
QUICK NOTES ON PERMUTATION GROUPS

1. Definitions

By a permutation of the set S, we mean a bijective function σ : S → S.
This definition will only be used when S is a finite set. Let n ∈ N. The
symmetric group on n letters is the group of all permutations of the set
{1, 2, . . . , n}. (The terminology is classical; the “letters” are in fact numbers,
although they could be any objects whatsoever.)

It is well known that there are n! = n · (n− 1) · (n− 2) · · · · (3) · (2) · (1)
permutations of a collection X = {x0, . . . , xn−1} of n elements. Here is the
argument: let σ be a permutation of X. There are n choices for σ(x0).
Then σ(x1) ∈ X \ {σ(x0)}, which has n − 1 elements. Similarly, at the ith
stage, there are n− i choices for σ(xi). Thus the total number of choices is
precisely n!.

We see that the symmetric group has n! elements. However, it is denoted
Sn – or Sn, if we want to be old-fashioned – and this is the only exception
to our rule that a group denoted Hm has m elements. An element σ ∈ Sn is
traditionally denoted by a matrix with n columns and 2 rows, where the top
row is always

(
1 2 . . . n− 1 n

)
, and the second row shows the effect

of the permutation, like this:

σ =

(
1 2 . . . n− 1 n

σ(1) σ(2) . . . σ(n− 1) σ(n)

)
Thus if n = 4, the permutation

σ =

(
1 2 3 4
2 4 1 3

)
takes 1 to 2, 2 to 4, 3 to 1, and 4 to 3.

Another way to represent this permutation is

1 → 2 → 4 → 3 → 1,

but this notation only works if all the numbers are in a single cycle. This
leads to the introduction of cycle notation.

2. Cycle decomposition of a permutation

Suppose X is the set {1, 2, . . . , n}. Let X1 ⊂ X, with |X1| = n1. Suppose
σ ∈ Sn is a permutation with the following property: we can label the
elements of X1 a1, . . . , an1 in such a way that

σ(a1) = a2;σ(a2) = a3; . . . σ(ai) = ai+1 . . . σ(an1) = a1;
1
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and σ(a) = a if a ∈ X \ X1. Then σ is said to be a cycle, or an n1-cycle,
and can be written

σ = (a1, a2, . . . , an1).

Theorem 2.1. Any permutation σ ∈ Sn has a cycle decomposition. Pre-
cisely, there is a unique partition

X = X1
∐

X2
∐
· · ·
∐

Xr

of X into r disjoint subsets, with nj = |Xj | and

n = n1 + n2 + · · ·+ nr,

and for each j, an nj-cycle

σj = (aj1, a
j
2, . . . , a

j
nj

)

where Xj = {aj1, a
j
2, . . . , a

j
nj}, such that

σ = σ1 · σ2 · · · · · σr.

For example, if σ =

(
1 2 3 4
2 4 1 3

)
as above, then σ =

(
1 2 4 3

)
is

itself a 4-cycle. On the other hand, if

τ =

(
1 2 3 4
3 4 1 2

)
then

τ =
(
1 3

) (
2 4

)
is a product of two 2-cycles.

To simplify notation we omit 1-cycles; thus when n = 4, we write(
1 4 2

)
instead of (

1 4 2
) (

3
)
.

Important fact: disjoint cycles commute. For example if

ρ =
(
1 4 2

) (
3 5

)
,

we can also write

ρ =
(
3 5

) (
1 4 2

)
;

it doesn’t matter how the cycles are ordered. In the above example,

τ =
(
1 3

) (
2 4

)
=
(
2 4

) (
1 3

)
.

Above we wrote

σ = σ1 · σ2 · · · · · σr
but we could write

σ = σi1 · σi2 · · · · · σir
for any ordering (permutation!) of the indices 1, 2, . . . , r.
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Proof of the theorem. This is best understood using the notion of orbit. The
orbits of σ are the subsets Xj ∈ X such that, for any x 6= y ∈ Xj , there is
an integer m > 0 such that σm(x) = y, and if x ∈ Xj then σ(x) ∈ Xj . In
other words, setting nj = |Xj |, for for any x ∈ Xj , σnj (x) = x and Xj is a
set of the form

{x, σ(x), σ2(x), . . . σnj−1(x)}
for any x ∈ Xj . We define a relation on X: we say xRσy if there exists some
m > 0 such that σm(x) = y. This is an equivalence relation:

(reflexive) Since Sn is a finite group, σM = e for some m > 0; then σM (x) = x
for all x.

(symmetric) If σm(x) = y then σ−m(y) = x, but σ−m = σM−m = σdM−m for any
d, and for d sufficiently large dM −m > 0.

(transitive) If σm(x) = y and σm
′
(y) = z then σm+m′

(x) = z.

The equivalence classes for the relation Rσ are precisely the orbits of σ.
They define a partition of X. For each j σ induces a permutation σj of Xj

that fixes all the Xi, i 6= j. Then σ =
∏
j σj (in any order).

�

3. Multiplying permutations

This is potentially the most confusing aspect of the theory of the sym-
metric group. Suppose σ, τ ∈ Sn. Then σ · τ is a permutation in Sn, with
the property that, for any i ∈ {1, 2, . . . , n}

σ · τ(i) = σ(τ(i)).

In other words, multiplication in Sn is just composition of (bijective) func-
tions from {1, 2, . . . , n} to {1, 2, . . . , n}: σ · τ = σ ◦ τ . Since every σ ∈ Sn is
bijective, it has an inverse function which also belongs to Sn. Of course the
identity permutation, that takes each i to itself, is in Sn. Finally, composi-
tion of functions is associative:

f ◦ (g ◦ h) = (f ◦ g) ◦ h

for any triple of functions f, g, h. Thus multiplication in Sn is associative,
and Sn is indeed a group.

So far, so good. The confusion sets in when it comes time to multiply

σ =

(
1 2 . . . n− 1 n

σ(1) σ(2) . . . σ(n− 1) σ(n)

)
by

τ =

(
1 2 . . . n− 1 n

τ(1) τ(2) . . . τ(n− 1) τ(n)

)
.

The matrix notation does not help; how would you multiply two 2 × n
matrices with the same top row? There are some shortcuts – for example,
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see the top of p. 28 of Howie’s notes – but the simplest way to answer the
question is to illustrate it with an example. Suppose n = 4,

σ =

(
1 2 3 4
2 4 1 3

)
;

τ =

(
1 2 3 4
4 1 3 2

)
.

We compute: σ · τ(1) = σ(τ(1)) = σ(4) = 3. Similarly, σ · τ(2) = σ(1) = 2;
σ · τ(3) = σ(3) = 1; and σ · τ(4) = σ(2) = 4. Thus

σ · τ =

(
1 2 3 4
3 2 1 4

)
.

Multiplication is not more obvious in cycle notation. We have

σ =
(
1 2 4 3

)
; τ =

(
1 4 2

)
and

σ · τ =
(
1 3

)
(=
(
1 3

) (
2
) (

4
)
).

Howie’s notes also suggests a shortcut for computing σ−1 on p. 28. Here
the cycle notation can be more helpful.

4. Conjugacy classes

We can define an equivalence relation ∼ on Sn: two permutations σ, σ′ ∈
Sn satisfy σ ∼ σ′ if and only if their cycle

Theorem 4.1. Suppose σ, σ′ ∈ Sn both have cycle decompositions with par-
tition n = n1 + n2 + · · ·+ nr. Then there exists λ ∈ Sn such that

σ′ = λσλ−1.

Thus Sn has a partition according to the shape of the cycle decomposition.

Proof. Say X = {1, . . . , n} as before. We write X =
∐
iX

i =
∐
i Y

i where
the Xi are the orbits of σ and the Y i are the orbits of σ′. We can order
the partitions so that |Xi| = |Y i| = ni for each i. We define λ1 to be any
element of Sn such that λ1(X

i) = Y i for every i. (For example, if n = 5 and
we have

X1 = {1, 3, 4}, X2 = {2, 5}; Y 1 = {1, 2, 5}, Y 2 = {3, 4},

then we can let

λ0 =

(
1 2 3 4 5
1 3 2 5 4

)
.)

Then for all i,

λ0σλ
−1
0 (Y i) = λ0 ◦ σ(Xi) = λ0(X

i) = Y i.

Replacing σ by λ0σλ
−1
0 , it follows that we can assume Xi = Y i for all i.
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We write σ =
∏
i σi, σ

′ =
∏
i σ
′
i, where each σi, σ

′
i is a cycle whose orbit

is Xi. Now for each i, it suffices to find λi such that

λiσiλ
−1
i = σ′i.

In other words, we may replace X by each Xi separately, or (by induction)
we may assume X = Xi and σ and σ′ are n-cycles. We carry out the first
in order to show the computation in detail.

So suppose

σi = (a1(i), a2(i), . . . , ani(i)); σ
′ = (a′1(i), a

′
2(i), . . . , a

′
ni

(i)).

In other words, σ(aj(i)) = aj+1(i), σ
′(a′j(i)) = a′j+1(i), and σ(ani(i)) =

a1(i). Define λi to be the permutation

λi(aj(i)) = a′j(i), j = 1, . . . , ni.

Then
λiσiλ

−1
i (a′j(i)) = λ ◦ σ(aj(i)) = λ(aj+1(i)) = a′j+1(i).

It follows that λiσiλ
−1
i = σ′i for each i.

Now setting

λ =
∏
i

λi · λ0,

we verify easily that
λσλ−1 = σ′.

�

5. Transpositions

A transposition in Sn is a cycle of the form τij =
(
i j

)
where 1 ≤ i 6=

j ≤ n. In other words, τij exchanges i and j and leaves the other numbers
unchanged. Then obviously τij · τij is the identity element e.

We will see later in the course that every σ ∈ Sn can be written as
a product of transpositions. This product expression is not unique – for
example, the identity element e can be written τij ·τij ·τij ·τij and in infinitely
many other ways – it suffices to keep adding pairs of τij . What is unique,
however, is the sign of σ.

Theorem 5.1. If σ can be written in one way as a product of an even num-
ber of transpositions, then every such expression for σ has an even number
of transpositions.

It follows that if σ can be written in one way as an odd number of transpo-
sitions then every such expression for σ has an odd number of transpositions.
We define the sign of σ, denoted sgn(σ) to be 1 if it can be written as a
product of an even number of transpositions, and −1 if it can be written as
a product of an odd number of transpositions. In particular sgn(τij) = −1
for any i 6= j.

We say τij is an adjacent transposition if j = i + 1. It can be shown
that every σ ∈ Sn can be written as a product of adjacent transpositions.
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The length of σ is then the shortest expression of σ as a product of adjacent
transpositions. We will not be discussing length in this course.

6. Parting suggestion

The site https://www.wolframalpha.com/examples/mathematics/discrete-mathematics/
combinatorics/permutations/ has many examples.


