$
\tau \cdot(e f) g(\tau \cdot(e f))^{-1}=\tau g \tau^{-1}=h .
$$

Conjugacy in A_{6}

Lemma

All permutations with cycle decomposition $(4,2)$ are conjugate in A_{6}.
It's the same argument: if $g=(a b c d)(e f)$ is conjugate to h in S_{6} by τ, then either τ is even or $\tau \cdot(e f)$ is.

Conjugacy in A_{6}

Lemma

All permutations with cycle decomposition $(4,2)$ are conjugate in A_{6}.
It's the same argument: if $g=(a b c d)(e f)$ is conjugate to h in S_{6} by τ, then either τ is even or $\tau \cdot(e f)$ is. And

$$
\tau \cdot(e f) g(\tau \cdot(e f))^{-1}=\tau g \tau^{-1}=h
$$

Strategy of the proof

We assume $n \geq 5$. Let $N \subset A_{n}$ be a normal subgroup. Suppose N contains a 3 -cycle. Then N contains every 3 -cycle, because N is normal and $n \geq 5$. But then N generates A_{n}, so $N=A_{n}$.
We thus have to prove that any normal subgroup of A_{n} contains a 3-cycle.
Keith Conrad's home page at the University of Connecticut has a 9 -page note with six different proofs of this.
https://kconrad.math.uconn.edu/blurbs/
grouptheory/Ansimple.pdf.
I present the shortest one.

Strategy of the proof

We assume $n \geq 5$. Let $N \subset A_{n}$ be a normal subgroup. Suppose N contains a 3 -cycle. Then N contains every 3 -cycle, because N is normal and $n \geq 5$. But then N generates A_{n}, so $N=A_{n}$. We thus have to prove that any normal subgroup of A_{n} contains a 3-cycle.
Keith Conrad's home page at the University of Connecticut has a 9-page note with six different proofs of this. https://kconrad.math.uconn.edu/blurbs/ grouptheory/Ansimple.pdf.
I present the shortest one.

Strategy of the proof

We assume $n \geq 5$. Let $N \subset A_{n}$ be a normal subgroup. Suppose N contains a 3-cycle. Then N contains every 3 -cycle, because N is normal and $n \geq 5$. But then N generates A_{n}, so $N=A_{n}$. We thus have to prove that any normal subgroup of A_{n} contains a 3-cycle.
Keith Conrad's home page at the University of Connecticut has a 9-page note with six different proofs of this. https://kconrad.math.uconn.edu/blurbs/ grouptheory/Ansimple.pdf.
I present the shortest one.

Strategy of the proof

We assume $n \geq 5$. Let $N \subset A_{n}$ be a normal subgroup. Suppose N contains a 3-cycle. Then N contains every 3 -cycle, because N is normal and $n \geq 5$. But then N generates A_{n}, so $N=A_{n}$. We thus have to prove that any normal subgroup of A_{n} contains a 3-cycle.
Keith Conrad's home page at the University of Connecticut has a 9 -page note with six different proofs of this.
https://kconrad.math.uconn.edu/blurbs/
grouptheory/Ansimple.pdf.

Strategy of the proof

We assume $n \geq 5$. Let $N \subset A_{n}$ be a normal subgroup. Suppose N contains a 3-cycle. Then N contains every 3 -cycle, because N is normal and $n \geq 5$. But then N generates A_{n}, so $N=A_{n}$. We thus have to prove that any normal subgroup of A_{n} contains a 3-cycle.
Keith Conrad's home page at the University of Connecticut has a 9 -page note with six different proofs of this.
https://kconrad.math.uconn.edu/blurbs/
grouptheory/Ansimple.pdf.
I present the shortest one.

Conjugacy classes in S_{6}

The conjugacy classes in S_{6} are determined by their cycle decomposition, The partitions of 6 are

- $6=6$; a 6 -cycle is the product of 5 transpositions, hence is odd.
- $6=5+1$; a 5-cycle is even.
- $6=4+2$; a 3-cycle is the nroduct of 3 transpositions, hence its product with a disjoint transposition is even.
- $6=3+3$: even.
e $6=3+2+1$: odd; $6=3+1+1+1$: even
- $6=2+2+2$: odd.
- $6=2+2+1+1$: even; $6=2+1+1+1$: odd
e $6=1+1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{6}

The conjugacy classes in S_{6} are determined by their cycle decomposition, The partitions of 6 are

- $6=6$; a 6 -cycle is the product of 5 transpositions, hence is odd.
- $6=5+1$; a 5 -cycle is even.
- $6=4+2$; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- $6=3+3$: even.
- $6=3+2+1:$ odd; $6=3+1+1+1$: even
- $6=2+2+2$: odd.
- $6=2+2+1+1$: even; $6=2+1+1+1$: odd
- $6=1+1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{6}

The conjugacy classes in S_{6} are determined by their cycle decomposition, The partitions of 6 are

- $6=6$; a 6 -cycle is the product of 5 transpositions, hence is odd.
- $6=5+1$; a 5 -cycle is even.
- $6=4+2$; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- $6=3+3$: even
- $6=3+2+1:$ odd; $6=3+1+1+1$: even
- $6=2+2+2$: odd.
- $6=2+2+1+1$: even; $6=2+1+1+1$: odd
- $6=1+1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{6}

The conjugacy classes in S_{6} are determined by their cycle decomposition, The partitions of 6 are

- $6=6$; a 6 -cycle is the product of 5 transpositions, hence is odd.
- $6=5+1$; a 5 -cycle is even.
- $6=4+2$; a 4 -cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- $6=3+3$: even.
- $6=3+2+1$: odd; $6=3+1+1+1$: even
- $6=2+2+2$: odd.
- $6=2+2+1+1$: even; $6=2+1+1+1$: odd
- $6=1+1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{6}

The conjugacy classes in S_{6} are determined by their cycle decomposition, The partitions of 6 are

- $6=6$; a 6 -cycle is the product of 5 transpositions, hence is odd.
- $6=5+1$; a 5 -cycle is even.
- $6=4+2$; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- $6=3+3$: even.
- $6=3+2+1:$ odd; $6=3+1+1+1$: even
- $6=2+2+2$: odd.
- $6=2+2+1+1$: even; $6=2+1+1+1$: odd
- $6=1+1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{6}

The conjugacy classes in S_{6} are determined by their cycle decomposition, The partitions of 6 are

- $6=6$; a 6 -cycle is the product of 5 transpositions, hence is odd.
- $6=5+1 ;$ a 5 -cycle is even.
- $6=4+2$; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- $6=3+3$: even.
- $6=3+2+1$: odd; $6=3+1+1+1$: even
- $6=2+2+2$: odd.
- $6=2+2+1+1$: even; $6=2+1+1+1$: odd
- $6=1+1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{6}

The conjugacy classes in S_{6} are determined by their cycle decomposition, The partitions of 6 are

- $6=6$; a 6 -cycle is the product of 5 transpositions, hence is odd.
- $6=5+1 ;$ a 5 -cycle is even.
- $6=4+2$; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- $6=3+3$: even.
- $6=3+2+1$: odd; $6=3+1+1+1$: even
- $6=2+2+2$: odd.
- $6=2+2+1+1$: even; $6=2+1+1+1$: odd
- $6=1+1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{6}

The conjugacy classes in S_{6} are determined by their cycle decomposition, The partitions of 6 are

- $6=6$; a 6 -cycle is the product of 5 transpositions, hence is odd.
- $6=5+1 ;$ a 5 -cycle is even.
- $6=4+2$; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- $6=3+3$: even.
- $6=3+2+1$: odd; $6=3+1+1+1$: even
- $6=2+2+2$: odd.
- $6=2+2+1+1$: even; $6=2+1+1+1$: odd
- $6=1+1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{6}

The conjugacy classes in S_{6} are determined by their cycle decomposition, The partitions of 6 are

- $6=6$; a 6 -cycle is the product of 5 transpositions, hence is odd.
- $6=5+1 ;$ a 5 -cycle is even.
- $6=4+2$; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- $6=3+3$: even.
- $6=3+2+1$: odd; $6=3+1+1+1$: even
- $6=2+2+2$: odd.
- $6=2+2+1+1$: even; $6=2+1+1+1$: odd
- $6=1+1+1+1+1+1$; the identity is even.

Conjugacy classes in A_{6}

There are thus $6 S_{6}$-conjugacy classes contained in A_{6}, listed with the number of elements.

- $6=1+1+1+1+1+1 ;(1)$
- $6=3+3 ; 2 \cdot\binom{6}{3}=40^{*}$.
- $6=5+1 ;(6 \cdot 4!=144)$.
$\left.-6=4+2 ;\binom{6}{4} \cdot 3!=90\right)$
- $6=3+1+1+1:\left(\binom{6}{3} \cdot 2=40\right)$
$\left.-6=2+2+1+1:\left(\frac{1}{2}\binom{6}{2}\right)\binom{4}{2}\right)=45$
And $1+40+144+90+40+45=360=\left|A_{6}\right|$.
*20 choices for $\{a, b, c\}$, then $(a b c)($ def $)$ has four signs; but each one is counted twice because $(a b c)(d e f)=(d e f)(a b c)$.

Conjugacy classes in A_{6}

There are thus $6 S_{6}$-conjugacy classes contained in A_{6}, listed with the number of elements.

- $6=1+1+1+1+1+1 ;(1)$
- $6=3+3 ; 2 \cdot\binom{6}{3}=40^{*}$.
- $6=5+1 ;(6 \cdot 4!=144)$.
- $6=4+2 ;\left(\binom{6}{4} \cdot 3!=90\right)$
$\left.-6=3+1+1+1:\binom{6}{3} \cdot 2=40\right)$

And $1+40+144+90+40+45=360=\left|A_{6}\right|$.
*20 choices for $\{a, b, c\}$, then $(a b c)($ def) has four signs; but each one is counted twice because $(a b c)(d e f)=(d e f)(a b c)$.

Conjugacy classes in A_{6}

There are thus $6 S_{6}$-conjugacy classes contained in A_{6}, listed with the number of elements.

- $6=1+1+1+1+1+1 ;(1)$
- $6=3+3 ; 2 \cdot\binom{6}{3}=40^{*}$.
- $6=5+1 ;(6 \cdot 4!=144)$.
- $\left.6=4+2 ;\binom{6}{4} \cdot 3!=90\right)$

*20 choices for $\{a, b, c\}$, then $(a b c)(d e f)$ has four signs; but each one is counted twice because $(a b c)(d e f)=(d e f)(a b c)$.

Conjugacy classes in A_{6}

There are thus $6 S_{6}$-conjugacy classes contained in A_{6}, listed with the number of elements.

- $6=1+1+1+1+1+1 ;(1)$
- $6=3+3 ; 2 \cdot\binom{6}{3}=40^{*}$.
- $6=5+1 ;(6 \cdot 4!=144)$.
- $6=4+2 ;\left(\binom{6}{4} \cdot 3!=90\right)$

And $1+40+144+90+40+45=360=\left|A_{6}\right|$.
*20 choices for $\{a, b, c\}$, then $(a b c)($ def) has four signs; but each one is counted twice because $(a b c)(d e f)=(d e f)(a b c)$.

Conjugacy classes in A_{6}

There are thus $6 S_{6}$-conjugacy classes contained in A_{6}, listed with the number of elements.

- $6=1+1+1+1+1+1 ;(1)$
- $6=3+3 ; 2 \cdot\binom{6}{3}=40^{*}$.
- $6=5+1 ;(6 \cdot 4!=144)$.
- $6=4+2 ;\left(\binom{6}{4} \cdot 3!=90\right)$
- $6=3+1+1+1:\left(\binom{6}{3} \cdot 2=40\right)$

And $1+40+144+90+40+45=360=\left|A_{6}\right|$.
*20 choices for $\{a, b, c\}$, then $(a b c)($ def) has four signs; but each one is counted twice because $(a b c)(d e f)=(d e f)(a b c)$.

Conjugacy classes in A_{6}

There are thus $6 S_{6}$-conjugacy classes contained in A_{6}, listed with the number of elements.

- $6=1+1+1+1+1+1 ;(1)$
- $6=3+3 ; 2 \cdot\binom{6}{3}=40^{*}$.
- $6=5+1 ;(6 \cdot 4!=144)$.
- $6=4+2 ;\left(\binom{6}{4} \cdot 3!=90\right)$
- $6=3+1+1+1:\left(\binom{6}{3} \cdot 2=40\right)$
- $6=2+2+1+1:\left(\frac{1}{2}\left(\binom{6}{2}\right)\left(\binom{4}{2}\right)=45\right.$

And $1+40+144+90+40+45=360=\left|A_{6}\right|$
*20 choices for $\{a, b, c\}$, then $(a b c)(d e f)$ has four signs; but each one is counted twice because $(a b c)(d e f)=(d e f)(a b c)$.

Conjugacy classes in A_{6}

There are thus $6 S_{6}$-conjugacy classes contained in A_{6}, listed with the number of elements.

- $6=1+1+1+1+1+1 ;(1)$
- $6=3+3 ; 2 \cdot\binom{6}{3}=40^{*}$.
- $6=5+1 ;(6 \cdot 4!=144)$.
- $6=4+2 ;\left(\binom{6}{4} \cdot 3!=90\right)$
- $6=3+1+1+1:\left(\binom{6}{3} \cdot 2=40\right)$
- $6=2+2+1+1:\left(\frac{1}{2}\left(\binom{6}{2}\right)\left(\binom{4}{2}\right)=45\right.$

And $1+40+144+90+40+45=360=\left|A_{6}\right|$
*20 choices for $\{a, b, c\}$, then $(a b c)(d e f)$ has four signs; but each one is counted twice because $(a b c)(d e f)=(d e f)(a b c)$.

Conjugacy classes in A_{6}

There are thus $6 S_{6}$-conjugacy classes contained in A_{6}, listed with the number of elements.

- $6=1+1+1+1+1+1$; (1)
- $6=3+3 ; 2 \cdot\binom{6}{3}=40^{*}$.
- $6=5+1 ;(6 \cdot 4!=144)$.
- $6=4+2 ;\left(\binom{6}{4} \cdot 3!=90\right)$
- $6=3+1+1+1:\left(\binom{6}{3} \cdot 2=40\right)$
- $6=2+2+1+1:\left(\frac{1}{2}\left(\binom{6}{2}\right)\left(\binom{4}{2}\right)=45\right.$

And $1+40+144+90+40+45=360=\left|A_{6}\right|$.
*20 choices for $\{a, b, c\}$, then $(a b c)(d e f)$ has four signs; but each one is counted twice because $(a b c)(d e f)=(d e f)(a b c)$.

Conjugacy classes in A_{6}

As in the case of A_{5}, we see that 144 does not divide 360 , so there are two conjugacy classes of 5-cycles, each with 72 elements.
On the other hand, we have seen all 3 cycles, and all $(4,2)$
permutations, are conjugate in A_{6}. Thus the possible sizes of
conjugacy classes (without checking the (3,3) permutations are all
conjugate) are:

$$
(1,45,72,72,90,40,40) ;(1,45,72,72,90,20,20,40)
$$

The divisors of $360=2^{3} \cdot 3^{2} \cdot 5$ with more than 21 elements (we need the identity) are

$$
24,30,36,40,45,60,72,90,120,180 .
$$

The only odd one is 45 , but we need the identity. Any even order must be bigger than 46 , thus at least 66 . But we cannot reach any of $72,90,120,180$ as a sum of a subset of the above numbers.

Conjugacy classes in A_{6}

As in the case of A_{5}, we see that 144 does not divide 360 , so there are two conjugacy classes of 5-cycles, each with 72 elements.
On the other hand, we have seen all 3 cycles, and all $(4,2)$ permutations, are conjugate in A_{6}. Thus the possible sizes of conjugacy classes (without checking the $(3,3)$ permutations are all conjugate) are:

$$
(1,45,72,72,90,40,40) ;(1,45,72,72,90,20,20,40)
$$

The divisors of $360=2^{3} \cdot 3^{2} \cdot 5$ with more than 21 elements (we need the identity) are
$24,30,36,40,45,60,72,90,120,180$.
The only odd one is 45 , but we need the identity. Any even order must be bigger than 46 , thus at least 66 . But we cannot reach any of $72,90,120,180$ as a sum of a subset of the above numbers.

Conjugacy classes in A_{6}

As in the case of A_{5}, we see that 144 does not divide 360 , so there are two conjugacy classes of 5-cycles, each with 72 elements.
On the other hand, we have seen all 3 cycles, and all $(4,2)$ permutations, are conjugate in A_{6}. Thus the possible sizes of conjugacy classes (without checking the (3,3) permutations are all conjugate) are:

$$
(1,45,72,72,90,40,40) ;(1,45,72,72,90,20,20,40)
$$

The divisors of $360=2^{3} \cdot 3^{2} \cdot 5$ with more than 21 elements (we need the identity) are

$$
24,30,36,40,45,60,72,90,120,180 .
$$

The only odd one is 45 , but we need the identity. Any even order must be bigger than 46 , thus at least 66 . But we cannot reach any of $72,90,120,180$ as a sum of a subset of the above numbers.

Conjugacy classes in A_{6}

As in the case of A_{5}, we see that 144 does not divide 360 , so there are two conjugacy classes of 5-cycles, each with 72 elements.
On the other hand, we have seen all 3 cycles, and all $(4,2)$ permutations, are conjugate in A_{6}. Thus the possible sizes of conjugacy classes (without checking the (3,3) permutations are all conjugate) are:

$$
(1,45,72,72,90,40,40) ;(1,45,72,72,90,20,20,40)
$$

The divisors of $360=2^{3} \cdot 3^{2} \cdot 5$ with more than 21 elements (we need the identity) are

$$
24,30,36,40,45,60,72,90,120,180 .
$$

The only odd one is 45 , but we need the identity. Any even order must be bigger than 46 , thus at least 66 . But we cannot reach any of $72,90,120,180$ as a sum of a subset of the above numbers.

Conjugacy classes in A_{6}

As in the case of A_{5}, we see that 144 does not divide 360 , so there are two conjugacy classes of 5-cycles, each with 72 elements.
On the other hand, we have seen all 3 cycles, and all $(4,2)$ permutations, are conjugate in A_{6}. Thus the possible sizes of conjugacy classes (without checking the (3,3) permutations are all conjugate) are:

$$
(1,45,72,72,90,40,40) ;(1,45,72,72,90,20,20,40)
$$

The divisors of $360=2^{3} \cdot 3^{2} \cdot 5$ with more than 21 elements (we need the identity) are

$$
24,30,36,40,45,60,72,90,120,180 .
$$

The only odd one is 45 , but we need the identity. Any even order must be bigger than 46 , thus at least 66 . But we cannot reach any of $72,90,120,180$ as a sum of a subset of the above numbers.
So A_{6} is simple.

Conjugacy classes in A_{5}

Corollary

There are two conjugacy classes of 5-cycles in A_{5}, and one conjugacy class of products of disjoint 2-cycles.

Proof of corollary: Since 24 does not divide 60, the 5 cycles form more than 1, thus 2 conjugacy classes; but 15 is not even, so it is a single conjugacy class.

Conjugacy classes in A_{5}

Corollary

There are two conjugacy classes of 5-cycles in A_{5}, and one conjugacy class of products of disjoint 2-cycles.

Proof of corollary: Since 24 does not divide 60, the 5 cycles form more than 1, thus 2 conjugacy classes; but 15 is not even, so it is a single conjugacy class.

Simplicity of $A_{n}, n \geq 7$

Let $n \geq 7$ and let $N \subset A_{n}$ be a normal subgroup. It suffices to show that N contains a 3 cycle.
relabeling the numbers, we may assume $\sigma(1) \neq 1$. Suppose
$\sigma(1) \in\{i, j, k\}$ with all the i, j, k distinct from 1 and let
$\tau=(i j k) \in A_{n}$. Then

$$
\tau \sigma \tau^{-1}(1)=\tau(\sigma(1)) \neq \sigma(1) .
$$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in N.
Let $g=\tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g=\in N$. But $g=\tau \cdot \sigma \tau^{-1} \sigma^{-1}$
is a product of two 3-cycles, so it moves at most six numbers.
Thus g belongs to a subgroup $H \subset A_{n}$ isomorphic to S_{6}; but g is even,
so it belongs to a subgroup isomorphic to A_{6}. Moreover, $g \in H \cap N$,
which is normal in H. Since H is simple, $H \cap N=H$.
Thus $N \supset H$, so N contains a 3-cycle.

Simplicity of $A_{n}, n \geq 7$

Let $n \geq 7$ and let $N \subset A_{n}$ be a normal subgroup. It suffices to show that N contains a 3 cycle. Let $\sigma \neq e$ be an element of N. Up to relabeling the numbers, we may assume $\sigma(1) \neq 1$.

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in N.
Let $g=\tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g=\in N$. But $g=\tau \cdot \sigma \tau^{-1} \sigma^{-1}$ is a product of two 3-cycles, so it moves at most six numbers. Thus g belongs to a subgroup $H \subset A_{n}$ isomorphic to S_{6}; but g is even, so it belongs to a subgroup isomorphic to A_{6}. Moreover, $g \in H \cap N$, which is normal in H. Since H is simple, $H \cap N=H$. Thus $N \supset H$, so N contains a 3-cycle.

Simplicity of $A_{n}, n \geq 7$

Let $n \geq 7$ and let $N \subset A_{n}$ be a normal subgroup. It suffices to show that N contains a 3 cycle. Let $\sigma \neq e$ be an element of N. Up to relabeling the numbers, we may assume $\sigma(1) \neq 1$. Suppose $\sigma(1) \in\{i, j, k\}$ with all the i, j, k distinct from 1 and let $\tau=(i j k) \in A_{n}$. Then

$$
\tau \sigma \tau^{-1}(1)=\tau(\sigma(1)) \neq \sigma(1) .
$$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in N.
is a product of two 3-cycles, so it moves at most six numbers. Thus g belongs to a subgroup $H \subset A_{n}$ isomorphic to S_{6}; but g is even, so it belongs to a subgroup isomorphic to A_{6}. Moreover, $g \in H \cap N$, which is normal in H. Since H is simple, $H \cap N=H$. Thus $N \supset H$, so N contains a 3 -cycle.

Simplicity of $A_{n}, n \geq 7$

Let $n \geq 7$ and let $N \subset A_{n}$ be a normal subgroup. It suffices to show that N contains a 3 cycle. Let $\sigma \neq e$ be an element of N. Up to relabeling the numbers, we may assume $\sigma(1) \neq 1$. Suppose $\sigma(1) \in\{i, j, k\}$ with all the i, j, k distinct from 1 and let $\tau=(i j k) \in A_{n}$. Then

$$
\tau \sigma \tau^{-1}(1)=\tau(\sigma(1)) \neq \sigma(1) .
$$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in N.
Let $g=\tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g=\in N$. But $g=\tau \cdot \sigma \tau^{-1} \sigma^{-1}$ is a product of two 3-cycles, so it moves at most six numbers.
so it belongs to a subgroup isomorphic to A_{6}. Moreover, $g \in H \cap N$, which is normal in H. Since H is simple, $H \cap N=H$. Thus $N \supset H$, so N contains a 3-cycle.

Simplicity of $A_{n}, n \geq 7$

Let $n \geq 7$ and let $N \subset A_{n}$ be a normal subgroup. It suffices to show that N contains a 3 cycle. Let $\sigma \neq e$ be an element of N. Up to relabeling the numbers, we may assume $\sigma(1) \neq 1$. Suppose $\sigma(1) \in\{i, j, k\}$ with all the i, j, k distinct from 1 and let $\tau=(i j k) \in A_{n}$. Then

$$
\tau \sigma \tau^{-1}(1)=\tau(\sigma(1)) \neq \sigma(1) .
$$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in N.
Let $g=\tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g=\in N$. But $g=\tau \cdot \sigma \tau^{-1} \sigma^{-1}$ is a product of two 3-cycles, so it moves at most six numbers. Thus g belongs to a subgroup $\subset A_{n}$ isomorphic to S_{6}; but g is even, so it belongs to a subgroup ${ }^{\mathrm{H}}$ isomorphic to A_{6}. Moreover, $g \in H \cap N$, which is normal in H. Since H is simple, $H \cap N=H$.

Simplicity of $A_{n}, n \geq 7$

Let $n \geq 7$ and let $N \subset A_{n}$ be a normal subgroup. It suffices to show that N contains a 3 cycle. Let $\sigma \neq e$ be an element of N. Up to relabeling the numbers, we may assume $\sigma(1) \neq 1$. Suppose $\sigma(1) \in\{i, j, k\}$ with all the i, j, k distinct from 1 and let $\tau=(i j k) \in A_{n}$. Then

$$
\tau \sigma \tau^{-1}(1)=\tau(\sigma(1)) \neq \sigma(1) .
$$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in N.
Let $g=\tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g=\in N$. But $g=\tau \cdot \sigma \tau^{-1} \sigma^{-1}$ is a product of two 3-cycles, so it moves at most six numbers.
Thus g belongs to a subgroup $H \subset A_{n}$ isomorphic to S_{6}; but g is even, so it belongs to a subgroup isomorphic to A_{6}. Moreover, $g \in H \cap N$, which is normal in H. Since H is simple, $H \cap N=H$.
Thus $N \supset H$, so N contains a 3-cycle.

