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1) True or false:

a) No group of order 88 has a subgroup of order 16.

True: 16 ∤ 88 so this follows from Lagrange’s theorem.

b) False: Z8,Z4 ×Z2, and Z2 ×Z2 ×Z2 are non-isomorphic abelian groups of order 8, and the quaternion group

Q8 = {±1,±i,±j,±k} is a non-abelian one, so there are at least 4.

2) a) Write the cycle decomposition of

σ =
⎛
⎝

1 2 3 4 5 6 7 8

3 6 1 4 7 8 5 2

⎞
⎠

σ = (13)(268)(57).
b) Let G be a finite group with 8 elements, and consider the homomorphism α ∶ G→ S8 from the proof of Cayley’s

theorem. Show there is no g ∈ G such that α(g) = σ.

By Lagrange’s theorem, we would have g8 = e, hence σ8 = α(g)8 = e. However, σ has order lcm(2,3,2) = 6 and 6 ∤ 8,

so we have a contradiction.

3)

a) List the normal subgroups of the dihedral group D34. For which integers m is there a surjective homomorphism

α ∶D34 → Zm? Suppose that we don’t require α to be surjective?

We establish that we use the notation D34 =< r, s ∶ r17, s2, rsrs >. Recall first that each element of D34

is of the form rkst, for k ∈ [0,16] ∩ Z, t ∈ {0,1}. Additionally, to show that a subgroup is normal, it suffices to show

that it is invariant under conjugation by both r and s, since the group is generated by those elements. Then we

write down the subgroups of D34, ordering by size. D34 is trivially a normal subgroup of itself, of order 34. < r > is

certainly a subgroup of order 17. It’s normal, since it’s index 2. There are no other subgroups of order 17, since if

H ≤ G, rk ∈ H for some k, then < r >⊂ H. If H ≠< r >, then ∣H ∣ > ∣ < r > ∣, so by Lagrange’s theorem, ∣H ∣ = 34, so

H =D34. Any subgroup containing two distinct elements of the form rks, rk
′

s contains rk−k
′

by closure, which means

it’s D34. The remainder of the nontrivial subgroups are of the form {e, rks} for some k. To see this, we recall that

adding an element of the form rk
′

forces us to include D34, as does adding an element of the form rk
′

s. Each of these

are order 2, but they aren’t normal; to see that, consider s{e, rks}s−1 = {ss−1, srk} = {e, r17−ks}. Then k ≠ 17− k, so

they aren’t normal. Finally, the trivial subgroup is normal, so to summarize, the normal subgroups are D34,< r >,
and {e}.

Suppose for some m, there is a surjective homomorphism α ∶D34 → Zm. Then its kernel needs to be a normal

subgroup of D34, which means ker(α) ∈ D34,< r >,{e}. It is clear that ker(α) ≠ e, since that would imply that

there was an isomorphism from D34 to some cyclic group, which is false. So by the first isomorphism theorem,

∣D34∣ = ∣ker(α)∣∣im(α)∣⇒ 34 = ∣ker(α)∣m. Since ∣ker(α)∣ ∈ {17,34}, we have m ∈ {1,2}. These are each possible: the
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trivial homomorphism sends ∣D34∣ to Z1, and the homomorphism Φ ∶ D34 → Z2 ∶ Φ(r) = 0,Φ(s) = 1 is surjective and

well-defined. It’s clear that it’s surjective; the only possible challenge to well-definition comes from the relations; but

Φ(r17) = 017 = 0,Φ(s2) = 1 + 1 = 0,Φ(rsrs) = 0 + 1 + 0 + 1 = 0. Then m ∈ {1,2}.

Theres the trivial homomorphism Φ ∶D34 → Zm,Φ(g) = [0] for every m.

b) Quote a theorem that asserts that there is an isomorphism β ∶ Z2 ×Z9 → Z18

The Chinese remainder theorem asserts that if n =∏nk=1 pikk , then Zn ≅∏nk=1Zpik
k

, so in particular, 18 = 2 × 9,

so Z18 ≅ Z2×Z9. The classification of finitely generated abelian groups is a more powerful result that also implies this.

c) Let D36 be the dihedral group of symmetries of the regular 18-gon. We view Z18 as the subgroup of ro-

tations in D36 and let f ∈D36 denote the reflection in the vertical axis. Let K = β(Z9) ∈ Z18 with β as in (b). Show

that the subgroup H ⊆D36 generated by f and K is normal, and determine the group D36ÒH.

We first identify K and f in terms of the symbols r and s, our previous notation, where D36 =< r, s ∶
r18, s2, rsrs >. s is just f , whereas K =< r2 >, the subgroup of < r >≅ Z18 isomorphic to Z9. Then < r2, s > is the

subgroup generated by f and K; it has order 18. To see this, we note that it has at least 10 elements; (r2)k for

k ∈ [0,8] ∩ Z, and s; then by Lagrange’s theorem, it has order at least 18. It also doesnt contain r, so it has or-

der at most 18, so it has order 18, so it’s normal, and the quotient D34Ò< r2, s > has order 2, so it’s isomorphic to Z2.

4) List all the non-isomorphic abelian groups of order 75, 76, 77, and 72

75 = 3 × 52, so the abelian groups are Z3 ×Z25 and Z3 ×Z5 ×Z5

76 = 22 × 19, so the abelian groups are Z2 ×Z2 ×19 and Z4 ×Z19.

77 = 7 × 11, so the only abelian group is Z7 ×Z11.

72 = 22 × 32, so the abelian groups are Z4 ×Z9,Z2 ×Z2 ×Z9,Z4 ×Z3 ×Z3, and Z2 ×Z2 ×Z3 ×Z3.

5) Let N , N ′ be subgroups of a group G, such that N ◁N ′. Let H be any subgroup of G. Let K = N ′ ∩H.

a) Show that (N ∩H) ◁K.

To show that (N ∩H) ◁K, we need to show that kgk−1 ∈ (N ∩H) for any g ∈ (N ∩H) and any k ∈K. We know

that g ∈ N and g ∈H, and, since K = (N ′ ∩H), that k ∈ N ′ and k ∈H.

Since N ◁N ′, we see that kgk−1 ∈ N because k ∈ N ′ and g ∈ N .

Meanwhile, since H is a subgroup, we see that kgk−1 ∈H because k ∈H and g ∈H.

Hence kgk−1 ∈ (N ∩H), as required.

b) Show that KN is a subgroup of G.

We need to show that KN ∶= {kn ∶ k ∈ K, n ∈ N} ⊆ G is closed under multiplication, contains the identity, and

contains inverses. Observe that any product nk, where n ∈ N and k ∈K, can be written as k ⋅k−1nk, where k−1nk ∈ N
because N ◁N ′ and K ⊆ N ′.

• For any k1n1, k2n2 ∈KN , we can write (k1n1)(k2n2) = (k1k2)(k−12 n1k2n2) ∈KN .

• Since 1 ∈K and 1 ∈ N , we have 1 = 1 ⋅ 1 ∈KN .

• For any kn ∈KN , its inverse is (kn)−1 = n−1k−1 = k−1 ⋅ kn−1k−1 ∈KN .

Hence KN is a subgroup of G.
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c) Show that K/(N ∩H) is isomorphic to a subgroup of N ′/N .

The first isomorphism theorem states the following:

If f ∶ G1 → G2 is a group homomorphism, then (ker f) ⊴ G1 and G1/(ker f) ≅ (imf).

Consider f ∶ K ı→ N ′
ρ→ N ′/N , where ı is inclusion (as K = (N ′ ∩H) ⊆ N ′) and ρ is reduction mod N . The

kernel of f is by construction (ker f) = f−1({1}) = (ı−1 ○ ρ−1)({1}) = ı−1(N) = (N ∩K) = (N ∩H). The image of f is

a subgroup of N ′/N .

Hence K/(N ∩H) is isomorphic to a subgroup of N ′/N by the first isomorphism theorem.

6)

a) How many elements of each order are there in the alternating group A5?

The group A5 consists of

• the identity (order 1)

• products of two disjoint 2-cycles (order 2), of which there are 1
2
(5
2
)(3

2
) = 15

• 3-cycles (order 3), of which there are (5
3
)(3 − 1)! = 20

• 5-cycles (order 5), of which there are (5
5
)(5 − 1)! = 24

As a check, the total number of elements is 1 + 15 + 20 + 24 = 60 = 1
2

5!, as expected.

b) Show using (a) that A5 is not isomorphic to the direct product D10 × S3.

From the presentation D10 = ⟨r, s ∣ r5 = s2 = 1, rs = sr−1⟩, we see that r has order 5 in D10.

Meanwhile, the 3-cycle (123) has order 3 in S3.

Using the fact that the order of g1 × g2 in G1 ×G2 is the l.c.m. of the orders of g1 in G1 and g2 in G2, we find

that r × (123) ∈D10 × S3 has order lcm(5, 3) = 15.

Since there is an element of order 15 in D10 × S3 but there is no such element in A5, we deduce that these two

groups are not isomorphic.
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