Simplicity of A_n

GU4041

Columbia University

April 27, 2020

イロト イポト イヨト イヨト

æ

We have already proved the case n = 5 of the following theorem:

Theorem (Camille Jordan, 1875)

For any $n \ge 5$, the alternating group $A_n \subset S_n$ is a simple group of order $\frac{n!}{2}$.

The group A_n is generated by 3-cycles.

Proof: We know that A_n is generated by products $\sigma \cdot \tau$ where σ and τ are transpositions. So it suffices to show that any such product is also a product of 3-cycles.

First case: $\sigma = (ab), \tau = (cd)$ disjoint. Then

(ab)(cd) = (dac)(abd)

The group A_n is generated by 3-cycles.

Proof: We know that A_n is generated by products $\sigma \cdot \tau$ where σ and τ are transpositions. So it suffices to show that any such product is also a product of 3-cycles.

First case: $\sigma = (ab), \tau = (cd)$ disjoint. Then

(ab)(cd) = (dac)(abd)

The group A_n is generated by 3-cycles.

Proof: We know that A_n is generated by products $\sigma \cdot \tau$ where σ and τ are transpositions. So it suffices to show that any such product is also a product of 3-cycles.

First case: $\sigma = (ab), \tau = (cd)$ disjoint. Then

(ab)(cd) = (dac)(abd)

The group A_n is generated by 3-cycles.

Proof: We know that A_n is generated by products $\sigma \cdot \tau$ where σ and τ are transpositions. So it suffices to show that any such product is also a product of 3-cycles.

First case: $\sigma = (ab), \tau = (cd)$ disjoint. Then

$$(ab)(cd) = (dac)(abd)$$

The group A_n is generated by 3-cycles.

Proof: We know that A_n is generated by products $\sigma \cdot \tau$ where σ and τ are transpositions. So it suffices to show that any such product is also a product of 3-cycles.

First case: $\sigma = (ab), \tau = (cd)$ disjoint. Then

$$(ab)(cd) = (dac)(abd)$$

Second case: $\sigma = (ab), \tau = (ac), c \neq b$. Then

$$(ab)(ac) = (acb).$$

If $\{a, b\} = \{c, d\}$ then $(ab)(cd) = (ab)^2$ is the identity. So there is no third case. This completes the proof. **Note:** this is a proof inside A_4 . Second case: $\sigma = (ab), \tau = (ac), c \neq b$. Then

$$(ab)(ac) = (acb).$$

If $\{a, b\} = \{c, d\}$ then $(ab)(cd) = (ab)^2$ is the identity. So there is no third case. This completes the proof. Note: this is a proof inside A_4 . Second case: $\sigma = (ab), \tau = (ac), c \neq b$. Then

$$(ab)(ac) = (acb).$$

If $\{a, b\} = \{c, d\}$ then $(ab)(cd) = (ab)^2$ is the identity. So there is no third case. This completes the proof.

Note: this is a proof inside A_4 .

Suppose $n \ge 5$. Then A_n is generated by elements of the form $\sigma \cdot \tau$, where σ and τ are disjoint transpositions.

Proof.

By the previous result, we need to show that any 3-cycle in A_n can be written as a product $g_1 \cdot g_2$, where $g_1 = \sigma_1 \cdot \tau_1$; $g_2 = \sigma_2 \cdot \tau_2$, in each case disjoint.

This is a calculation in S_5 :

$$(abc) = [(ab)(de)][(de)(bc)].$$

Check: the right hand side $b \to c \to c$; $c \to b \to a$; $d \to e \to d$; $e \to d \to e$; $a \to a \to b$.

Suppose $n \ge 5$. Then A_n is generated by elements of the form $\sigma \cdot \tau$, where σ and τ are disjoint transpositions.

Proof.

By the previous result, we need to show that any 3-cycle in A_n can be written as a product $g_1 \cdot g_2$, where $g_1 = \sigma_1 \cdot \tau_1$; $g_2 = \sigma_2 \cdot \tau_2$, in each case disjoint.

This is a calculation in S_5 :

(abc) = [(ab)(de)][(de)(bc)].

Check: the right hand side $b \to c \to c$; $c \to b \to a$; $d \to e \to d$; $e \to d \to e$; $a \to a \to b$.

Suppose $n \ge 5$. Then A_n is generated by elements of the form $\sigma \cdot \tau$, where σ and τ are disjoint transpositions.

Proof.

By the previous result, we need to show that any 3-cycle in A_n can be written as a product $g_1 \cdot g_2$, where $g_1 = \sigma_1 \cdot \tau_1$; $g_2 = \sigma_2 \cdot \tau_2$, in each case disjoint.

This is a calculation in S_5 :

(abc) = [(ab)(de)][(de)(bc)].

Check: the right hand side $b \to c \to c$; $c \to b \to a$; $d \to e \to d$; $e \to d \to e$; $a \to a \to b$.

Suppose $n \ge 5$. Then A_n is generated by elements of the form $\sigma \cdot \tau$, where σ and τ are disjoint transpositions.

Proof.

By the previous result, we need to show that any 3-cycle in A_n can be written as a product $g_1 \cdot g_2$, where $g_1 = \sigma_1 \cdot \tau_1$; $g_2 = \sigma_2 \cdot \tau_2$, in each case disjoint.

This is a calculation in S_5 :

$$(abc) = [(ab)(de)][(de)(bc)].$$

Check: the right hand side $b \to c \to c$; $c \to b \to a$; $d \to e \to d$; $e \to d \to e$; $a \to a \to b$.

Let $n \ge 5$. Then any two 3-cycles in A_n are conjugate in A_n .

Proof.

Let g = (abc), h = (ijk). We know there is $\sigma \in S_n$ such that

$$\sigma g \sigma^{-1} = h.$$

If σ is even, we're done. If not, σ is odd. So choose $d, e \notin \{a, b, c\}$, and let $\sigma' = \sigma \cdot (de)$. This is an element of A_n , and (de) commutes with g. So

$$\sigma'g\sigma'^{,-1} = \sigma g\sigma^{-1} = h.$$

Note that (123) and (132) = $(123)^{-1}$ are **not** conjugate in A₄.

Let $n \ge 5$. Then any two 3-cycles in A_n are conjugate in A_n .

Proof.

Let g = (abc), h = (ijk). We know there is $\sigma \in S_n$ such that $\sigma g \sigma^{-1} = h$.

If σ is even, we're done. If not, σ is odd. So choose $d, e \notin \{a, b, c\}$, and let $\sigma' = \sigma \cdot (de)$. This is an element of A_n , and (de) commutes with g. So

$$\sigma'g\sigma'^{,-1} = \sigma g\sigma^{-1} = h.$$

Note that (123) and (132) = $(123)^{-1}$ are **not** conjugate in A₄

Let $n \ge 5$. Then any two 3-cycles in A_n are conjugate in A_n .

Proof.

Let g = (abc), h = (ijk). We know there is $\sigma \in S_n$ such that

$$\sigma g \sigma^{-1} = h.$$

If σ is even, we're done. If not, σ is odd. So choose $d, e \notin \{a, b, c\}$, and let $\sigma' = \sigma \cdot (de)$. This is an element of A_n , and (de) commutes with g. So

$$\sigma'g\sigma'^{,-1} = \sigma g\sigma^{-1} = h.$$

Note that (123) and $(132) = (123)^{-1}$ are **not** conjugate in A_4

Let $n \ge 5$. Then any two 3-cycles in A_n are conjugate in A_n .

Proof.

Let g = (abc), h = (ijk). We know there is $\sigma \in S_n$ such that

$$\sigma g \sigma^{-1} = h$$

If σ is even, we're done. If not, σ is odd. So choose $d, e \notin \{a, b, c\}$, and let $\sigma' = \sigma \cdot (de)$. This is an element of A_n , and (de) commutes with g. So

$$\sigma'g\sigma'^{,-1} = \sigma g\sigma^{-1} = h.$$

Note that (123) and (132) = $(123)^{-1}$ are **not** conjugate in *A*₄.

All permutations with cycle decomposition (4, 2) are conjugate in A_6 .

It's the same argument: if g = (abcd)(ef) is conjugate to h in S_6 by τ , then either τ is even or $\tau \cdot (ef)$ is. And

$$\tau \cdot (ef)g(\tau \cdot (ef))^{-1} = \tau g\tau^{-1} = h.$$

All permutations with cycle decomposition (4, 2) are conjugate in A_6 .

It's the same argument: if g = (abcd)(ef) is conjugate to h in S_6 by τ , then either τ is even or $\tau \cdot (ef)$ is. And

 $\tau \cdot (ef)g(\tau \cdot (ef))^{-1} = \tau g\tau^{-1} = h.$

All permutations with cycle decomposition (4, 2) are conjugate in A_6 .

It's the same argument: if g = (abcd)(ef) is conjugate to h in S_6 by τ , then either τ is even or $\tau \cdot (ef)$ is. And

$$\tau \cdot (ef)g(\tau \cdot (ef))^{-1} = \tau g\tau^{-1} = h.$$

We assume $n \ge 5$. Let $N \subset A_n$ be a normal subgroup. Suppose N

contains a 3-cycle. Then N contains every 3-cycle, because N is normal and $n \ge 5$. But then N generates A_n , so $N = A_n$.

We thus have to prove that any normal subgroup of A_n contains a 3-cycle.

Keith Conrad's home page at the University of Connecticut has a 9-page note with six different proofs of this.

https://kconrad.math.uconn.edu/blurbs/

grouptheory/Ansimple.pdf.

I present the shortest one.

We assume $n \ge 5$. Let $N \subset A_n$ be a normal subgroup. Suppose N contains a 3-cycle. Then N contains every 3-cycle, because N is normal and $n \ge 5$. But then N generates A_n , so $N = A_n$.

We thus have to prove that any normal subgroup of A_n contains a 3-cycle.

Keith Conrad's home page at the University of Connecticut has a 9-page note with six different proofs of this.

https://kconrad.math.uconn.edu/blurbs/

grouptheory/Ansimple.pdf.

I present the shortest one.

We assume $n \ge 5$. Let $N \subset A_n$ be a normal subgroup. Suppose N contains a 3-cycle. Then N contains every 3-cycle, because N is normal and $n \ge 5$. But then N generates A_n , so $N = A_n$. We thus have to prove that any normal subgroup of A_n contains a 3-cycle.

Keith Conrad's home page at the University of Connecticut has a 9-page note with six different proofs of this. https://kconrad.math.uconn.edu/blurbs/ grouptheory/Ansimple.pdf. I present the shortest one. We assume $n \ge 5$. Let $N \subset A_n$ be a normal subgroup. Suppose N contains a 3-cycle. Then N contains every 3-cycle, because N is normal and $n \ge 5$. But then N generates A_n , so $N = A_n$. We thus have to prove that any normal subgroup of A_n contains a 3-cycle.

Keith Conrad's home page at the University of Connecticut has a 9-page note with six different proofs of this.

https://kconrad.math.uconn.edu/blurbs/

grouptheory/Ansimple.pdf.

I present the shortest one.

We assume $n \ge 5$. Let $N \subset A_n$ be a normal subgroup. Suppose N contains a 3-cycle. Then N contains every 3-cycle, because N is normal and $n \ge 5$. But then N generates A_n , so $N = A_n$. We thus have to prove that any normal subgroup of A_n contains a 3-cycle.

Keith Conrad's home page at the University of Connecticut has a 9-page note with six different proofs of this.

https://kconrad.math.uconn.edu/blurbs/

grouptheory/Ansimple.pdf.

I present the shortest one.

- 6 = 6; a 6-cycle is the product of 5 transpositions, hence is odd.
- 6 = 5 + 1; a 5-cycle is even.
- 6 = 4 + 2; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- 6 = 3 + 3: even.
- 6 = 3 + 2 + 1: odd; 6 = 3 + 1 + 1 + 1: even
- 6 = 2 + 2 + 2: odd.
- 6 = 2 + 2 + 1 + 1: even; 6 = 2 + 1 + 1 + 1: odd
- 6 = 1 + 1 + 1 + 1 + 1 + 1; the identity is even.

・ 伊 ト ・ ヨ ト ・ ヨ ト

- 6 = 6; a 6-cycle is the product of 5 transpositions, hence is odd.
- 6 = 5 + 1; a 5-cycle is even.
- 6 = 4 + 2; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- 6 = 3 + 3: even.
- 6 = 3 + 2 + 1: odd; 6 = 3 + 1 + 1 + 1: even
- 6 = 2 + 2 + 2: odd.
- 6 = 2 + 2 + 1 + 1: even; 6 = 2 + 1 + 1 + 1: odd
- 6 = 1 + 1 + 1 + 1 + 1 + 1; the identity is even.

(4個) (4回) (4回)

- 6 = 6; a 6-cycle is the product of 5 transpositions, hence is odd.
- 6 = 5 + 1; a 5-cycle is even.
- 6 = 4 + 2; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- 6 = 3 + 3: even.
- 6 = 3 + 2 + 1: odd; 6 = 3 + 1 + 1 + 1: even
- 6 = 2 + 2 + 2: odd.
- 6 = 2 + 2 + 1 + 1: even; 6 = 2 + 1 + 1 + 1: odd
- 6 = 1 + 1 + 1 + 1 + 1 + 1; the identity is even.

(人間) トイヨト イヨト

- 6 = 6; a 6-cycle is the product of 5 transpositions, hence is odd.
- 6 = 5 + 1; a 5-cycle is even.
- 6 = 4 + 2; a 4-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- 6 = 3 + 3: even.
- 6 = 3 + 2 + 1: odd; 6 = 3 + 1 + 1 + 1: even
- 6 = 2 + 2 + 2: odd.
- 6 = 2 + 2 + 1 + 1: even; 6 = 2 + 1 + 1 + 1: odd
- 6 = 1 + 1 + 1 + 1 + 1 + 1; the identity is even.

ロト (得) (正) (正)

- 6 = 6; a 6-cycle is the product of 5 transpositions, hence is odd.
- 6 = 5 + 1; a 5-cycle is even.
- 6 = 4 + 2; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- 6 = 3 + 3: even.
- 6 = 3 + 2 + 1: odd; 6 = 3 + 1 + 1 + 1: even
- 6 = 2 + 2 + 2: odd.
- 6 = 2 + 2 + 1 + 1: even; 6 = 2 + 1 + 1 + 1: odd
- 6 = 1 + 1 + 1 + 1 + 1 + 1; the identity is even.

ロト (得) (正) (正)

- 6 = 6; a 6-cycle is the product of 5 transpositions, hence is odd.
- 6 = 5 + 1; a 5-cycle is even.
- 6 = 4 + 2; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- 6 = 3 + 3: even.
- 6 = 3 + 2 + 1: odd; 6 = 3 + 1 + 1 + 1: even
- 6 = 2 + 2 + 2: odd.
- 6 = 2 + 2 + 1 + 1: even; 6 = 2 + 1 + 1 + 1: odd
- 6 = 1 + 1 + 1 + 1 + 1 + 1; the identity is even.

ロト (得) (目) (日)

- 6 = 6; a 6-cycle is the product of 5 transpositions, hence is odd.
- 6 = 5 + 1; a 5-cycle is even.
- 6 = 4 + 2; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- 6 = 3 + 3: even.
- 6 = 3 + 2 + 1: odd; 6 = 3 + 1 + 1 + 1: even
- 6 = 2 + 2 + 2: odd.
- 6 = 2 + 2 + 1 + 1: even; 6 = 2 + 1 + 1 + 1: odd
- 6 = 1 + 1 + 1 + 1 + 1 + 1; the identity is even.

ロトス値とくほとくほと

- 6 = 6; a 6-cycle is the product of 5 transpositions, hence is odd.
- 6 = 5 + 1; a 5-cycle is even.
- 6 = 4 + 2; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- 6 = 3 + 3: even.
- 6 = 3 + 2 + 1: odd; 6 = 3 + 1 + 1 + 1: even
- 6 = 2 + 2 + 2: odd.
- 6 = 2 + 2 + 1 + 1: even; 6 = 2 + 1 + 1 + 1: odd
- 6 = 1 + 1 + 1 + 1 + 1 + 1; the identity is even.

イロト 不得 トイヨト イヨト 二日

- 6 = 6; a 6-cycle is the product of 5 transpositions, hence is odd.
- 6 = 5 + 1; a 5-cycle is even.
- 6 = 4 + 2; a 3-cycle is the product of 3 transpositions, hence its product with a disjoint transposition is even.
- 6 = 3 + 3: even.
- 6 = 3 + 2 + 1: odd; 6 = 3 + 1 + 1 + 1: even
- 6 = 2 + 2 + 2: odd.
- 6 = 2 + 2 + 1 + 1: even; 6 = 2 + 1 + 1 + 1: odd
- 6 = 1 + 1 + 1 + 1 + 1 + 1; the identity is even.

ロト (得) (正) (正)

There are thus 6 S_6 -conjugacy classes contained in A_6 , listed with the number of elements.

• $6 = 1 + 1 + 1 + 1 + 1 + 1; (1)$
• $6 = 3 + 3; 2 \cdot \binom{6}{3} = 40^*.$
• $6 = 5 + 1; (6 \cdot 4! = 144).$
• $6 = 4 + 2; \begin{pmatrix} 6 \\ 4 \end{pmatrix} \cdot 3! = 90)$
• $6 = 3 + 1 + 1 + 1$: $\begin{pmatrix} 6 \\ 3 \end{pmatrix} \cdot 2 = 40$
• $6 = 2 + 2 + 1 + 1$: $\binom{1}{2}\binom{6}{2}\binom{4}{2} = 45$
And $1 + 40 + 144 + 90 + 40 + 45 = 360 = A_6 $.
20 choices for $\{a, b, c\}$, then $(abc)(def)$ has four signs; but each one
s counted twice because $(abc)(def) = (def)(abc)$

There are thus 6 S_6 -conjugacy classes contained in A_6 , listed with the number of elements.

•
$$6 = 1 + 1 + 1 + 1 + 1 + 1; (1)$$

• $6 = 3 + 3; 2 \cdot {\binom{6}{3}} = 40^*.$
• $6 = 5 + 1; (6 \cdot 4! = 144).$
• $6 = 4 + 2; ({\binom{6}{4}} \cdot 3! = 90)$
• $6 = 3 + 1 + 1 + 1; ({\binom{6}{3}} \cdot 2 = 40)$
• $6 = 2 + 2 + 1 + 1; ({\binom{1}{2}} {\binom{6}{2}}) ({\binom{4}{2}}) = 45$
and $1 + 40 + 144 + 90 + 40 + 45 = 360 = |A_6|.$
20 choices for $\{a, b, c\}$ then $(abc)(def)$ has four signs; but each one

is counted twice because (abc)(def) = (def)(abc).

There are thus 6 S_6 -conjugacy classes contained in A_6 , listed with the number of elements.

•
$$6 = 1 + 1 + 1 + 1 + 1 + 1; (1)$$

• $6 = 3 + 3; 2 \cdot {\binom{6}{3}} = 40^*.$
• $6 = 5 + 1; (6 \cdot 4! = 144).$
• $6 = 4 + 2; ({\binom{6}{4}} \cdot 3! = 90)$
• $6 = 3 + 1 + 1 + 1; ({\binom{6}{3}} \cdot 2 = 40)$
• $6 = 2 + 2 + 1 + 1; ({\binom{6}{2}})({\binom{4}{2}}) = 45$
and $1 + 40 + 144 + 90 + 40 + 45 = 360 = |A_6|.$

*20 choices for $\{a, b, c\}$, then (abc)(def) has four signs; but each one is counted twice because (abc)(def) = (def)(abc).

There are thus 6 S_6 -conjugacy classes contained in A_6 , listed with the number of elements.

•
$$6 = 1 + 1 + 1 + 1 + 1 + 1; (1)$$

• $6 = 3 + 3; 2 \cdot {\binom{6}{3}} = 40^*.$
• $6 = 5 + 1; (6 \cdot 4! = 144).$
• $6 = 4 + 2; ({\binom{6}{4}} \cdot 3! = 90)$
• $6 = 3 + 1 + 1 + 1; ({\binom{6}{3}} \cdot 2 = 40)$
• $6 = 2 + 2 + 1 + 1; (\frac{1}{2}({\binom{6}{2}})({\binom{4}{2}}) = 45$
and $1 + 40 + 144 + 90 + 40 + 45 = 360 = |A_6|.$
20 choices for $\{a, b, c\}$, then $(abc)(def)$ has four signs; but each one

is counted twice because (abc)(def) = (def)(abc).

There are thus 6 S_6 -conjugacy classes contained in A_6 , listed with the number of elements.

•
$$6 = 1 + 1 + 1 + 1 + 1 + 1; (1)$$

• $6 = 3 + 3; 2 \cdot {\binom{6}{3}} = 40^*.$
• $6 = 5 + 1; (6 \cdot 4! = 144).$
• $6 = 4 + 2; ({\binom{6}{4}} \cdot 3! = 90)$
• $6 = 3 + 1 + 1 + 1; ({\binom{6}{3}} \cdot 2 = 40)$
• $6 = 2 + 2 + 1 + 1; ({\frac{1}{2}}({\binom{6}{2}}))({\binom{4}{2}}) = 45$

There are thus 6 S_6 -conjugacy classes contained in A_6 , listed with the number of elements.

•
$$6 = 1 + 1 + 1 + 1 + 1 + 1; (1)$$

• $6 = 3 + 3; 2 \cdot {\binom{6}{3}} = 40^*.$
• $6 = 5 + 1; (6 \cdot 4! = 144).$
• $6 = 4 + 2; ({\binom{6}{4}} \cdot 3! = 90)$
• $6 = 3 + 1 + 1 + 1; ({\binom{6}{3}} \cdot 2 = 40)$
• $6 = 2 + 2 + 1 + 1; ({\frac{1}{2}}({\binom{6}{2}}))({\binom{4}{2}}) = 45$

There are thus 6 S_6 -conjugacy classes contained in A_6 , listed with the number of elements.

•
$$6 = 1 + 1 + 1 + 1 + 1 + 1; (1)$$

• $6 = 3 + 3; 2 \cdot {\binom{6}{3}} = 40^*.$
• $6 = 5 + 1; (6 \cdot 4! = 144).$
• $6 = 4 + 2; ({\binom{6}{4}} \cdot 3! = 90)$
• $6 = 3 + 1 + 1 + 1; ({\binom{6}{3}} \cdot 2 = 40)$
• $6 = 2 + 2 + 1 + 1; ({\frac{1}{2}}({\binom{6}{2}}))({\binom{4}{2}}) = 45$

There are thus 6 S_6 -conjugacy classes contained in A_6 , listed with the number of elements.

•
$$6 = 1 + 1 + 1 + 1 + 1 + 1; (1)$$

• $6 = 3 + 3; 2 \cdot {6 \choose 3} = 40^*.$
• $6 = 5 + 1; (6 \cdot 4! = 144).$
• $6 = 4 + 2; ({6 \choose 4} \cdot 3! = 90)$
• $6 = 3 + 1 + 1 + 1; ({6 \choose 3} \cdot 2 = 40)$
• $6 = 2 + 2 + 1 + 1; ({1 \over 2}({6 \choose 2}))({4 \choose 2}) = 45$

As in the case of A_5 , we see that 144 does not divide 360, so there are two conjugacy classes of 5-cycles, each with 72 elements.

On the other hand, we have seen all 3 cycles, and all (4, 2) permutations, are conjugate in A_6 . Thus the possible sizes of conjugacy classes (without checking the (3, 3) permutations are all conjugate) are:

(1, 45, 72, 72, 90, 40, 40); (1, 45, 72, 72, 90, 20, 20, 40)

The divisors of $360 = 2^3 \cdot 3^2 \cdot 5$ with more than 21 elements (we need the identity) are

24, 30, 36, 40, 45, 60, 72, 90, 120, 180.

The only odd one is 45, but we need the identity. Any even order must be bigger than 46, thus at least 66. But we cannot reach any of 72, 90, 120, 180 as a sum of a subset of the above numbers. So A_6 is simple.

As in the case of A_5 , we see that 144 does not divide 360, so there are two conjugacy classes of 5-cycles, each with 72 elements. On the other hand, we have seen all 3 cycles, and all (4, 2) permutations, are conjugate in A_6 . Thus the possible sizes of conjugacy classes (without checking the (3, 3) permutations are all conjugate) are:

(1, 45, 72, 72, 90, 40, 40); (1, 45, 72, 72, 90, 20, 20, 40)

The divisors of $360 = 2^3 \cdot 3^2 \cdot 5$ with more than 21 elements (we need the identity) are

24, 30, 36, 40, 45, 60, 72, 90, 120, 180.

The only odd one is 45, but we need the identity. Any even order must be bigger than 46, thus at least 66. But we cannot reach any of 72, 90, 120, 180 as a sum of a subset of the above numbers. So A_6 is simple.

As in the case of A_5 , we see that 144 does not divide 360, so there are two conjugacy classes of 5-cycles, each with 72 elements. On the other hand, we have seen all 3 cycles, and all (4, 2) permutations, are conjugate in A_6 . Thus the possible sizes of conjugacy classes (without checking the (3, 3) permutations are all conjugate) are:

(1, 45, 72, 72, 90, 40, 40); (1, 45, 72, 72, 90, 20, 20, 40)

The divisors of $360 = 2^3 \cdot 3^2 \cdot 5$ with more than 21 elements (we need the identity) are

24, 30, 36, 40, 45, 60, 72, 90, 120, 180.

The only odd one is 45, but we need the identity. Any even order must be bigger than 46, thus at least 66. But we cannot reach any of 72, 90, 120, 180 as a sum of a subset of the above numbers. So A_6 is simple.

As in the case of A_5 , we see that 144 does not divide 360, so there are two conjugacy classes of 5-cycles, each with 72 elements. On the other hand, we have seen all 3 cycles, and all (4, 2) permutations, are conjugate in A_6 . Thus the possible sizes of conjugacy classes (without checking the (3, 3) permutations are all conjugate) are:

(1, 45, 72, 72, 90, 40, 40); (1, 45, 72, 72, 90, 20, 20, 40)

The divisors of $360 = 2^3 \cdot 3^2 \cdot 5$ with more than 21 elements (we need the identity) are

24, 30, 36, 40, 45, 60, 72, 90, 120, 180.

The only odd one is 45, but we need the identity. Any even order must be bigger than 46, thus at least 66. But we cannot reach any of 72, 90, 120, 180 as a sum of a subset of the above numbers. So A_6 is simple.

As in the case of A_5 , we see that 144 does not divide 360, so there are two conjugacy classes of 5-cycles, each with 72 elements. On the other hand, we have seen all 3 cycles, and all (4, 2) permutations, are conjugate in A_6 . Thus the possible sizes of conjugacy classes (without checking the (3, 3) permutations are all conjugate) are:

(1, 45, 72, 72, 90, 40, 40); (1, 45, 72, 72, 90, 20, 20, 40)

The divisors of $360 = 2^3 \cdot 3^2 \cdot 5$ with more than 21 elements (we need the identity) are

24, 30, 36, 40, 45, 60, 72, 90, 120, 180.

The only odd one is 45, but we need the identity. Any even order must be bigger than 46, thus at least 66. But we cannot reach any of 72, 90, 120, 180 as a sum of a subset of the above numbers. So A_6 is simple.

Corollary

There are two conjugacy classes of 5-cycles in A_5 , and one conjugacy class of products of disjoint 2-cycles.

Proof of corollary: Since 24 does not divide 60, the 5 cycles form more than 1, thus 2 conjugacy classes; but 15 is not even, so it is a single conjugacy class.

Corollary

There are two conjugacy classes of 5-cycles in A_5 , and one conjugacy class of products of disjoint 2-cycles.

Proof of corollary: Since 24 does not divide 60, the 5 cycles form more than 1, thus 2 conjugacy classes; but 15 is not even, so it is a single conjugacy class.

 $\tau \sigma \tau^{-1}(1) = \tau(\sigma(1)) \neq \sigma(1).$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in *N*. Let $g = \tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g = \in N$. But $g = \tau \cdot \sigma \tau^{-1} \sigma^{-1}$ is a product of two 3-cycles, so it moves at most six numbers. Thus *g* belongs to a subgroup $H \subset A_n$ isomorphic to S_6 ; but *g* is even, so it belongs to a subgroup isomorphic to A_6 . Moreover, $g \in H \cap N$, which is normal in *H*. Since *H* is simple, $H \cap N = H$. Thus $N \supset H$, so *N* contains a 3-cycle.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

$$\tau \sigma \tau^{-1}(1) = \tau(\sigma(1)) \neq \sigma(1).$$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in *N*. Let $g = \tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g = \in N$. But $g = \tau \cdot \sigma \tau^{-1} \sigma^{-1}$ is a product of two 3-cycles, so it moves at most six numbers. Thus *g* belongs to a subgroup $H \subset A_n$ isomorphic to S_6 ; but *g* is even, so it belongs to a subgroup isomorphic to A_6 . Moreover, $g \in H \cap N$, which is normal in *H*. Since *H* is simple, $H \cap N = H$. Thus $N \supset H$, so *N* contains a 3-cycle.

ロトス値とスモンスモン

$$\tau \sigma \tau^{-1}(1) = \tau(\sigma(1)) \neq \sigma(1).$$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in *N*.

Let $g = \tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g = \in N$. But $g = \tau \cdot \sigma \tau^{-1} \sigma^{-1}$ is a product of two 3-cycles, so it moves at most six numbers. Thus g belongs to a subgroup $H \subset A_n$ isomorphic to S_6 ; but g is even, so it belongs to a subgroup isomorphic to A_6 . Moreover, $g \in H \cap N$, which is normal in H. Since H is simple, $H \cap N = H$. Thus $N \supset H$, so N contains a 3-cycle.

ロトス値とくほとくほと

$$\tau \sigma \tau^{-1}(1) = \tau(\sigma(1)) \neq \sigma(1).$$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in *N*. Let $g = \tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g = \in N$. But $g = \tau \cdot \sigma \tau^{-1} \sigma^{-1}$ is a product of two 3-cycles, so it moves at most six numbers. Thus *g* belongs to a subgroup $H \subset A_n$ isomorphic to S_6 ; but *g* is even, so it belongs to a subgroup isomorphic to A_6 . Moreover, $g \in H \cap N$, which is normal in *H*. Since *H* is simple, $H \cap N = H$. Thus $N \supset H$, so *N* contains a 3-cycle.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

$$\tau \sigma \tau^{-1}(1) = \tau(\sigma(1)) \neq \sigma(1).$$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in *N*. Let $g = \tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g = \in N$. But $g = \tau \cdot \sigma \tau^{-1} \sigma^{-1}$ is a product of two 3-cycles, so it moves at most six numbers. Thus *g* belongs to a subgroup $\subset A_n$ isomorphic to S_6 ; but *g* is even, so it belongs to a subgroup isomorphic to A_6 . Moreover, $g \in H \cap N$, which is normal in *H*. Since *H* is simple, $H \cap N = H$. Thus $N \supset H$, so *N* contains a 3-cycle.

ロトス値とスラとスラと

$$\tau \sigma \tau^{-1}(1) = \tau(\sigma(1)) \neq \sigma(1).$$

So $\tau \sigma \tau^{-1} \neq \sigma$ and both are in *N*. Let $g = \tau \sigma \tau^{-1} \sigma^{-1} \neq e$. We see that $g = \in N$. But $g = \tau \cdot \sigma \tau^{-1} \sigma^{-1}$ is a product of two 3-cycles, so it moves at most six numbers. Thus *g* belongs to a subgroup $H \subset A_n$ isomorphic to S_6 ; but *g* is even, so it belongs to a subgroup isomorphic to A_6 . Moreover, $g \in H \cap N$, which is normal in *H*. Since *H* is simple, $H \cap N = H$. Thus $N \supset H$, so *N* contains a 3-cycle.

ロトス得とステレステレー