
GU4041: Intro to Modern Algebra I

Professor Michael Harris

Solutions by Noah Olander, Anton Wu, and Iris Rosenblum-Sellers

Practice Final

1) True or False? If false, give a counterexample, if true, provide an explanation. The explanation can be brief,

but it is not enough to say that the statement was explained in the course.

a) A group of order 392 has either 1 or 8 Sylow 7-subgroups

Proof. 392 = 23 × 72. Then by Sylow’s third theorem, n7, the number of Sylow 7-subgroups, has an order in

{1,2,4,8} ∩ 1 + 7Z. This intersection is precisely {1,8}, so the statement is true.

b) For any n, let A(n) denote the number of distinct non-isomorphic abelian groups of order n. Then A(65) >
A(64)

Proof. 65 = 5 × 13, each of which are prime, so there’s only one abelian group of order 65 up to isomorphism, by the

classification of finitely generated abelian groups. Then since there’s at least one of order 64, i.e. Z64, this statement

is false

c) Let G be a group of even order. Then it has at least one conjugacy class, not including the identity element,

with an odd number of elements

Proof. The order of G is the sum of the orders of its conjugacy classes. Since {e} is a conjugacy class, and the sum

of the orders of the conjugacy classes is even, and the sum of any number of even numbers and a single odd number

is odd, if each other conjugacy class had even order, we would have a contradiction, as the sum of the orders of the

conjugacy classes would be odd, while ∣G∣ is even.

d) Let H be a subgroup of the alternating group A5. Suppose H contains every 3-cycle. Then H = A5.

Proof. We argue by order. There are at least 2(5
3
) + 1, since for any set of 3 elements, there are two three-cycles

including those 3, plus the identity, so there are at least 21 elements. Then the order of this subgroup divides ∣A5∣,
so it’s either 30 or 60. However, if it were 30, it would be an index 2-subgroup, entailing that it’s a nontrivial normal

subgroup, violating the simplicity of A5. Therefore, the statement is true.

2)

a) Determine the centralizer of the product (12)(34)(56)(78) of four 2-cycles in S8. Use this to determine the

number of all elements of S8 which can be written as products of four 2-cycles.

Proof. Suppose g is such that g(12)(34)(56)(78)g−1 = g(12)g−1g(34)g−1g(56)g−1g(78)g−1 = (12)(34)(56)(78) Then

g(12)g−1 ∈ {(12), (34), (56), (78)}, and so on. We recall that g(12)g−1 = (g(1)g(2)), where g(1) denotes evauation

of g as a bijection on {1,2,3,4,5,6,7,8}. Then g(1) is some number; it determines g(2) if g is in the centralizer;

likewise, g(3) is some number, and so on, so the order of the centralizer is (8
1
)(6

1
)(4

1
)(2

1
) = 384, and it consists of

precisely the elements following the rule that if g(k) = l, then g(k + jk) = l + jl, where jn is 1 if n is even, and -1

otherwise, for all n. For example, (1475)(2386) is in the centralizer. The centralizer is also the stabilizer under

conjugation action, so it follows that 8!/384 = 105 is the orbit under conjugation action, which is the number of

elements which can be written as the product of four transpositions.
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b) Same question, but with S12.

Proof. An element of the centralizer must have that its restriction to S8 is a bijection, since it must follow the stronger

condition of mapping 2 to g(1) + jg(1), for example. It can do anything on the remaining copy of S4, so there are

24(384) elements in the centralizer now. In this case, we have that the order of the orbit is 12!/(24(384)) = 51975.

3) How many elements of order 5 are there in S5 ×Z25?

Proof. An element (τ, [k]) of S5 × Z25 has order 5 if the order of both τ and [k] is a factor of 5, and they are not

both 1. There are 5 elements like that in Z25, and elements like that in S5 equal to the number of ways to permute 4

numbers plus one; we can see this, since τ must be a 5-cycle or the identity; if it’s a 5-cycle, we can write it starting

with a 1, and with some permutation of 2,3,4 and 5 after it. There are 4! ways to do that then, so there are 25

elements of order a factor of 5 in S5. Then there are 125 in S5 ×Z25 of order 1 or 5; so there are 124 of order 5.

4)

a) What is the number of conjugacy classes of the dihedral group D2n? Prove your answer and note that it

depends on whether n is odd or even.

Proof. Let rks be some flip in D2n. It’s in the conjugacy class of s iff j ∶ rjsr−j = rks; we recall that rjsr−j = r2js.
Then they’re all in one conjugacy class iff [2] generates Zn, since then we can pick j accordingly, which is iff n is

odd. Otherwise, there are conjugacy classes of the rks’s in bijection with the cosets of < [2] > in Zn; i.e. every even

number is in the same conjugacy class as s, and every odd is in the same as rs. As for the powers of r, we recall

that srks−1 = r−k, so each power of r is in a conjugacy class with it’s inverse. Also, rjrkr−j = rk obviously, and

rjsrksr−j = rjr−kr−j = r−k, so that’s the extent of the conjugacy classes of powers of r. Then if n is even, there are

n/2+1 conjugacy classes of powers of r, since rn/2 and r0 are their own inverses, and there are 2 conjugacy classes of

elements of the form rks, so there are n/2 + 3 total. If n is odd, then there are (n + 1)/2 conjugacy classes of powers

of r, and only one of flips, so there are (n + 1)/2 + 1 total.

b) Write down the class equation for D2n and identify the centralizer of each element.

Proof. If n is even, then Z(D2n) = 2, and 2n = 2+2(n/2)+(n/2−1)(2), where the first 2 is the center, containing the

identity and rn/2, the two of size n/2 are the ones with s and rs respectively, and the final (n/2 − 1) of order 2 are

the conjugacy classes {rk, r−k}. The centralizer of each rotation class (except for the central one) must have order

n, by the orbit-stabilizer theorem, and it’s just the set < r >. The centralizer of the central elements is vacuously

the whole group, and the centralizer of the rks’s must each have order 4; for each, it’s the center, plus itself, and,

since centralizers are closed, rk+n/2; i.e. if gh = hg, and gk = kg, then g(hk) = hgk = hkg = (hk)g. If n is odd,

the class equation is 2n = 1 + (n − 1)/2(2) + n, where the 1 is the size of the trivial center, the (n − 1)/2 copies of

2 are the conjugacy classes {rk, r−k}, and the n is the number of flips. The centralizer of the identity is the whole

element, the centralizer of the rotation classes is once again < r >, and the flips commute with just themselves and

the identity.

5) Let G be a group, N ◁G a normal subgroup, H = G/N the quotient group, and π ∶ G→H the quotient map.

Let X be the set of conjugacy classes of the group N . The conjugacy class of n ∈ N is denoted [n].
a) For g ∈ G and n ∈ N , let g([n]) = [gng−1]. Show that this is a well-defined action of G on X.

Note that gng−1 ∈ N for any g ∈ G, since N ◁G. To show that G acts on X, we verify the following:

• identity: for 1 ∈ G, we have 1([n]) = [1n1−1] = [n].
• composition: for g1, g2 ∈ G, we have (g1g2)([n]) = [g1g2n(g1g2)−1] = [g1g2ng−12 g−11 ] = g1([g2ng−12 ]) = g1(g2([n])).

To show that the action is well-defined, we see that if [n1] = [n2], then there exists n ∈ N such that nn1n
−1 = n2, so

g([n1]) = [gn1g−1] = [(gng−1)gn1g−1(gng−1)−1] = [gnn1n−1g−1] = g([nn1n−1]) = g([n2]).

2



b) Write down the class equation for this action.

Recall that if G acts on X, then in general the orbit equation is

∣X ∣ = ∣XG∣ + ∑A [G ∶ GA]

where XG is the set of elements of X which are fixed by all g ∈ G, and A runs over the orbits in X, and GA is the

subgroup of G which stabilizes A. Thus, in this case the class equation is ∣X ∣ = ∣XG∣ + ∑A [G ∶ NG(A)].

c) Suppose N is abelian. Show that there is an action of H on X such that g([n]) = π(g)([n]) for all n ∈ N , g ∈ G.

Since π ∶ G → H is surjective, the equation π(g)([n]) = g([n]) specifies an action of H on X. [Since π is a

homomorphism, we have π(1)([n]) = 1([n]) = [n] and

(π(g1)π(g2))([n]) = π(g1g2)([n]) = (g1g2)([n]) = g1(g2([n])) = g1(π(g2)([n])) = π(g1)(π(g2)([n]))

so this is indeed an action.] We must show that this action is well-defined.

Suppose π(g1) = π(g2); that is, there exists m ∈ N such that g1 = g2m. Then

g1([n]) = [g1ng−11 ] = [g2mnm−1g−12 ] = g2([mnm−1]) = g2([n])

so (π(g1))([n]) = (π(g2))([n]). Hence this action is well-defined.

6) Construct two non-isomorphic, non-abelian groups of order 168, each of which contains a normal abelian subgroup

of order 8.

Consider G1 = Z8 × (Z7 ⋊Z3) and G2 = (Z2 ×Z2 ×Z2) × (Z7 ⋊Z3).
Since there is an injective homomorphism ϕ ∶ Z3 → Aut(Z7), with ϕm ∈ Aut(Z7) mapping n ∈ Z7 to 2mn ∈ Z7, we

have (Z7 ⋊ Z3) ∶= {(n, m) ∶ n ∈ Z7, m ∈ Z3}, with (n1, m1) (n2, m2) = (n1 ϕm1(n2), m1m2). Observe that (Z7 ⋊ Z3)
is non-abelian; e.g., ([1], [1]) ([1], [0]) = ([3], [1]) ≠ ([2], [1]) = ([1], [0]) ([1], [1]).
Thus, for G1, we have:

• The order of G1 is ∣G1∣ = ∣Z8 × (Z7 ⋊Z3)∣ = ∣Z8∣ ∣Z7 ⋊Z3∣ = 8 ⋅ 21 = 168.

• G1 is non-abelian, since (Z7 ⋊Z3) is isomorphic to a subgroup of G1, and (Z7 ⋊Z3) is non-abelian.

• G1 contains a normal abelian subgroup of order 8: Define the subgroup H1 ∶= Z8 × {([0], [0])} ⊆ G1; we have

∣H1∣ = 8. For any (a, [n], [m]) ∈ G1 and (b, [0], [0]) ∈H1, we have

(a, [n], [m]) (b, [0], [0]) = (a + b, [n], [m]) = (b + a, [n], [m]) = (b, [0], [0]) ⋅ (a, [n], [m])

that is, the elements of H1 commute with every element in G1. This certainly implies that H1 ◁G1.

Similarly, for G2, we have:

• The order of G2 is ∣G2∣ = ∣(Z2 ×Z2 ×Z2) × (Z7 ⋊Z3)∣ = ∣Z2 ×Z2 ×Z2∣ ∣Z7 ⋊Z3∣ = 8 ⋅ 21 = 168.

• G2 is non-abelian, since (Z7 ⋊Z3) is isomorphic to a subgroup of G1, and (Z7 ⋊Z3) is non-abelian.

• G2 contains a normal abelian subgroup of order 8: Define the subgroup H2 ∶= (Z2×Z2×Z2)×{([0], [0])} ⊆ G2;

we have ∣H2∣ = 8. By the same reason as above, the elements of H2 commute with every element of G2, which

implies that H2 ◁G2.

Finally, we observe that ([1], [0], [0]) ∈ G1 has order 8. The possible orders in (Z2 × Z2 × Z2) are 1 and 2, and by

Lagrange’s theorem the possible orders in (Z7 ⋊Z3) are 1, 3, 7, 21; so no element in G2 can have order 8. This shows

that G1 is not isomorphic to G2.

3



7) Show that there are no simple groups of order 38 and 40.

In a group of order 38 = 2 ⋅ 19, there must by Sylow’s theorems exist a subgroup of order 19; but this is a sub-

group of index 2, which must be normal. Hence a group of order 38 cannot be simple.

In a group of order 40 = 23 ⋅5, the Sylow 5-subgroups are subgroups of order 5; and by Sylow’s theorems, the number

of Sylow 5-subgroups must be a divisor of 40/5 = 8 which is congruent to 1 (mod 5). Thus, there is a unique subgroup

of order 5, so it must be normal. Hence a group of order 40 cannot be simple.

8) Let p be a prime number and let G be a finite p-group. Write down the steps of the proof that G is solvable.

Say G has order pn and give a proof by induction on n. For n = 0 there is nothing to prove. For the inductive

step, it suffices to show that G has non-trivial normal subgroup 1 ≠ N �G, N ≠ G, since then by induction G/N and

N will be solvable, and from this it follows that so is G. To do this, use the class equation to prove that Z(G) ≠ 1:

#Z(G) = #G − ∑
non-trivial orbitsO

#O

and the right hand side is divisible by p hence so is the left. Now we have two cases. Either Z(G) ≠ G, in which case

Z(G) is the sought after normal subgroup, or Z(G) = G, in which case G is abelian, hence solvable.

9) Write down the class equation for the groups K4,Q8, and S4.

K4 is abelian of order 4 so the conjugacy classes are all singletons and Z(K4) = K4. Thus the class equation

reads 4 = #K4 = #Z(K4) = 4 here. Q8 has center {±1} and the non-trivial conjugacy classes are {±i},{±j},{±k}
(use that for all x, y ∈ Q8, either xy = yx or xy = −1yx). Thus equation reads 8 = 2 + 2 + 2 + 2, where the first 2 is

the order of the center and the other three are the orders of the non-trivial conjugacy classes. Finally, the conjugacy

classes of S4 correspond to the partitions of 4. These are

4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

There are 6 = 4!/4 4-cycles, 8 = 4 ⋅3 ⋅2/3 3-cycles, 3 = 4!/(2 ⋅2 ⋅2) permutations of type (2,2), 6 = 4 ⋅3/2 transpositions,

and only the identity is in the remaining conjugacy class. The center of Sn is trivial for n ≥ 3, so the class equation

reads

24 = 4! = 6 + 8 + 3 + 6 + 1

Note, the key to counting these is that there are k distinct representations of a k-cycle as for instance (1 . . . k) =
(2 . . . k1) = (3 . . . k12) = ⋯(k1 . . . k − 1). For a product of two distinct transpositions we have to divide by an extra 2

because e.g. (12)(34) = (34)(12).

10) Let G be a group, let H ⊆ G,K ⊴ G two subgroups, with K normal. Suppose the derived subgroup D(H) ⊂ H
is strictly smaller than H and H ∩K = {e}.

Prove that HK has a normal subgroup J such that HK/J is abelian and ∣HK/J ∣ > 1.

By the second isomorphism theorem, HK/K ≅ H/H ∩K = H, thus we know D(HK/K) is strictly smaller than

HK/K. Set J = π−1(D(HK/K)) where π ∶HK →HK/K is the canonical map. ThenHK/J ≅ (HK/K)/(D(HK/K))
by the third isomorphism theorem, and we know the right hand group is abelian of order > 1.
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