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1)

a)

False. If A = {1, 2} and B = {2, 3}, then A/B = {x ∈ A ∶ x /∈ B} = {1} and A/(A/B) = {x ∈ A ∶ x /∈ (A/B)} = {2},

so in general A/(A/B) ≠ B. [Observe that A/(A/B) = A ∩B is always true.]

b)

True. If gh = hg, then g3h = g2(gh) = g2(hg) = g(gh)g = g(hg)g = (gh)g2 = (hg)g2 = hg3.

c)

False. Recall that a ≡ b (mod m) if m divides a− b; so 75 /≡ −7 (mod 17), as 17 does not divide 75− (−7) = 82.

d)

True. For x, y ∈ A such that g(f(x)) = g(f(y)), because g is injective we must have f(x) = f(y), and then

because f is injective we must have x = y. Hence (g ○ f) is injective.

e)

False. In G = S3, consider g = (12) and h = (23). We have ı(g) = (12) and ı(h) = (23). Then

ı(gh) = ı((12)(23)) = ı((123)) = (132) and ı(g)ı(h) = (12)(23) = (123)

so ı(gh) ≠ ı(g)ı(h). [Observe that in general, ı(gh) = ı(h)ı(g).]

2)

a)

Recall that [a] ∈ Zm is a generator if gcd(a, m) = 1. This follows from Bézout’s lemma, which says that for

any a, m ∈ Z, there exist integers x, y such that ax +my = gcd(a, m); so if gcd(a, m) = 1, then ax ≡ 1 (mod m),

which means 1 ∈ ⟨a⟩, and thus Zm = ⟨1⟩ ⊆ ⟨a⟩ ⊆ Zm, so ⟨a⟩ = Zm, which is to say that a is a generator of Zm.

Hence the generators of Z7 are [1], [2], [3], [4], [5], [6]; and the generators of Z8 are [1], [3], [5], [7].

b)

We have [x] = [99113] = [991]13 = [1]13 = [1], so 99113 ≡ 1 (mod 9).

c)

Recall that a homomorphism f from a group (G, ⋅ ) to a group (H, ⋅ ) must satisfy f(g1g2) = f(g1)f(g2).

Thus, since f([a1 + a2]) = [3(a1 + a2)] = [3a1 + 3a2] = [3a1] + [3a2] = f([a1]) + f([a2]), we have shown that f is a

homomorphism from Z9 to Z9. The kernel of f is {[0], [3], [6]}, since 9 divides 3a if and only if 3 divides a.

3)

a)

The equivalence classes correspond to each state in the United States; everyone who lives in a particular state

is equivalent, and are equivalent to no one from other states.

b)

This is not an equivalence relation; we see that the distance from the origin to (0,1) is 1, (0,0) ∼ (0,1).

Additionally, the distance from the origin to (0,−1) is 1, so (0,0) ∼ (0,−1). If this were an equivalence relation, we

would have (0,−1) ∼ (0,1) by transitivity. However, the distance between these is 2, which is greater than 1, so they

are not equivalent.
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c)

Two matrices are equivalent under this relation if they have the same eigenvalues, since those are the roots

the characteristic polynomial. Then the equivalence classes consist of possibilities for eigenvalues for a 2x2 complex

matrix; each can be represented by a distinct diagonal matrix with entries those eigenvalues.

4)

a)

This inclusion is possible; we note that [2] has order 7, so it generates a cyclic subgroup of order 7.

b)

This inclusion is not possible; by Lagrange’s theorem, any subgroup has order equal to a factor of the parent

group, and 6 is not a factor of 9.

c)

This inclusion is not possible; the Klein 4 group consists of 3 elements of order 2. The only order 2 element

in Z/32Z is [16]; to see this, if [n] is order 2, then [2n] = [0], so it’s a multiple of 32, so n is half a multiple of 32, so

it’s [16] or [0], and the latter is order 1, so the inclusion isn’t possible.

5)

a)

If R had a non-trivial subgroup of finite order, it would have a nonzero element of finite order. That is, there

would exist x ∈ R, x ≠ 0 such that nx = 0 for some n > 0. However, there are no such elements, e.g. because R is a

field.

b)

Z is a subgroup of Q since 0 ∈ Z, the sum of two integers is an integer, and if n ∈ Z, then so is −n. For an

example of a subgroup of Q bigger than Z, we can take H = {x ∈ Q ∶ 2x ∈ Z}. This is a subgroup: 2 ⋅ 0 = 0 ∈ Z, so

0 ∈H. If x, y ∈H then 2(x ± y) = 2x ± 2y ∈ Z so x ± y ∈H.

6)

First of all, there is at least one such element, namely e. We must show it is the only one. Suppose for

contradiction that there is x ∈ G,x ≠ e, with x2
= e. Take some element y ≠ x, y ≠ e (this is possible since G has 5

elements and 5 > 2). Then consider the elements e, x, y, xy. We claim they are distinct. We already know e, x, y are

distinct, so we must show xy /∈ {e, x, y}. First of all xy ≠ e since that would mean y = x−1 = x since x2
= e and inverses

are unique. Next xy ≠ x because this would imply y = e by cancellation. Finally, xy ≠ y since this would imply x = e

by cancellation. Therefore we have proven that {e, x, y, xy} has four elements. Since G has five elements, there is

one element we haven’t yet listed. Let z be this fifth element. We claim that xz /∈ {e, x, y, xy, z}. This will be our

contradiction, since xz ∈ G and G has only 5 elements. To prove this, note that xz ≠ e = x2 since this would imply

x = z by cancellation. Also, xz ≠ x since this would imply z = 1; xz ≠ xy since this would imply z = y; and xz ≠ z

since this would imply x = 1. Finally, if xz = y, then z = x2z = xy, which is false. Now we are done.
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