Algebra 1 Midterm 2 Practice Solutions

Noah Olander, Anton Wu, and Iris Rosenblum-Sellers

April 1, 2020

1) True or false:
a) No group of order 88 has a subgroup of order 16 .

True: $16+88$ so this follows from Lagrange's theorem.
b) False: $\mathbf{Z}_{8}, \mathbf{Z}_{4} \times \mathbf{Z}_{2}$, and $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}$ are non-isomorphic abelian groups of order 8, and the quaternion group $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is a non-abelian one, so there are at least 4 .
2) a) Write the cycle decomposition of

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 6 & 1 & 4 & 7 & 8 & 5 & 2
\end{array}\right)
$$

$\sigma=(13)(268)(57)$.
b) Let G be a finite group with 8 elements, and consider the homomorphism $\alpha: G \rightarrow S_{8}$ from the proof of Cayley's theorem. Show there is no $g \in G$ such that $\alpha(g)=\sigma$.
By Lagrange's theorem, we would have $g^{8}=e$, hence $\sigma^{8}=\alpha(g)^{8}=e$. However, σ has order $\operatorname{lcm}(2,3,2)=6$ and $6+8$, so we have a contradiction.
3)
a) List the normal subgroups of the dihedral group D_{34}. For which integers m is there a surjective homomorphism $\alpha: D_{34} \rightarrow \mathbb{Z}_{m}$? Suppose that we don't require α to be surjective?

We establish that we use the notation $D_{34}=\left\langle r, s: r^{17}, s^{2}, r s r s\right\rangle$. Recall first that each element of D_{34} is of the form $r^{k} s^{t}$, for $k \in[0,16] \cap \mathbb{Z}, t \in\{0,1\}$. Additionally, to show that a subgroup is normal, it suffices to show that it is invariant under conjugation by both r and s, since the group is generated by those elements. Then we write down the subgroups of D_{34}, ordering by size. D_{34} is trivially a normal subgroup of itself, of order $34 .<r>$ is certainly a subgroup of order 17 . It's normal, since it's index 2 . There are no other subgroups of order 17 , since if $H \leq G, r^{k} \in H$ for some k, then $\langle r\rangle c H$. If $H \neq\langle r\rangle$, then $|H|>|\langle r\rangle|$, so by Lagrange's theorem, $|H|=34$, so $H=D_{34}$. Any subgroup containing two distinct elements of the form $r^{k} s, r^{k^{\prime}} s$ contains $r^{k-k^{\prime}}$ by closure, which means it's D_{34}. The remainder of the nontrivial subgroups are of the form $\left\{e, r^{k} s\right\}$ for some k. To see this, we recall that adding an element of the form $r^{k^{\prime}}$ forces us to include D_{34}, as does adding an element of the form $r^{k^{\prime}} s$. Each of these are order 2, but they aren't normal; to see that, consider $s\left\{e, r^{k} s\right\} s^{-1}=\left\{s s^{-1}, s r^{k}\right\}=\left\{e, r^{17-k} s\right\}$. Then $k \neq 17-k$, so they aren't normal. Finally, the trivial subgroup is normal, so to summarize, the normal subgroups are $D_{34},\langle r\rangle$, and $\{e\}$.

Suppose for some m, there is a surjective homomorphism $\alpha: D_{34} \rightarrow \mathbb{Z}_{m}$. Then its kernel needs to be a normal subgroup of D_{34}, which means $\operatorname{ker}(\alpha) \in D_{34},\langle r\rangle,\{e\}$. It is clear that $\operatorname{ker}(\alpha) \neq e$, since that would imply that there was an isomorphism from D_{34} to some cyclic group, which is false. So by the first isomorphism theorem, $\left|D_{34}\right|=|\operatorname{ker}(\alpha)||\operatorname{im}(\alpha)| \Rightarrow 34=|\operatorname{ker}(\alpha)| m$. Since $|\operatorname{ker}(\alpha)| \in\{17,34\}$, we have $m \in\{1,2\}$. These are each possible: the
trivial homomorphism sends $\left|D_{34}\right|$ to \mathbb{Z}_{1}, and the homomorphism $\Phi: D_{34} \rightarrow \mathbb{Z}_{2}: \Phi(r)=0, \Phi(s)=1$ is surjective and well-defined. It's clear that it's surjective; the only possible challenge to well-definition comes from the relations; but $\Phi\left(r^{17}\right)=0^{17}=0, \Phi\left(s^{2}\right)=1+1=0, \Phi($ rsrs $)=0+1+0+1=0$. Then $m \in\{1,2\}$.

Theres the trivial homomorphism $\Phi: D_{34} \rightarrow \mathbb{Z}_{m}, \Phi(g)=[0]$ for every m.
b) Quote a theorem that asserts that there is an isomorphism $\beta: \mathbb{Z}_{2} \times \mathbb{Z}_{9} \rightarrow \mathbb{Z}_{18}$

The Chinese remainder theorem asserts that if $n=\prod_{k=1}^{n} p_{k}^{i_{k}}$, then $\mathbb{Z}_{n} \cong \prod_{k=1}^{n} \mathbb{Z}_{p_{k}^{i_{k}}}$, so in particular, $18=2 \times 9$, so $\mathbb{Z}_{18} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{9}$. The classification of finitely generated abelian groups is a more powerful result that also implies this.
c) Let D_{36} be the dihedral group of symmetries of the regular 18 -gon. We view \mathbb{Z}_{18} as the subgroup of rotations in D_{36} and let $f \in D_{36}$ denote the reflection in the vertical axis. Let $K=\beta\left(\mathbb{Z}_{9}\right) \in \mathbb{Z}_{18}$ with β as in (b). Show that the subgroup $H \subseteq D_{36}$ generated by f and K is normal, and determine the group D_{36} / H.

We first identify K and f in terms of the symbols r and s, our previous notation, where $D_{36}=<r, s$: $r^{18}, s^{2}, r s r s>$. s is just f, whereas $K=<r^{2}>$, the subgroup of $\left\langle r>\cong \mathbb{Z}_{18}\right.$ isomorphic to \mathbb{Z}_{9}. Then $<r^{2}, s>$ is the subgroup generated by f and K; it has order 18. To see this, we note that it has at least 10 elements; $\left(r^{2}\right)^{k}$ for $k \in[0,8] \cap \mathbb{Z}$, and s; then by Lagrange's theorem, it has order at least 18. It also doesnt contain r, so it has order at most 18 , so it has order 18 , so it's normal, and the quotient $D_{34} /\left\langle r^{2}, s\right\rangle$ has order 2 , so it's isomorphic to \mathbb{Z}_{2}.
4) List all the non-isomorphic abelian groups of order $75,76,77$, and 72
$75=3 \times 5^{2}$, so the abelian groups are $\mathbb{Z}_{3} \times \mathbb{Z}_{25}$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$
$76=2^{2} \times 19$, so the abelian groups are $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \nVdash \leftrightarrow$ and $\mathbb{Z}_{4} \times \mathbb{Z}_{19}$.
$77=7 \times 11$, so the only abelian group is $\mathbb{Z}_{7} \times \mathbb{Z}_{11}$.
$72=2^{2} \times 3^{2}$, so the abelian groups are $\mathbb{Z}_{4} \times \mathbb{Z}_{9}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9}, \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
5) Let N, N^{\prime} be subgroups of a group G, such that $N \triangleleft N^{\prime}$. Let H be any subgroup of G. Let $K=N^{\prime} \cap H$.
a) Show that $(N \cap H) \triangleleft K$.

To show that $(N \cap H) \triangleleft K$, we need to show that $k g k^{-1} \in(N \cap H)$ for any $g \in(N \cap H)$ and any $k \in K$. We know that $g \in N$ and $g \in H$, and, since $K=\left(N^{\prime} \cap H\right)$, that $k \in N^{\prime}$ and $k \in H$.

Since $N \triangleleft N^{\prime}$, we see that $k g k^{-1} \in N$ because $k \in N^{\prime}$ and $g \in N$.
Meanwhile, since H is a subgroup, we see that $\mathrm{kgk}^{-1} \in H$ because $k \in H$ and $g \in H$.
Hence $k g k^{-1} \in(N \cap H)$, as required.
b) Show that $K N$ is a subgroup of G.

We need to show that $K N:=\{k n: k \in K, n \in N\} \subseteq G$ is closed under multiplication, contains the identity, and contains inverses. Observe that any product $n k$, where $n \in N$ and $k \in K$, can be written as $k \cdot k^{-1} n k$, where $k^{-1} n k \in N$ because $N \triangleleft N^{\prime}$ and $K \subseteq N^{\prime}$.

- For any $k_{1} n_{1}, k_{2} n_{2} \in K N$, we can write $\left(k_{1} n_{1}\right)\left(k_{2} n_{2}\right)=\left(k_{1} k_{2}\right)\left(k_{2}^{-1} n_{1} k_{2} n_{2}\right) \in K N$.
- Since $1 \in K$ and $1 \in N$, we have $1=1 \cdot 1 \in K N$.
- For any $k n \in K N$, its inverse is $(k n)^{-1}=n^{-1} k^{-1}=k^{-1} \cdot k n^{-1} k^{-1} \in K N$.

Hence $K N$ is a subgroup of G.
c) Show that $K /(N \cap H)$ is isomorphic to a subgroup of N^{\prime} / N.

The first isomorphism theorem states the following:
If $f: G_{1} \rightarrow G_{2}$ is a group homomorphism, then $(\operatorname{ker} f) \unlhd G_{1}$ and $G_{1} /(\operatorname{ker} f) \cong(\operatorname{im} f)$.
Consider $f: K \xrightarrow{\imath} N^{\prime} \xrightarrow{\rho} N^{\prime} / N$, where \imath is inclusion (as $K=\left(N^{\prime} \cap H\right) \subseteq N^{\prime}$) and ρ is reduction mod N. The kernel of f is by construction $(\operatorname{ker} f)=f^{-1}(\{1\})=\left(\imath^{-1} \circ \rho^{-1}\right)(\{1\})=\imath^{-1}(N)=(N \cap K)=(N \cap H)$. The image of f is a subgroup of N^{\prime} / N.

Hence $K /(N \cap H)$ is isomorphic to a subgroup of N^{\prime} / N by the first isomorphism theorem.
6)
a) How many elements of each order are there in the alternating group A_{5} ?

The group A_{5} consists of

- the identity (order 1)
- products of two disjoint 2-cycles (order 2), of which there are $\frac{1}{2}\binom{5}{2}\binom{3}{2}=15$
- 3 -cycles (order 3), of which there are $\binom{5}{3}(3-1)!=20$
- 5 -cycles (order 5), of which there are $\binom{5}{5}(5-1)!=24$

As a check, the total number of elements is $1+15+20+24=60=\frac{1}{2} 5$!, as expected.
b) Show using (a) that A_{5} is not isomorphic to the direct product $D_{10} \times S_{3}$.

From the presentation $D_{10}=\left\langle r, s \mid r^{5}=s^{2}=1, r s=s r^{-1}\right\rangle$, we see that r has order 5 in D_{10}.
Meanwhile, the 3-cycle (123) has order 3 in S_{3}.
Using the fact that the order of $g_{1} \times g_{2}$ in $G_{1} \times G_{2}$ is the l.c.m. of the orders of g_{1} in G_{1} and g_{2} in G_{2}, we find that $r \times(123) \in D_{10} \times S_{3}$ has order $\operatorname{lcm}(5,3)=15$.

Since there is an element of order 15 in $D_{10} \times S_{3}$ but there is no such element in A_{5}, we deduce that these two groups are not isomorphic.

