QUICK NOTES ON PERMUTATION GROUPS

1. Definitions

By a permutation of the set S, we mean a bijective function $\sigma: S \rightarrow S$. This definition will only be used when S is a finite set. Let $n \in \mathbb{N}$. The symmetric group on n letters is the group of all permutations of the set $\{1,2, \ldots, n\}$. (The terminology is classical; the "letters" are in fact numbers, although they could be any objects whatsoever.)

It is well known that there are $n!=n \cdot(n-1) \cdot(n-2) \cdots \cdot(3) \cdot(2) \cdot(1)$ permutations of a collection $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ of n elements. Here is the argument: let σ be a permutation of X. There are n choices for $\sigma\left(x_{0}\right)$. Then $\sigma\left(x_{1}\right) \in X \backslash\left\{\sigma\left(x_{0}\right)\right\}$, which has $n-1$ elements. Similarly, at the i th stage, there are $n-i$ choices for $\sigma\left(x_{i}\right)$. Thus the total number of choices is precisely n !.

We see that the symmetric group has n ! elements. However, it is denoted $S_{n}-$ or \mathfrak{S}_{n}, if we want to be old-fashioned - and this is the only exception to our rule that a group denoted H_{m} has m elements. An element $\sigma \in S_{n}$ is traditionally denoted by a matrix with n columns and 2 rows, where the top row is always $\left(\begin{array}{lllll}1 & 2 & \ldots & n-1 & n\end{array}\right)$, and the second row shows the effect of the permutation, like this:

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n-1) & \sigma(n)
\end{array}\right)
$$

Thus if $n=4$, the permutation

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)
$$

takes 1 to 2 , 2 to 4,3 to 1 , and 4 to 3 .
Another way to represent this permutation is

$$
1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1
$$

but this notation only works if all the numbers are in a single cycle. This leads to the introduction of cycle notation.

2. Cycle decomposition of a permutation

Suppose X is the set $\{1,2, \ldots, n\}$. Let $X^{1} \subset X$, with $\left|X^{1}\right|=n_{1}$. Suppose $\sigma \in S_{n}$ is a permutation with the following property: we can label the elements of $X^{1} a_{1}, \ldots, a_{n_{1}}$ in such a way that

$$
\sigma\left(a_{1}\right)=a_{2} ; \sigma\left(a_{2}\right)=a_{3} ; \ldots \sigma\left(a_{i}\right)=a_{i+1} \ldots \sigma\left(a_{n_{1}}\right)=a_{1}
$$

and $\sigma(a)=a$ if $a \in X \backslash X^{1}$. Then σ is said to be a cycle, or an n_{1}-cycle, and can be written

$$
\sigma=\left(a_{1}, a_{2}, \ldots, a_{n_{1}}\right)
$$

Theorem 2.1. Any permutation $\sigma \in S_{n}$ has a cycle decomposition. Precisely, there is a unique partition

$$
x=x^{1} \amalg^{x^{2}} \amalg^{\cdots} \amalg^{x}
$$

of X into r disjoint subsets, with $n_{j}=\left|X^{j}\right|$ and

$$
n=n_{1}+n_{2}+\cdots+n_{r}
$$

and for each j, an n_{j}-cycle

$$
\sigma_{j}=\left(a_{1}^{j}, a_{2}^{j}, \ldots, a_{n_{j}}^{j}\right)
$$

where $X^{j}=\left\{a_{1}^{j}, a_{2}^{j}, \ldots, a_{n_{j}}^{j}\right\}$, such that

$$
\sigma=\sigma_{1} \cdot \sigma_{2} \cdots \sigma_{r}
$$

For example, if $\sigma=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{array}\right)$ as above, then $\sigma=\left(\begin{array}{llll}1 & 2 & 4 & 3\end{array}\right)$ is itself a 4-cycle. On the other hand, if

$$
\tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)
$$

then

$$
\tau=\left(\begin{array}{lll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)
$$

is a product of two 2-cycles.
To simplify notation we omit 1-cycles; thus when $n=4$, we write

$$
\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right)
$$

instead of

$$
\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right)(3) .
$$

Important fact: disjoint cycles commute. For example if

$$
\rho=\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 5
\end{array}\right),
$$

we can also write

$$
\rho=\left(\begin{array}{ll}
3 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right) ;
$$

it doesn't matter how the cycles are ordered. In the above example,

$$
\tau=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)=\left(\begin{array}{ll}
2 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right)
$$

Above we wrote

$$
\sigma=\sigma_{1} \cdot \sigma_{2} \cdots \cdot \sigma_{r}
$$

but we could write

$$
\sigma=\sigma_{i_{1}} \cdot \sigma_{i_{2}} \cdots \cdot \sigma_{i_{r}}
$$

for any ordering (permutation!) of the indices $1,2, \ldots, r$.

Proof of the theorem. This is best understood using the notion of orbit. The orbits of σ are the subsets $X^{j} \in X$ such that, for any $x \neq y \in X^{j}$, there is an integer $m>0$ such that $\sigma^{m}(x)=y$, and if $x \in X^{j}$ then $\sigma(x) \in X^{j}$. In other words, setting $n_{j}=\left|X_{j}\right|$, for for any $x \in X^{j}, \sigma^{n_{j}}(x)=x$ and X^{j} is a set of the form

$$
\left\{x, \sigma(x), \sigma^{2}(x), \ldots \sigma^{n_{j}-1}(x)\right\}
$$

for any $x \in X_{j}$. We define a relation on X : we say $x R_{\sigma} y$ if there exists some $m>0$ such that $\sigma^{m}(x)=y$. This is an equivalence relation:
(reflexive) Since S_{n} is a finite group, $\sigma^{M}=e$ for some $m>0$; then $\sigma^{M}(x)=x$ for all x.
(symmetric) If $\sigma^{m}(x)=y$ then $\sigma^{-m}(y)=x$, but $\sigma^{-m}=\sigma^{M-m}=\sigma^{d M-m}$ for any d, and for d sufficiently large $d M-m>0$.
(transitive) If $\sigma^{m}(x)=y$ and $\sigma^{m^{\prime}}(y)=z$ then $\sigma^{m+m^{\prime}}(x)=z$.
The equivalence classes for the relation R_{σ} are precisely the orbits of σ. They define a partition of X. For each $j \sigma$ induces a permutation σ_{j} of X^{j} that fixes all the $X^{i}, i \neq j$. Then $\sigma=\prod_{j} \sigma_{j}$ (in any order).

3. Multiplying permutations

This is potentially the most confusing aspect of the theory of the symmetric group. Suppose $\sigma, \tau \in S_{n}$. Then $\sigma \cdot \tau$ is a permutation in S_{n}, with the property that, for any $i \in\{1,2, \ldots, n\}$

$$
\sigma \cdot \tau(i)=\sigma(\tau(i)) .
$$

In other words, multiplication in S_{n} is just composition of (bijective) functions from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}: \sigma \cdot \tau=\sigma \circ \tau$. Since every $\sigma \in S_{n}$ is bijective, it has an inverse function which also belongs to S_{n}. Of course the identity permutation, that takes each i to itself, is in S_{n}. Finally, composition of functions is associative:

$$
f \circ(g \circ h)=(f \circ g) \circ h
$$

for any triple of functions f, g, h. Thus multiplication in S_{n} is associative, and S_{n} is indeed a group.

So far, so good. The confusion sets in when it comes time to multiply

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n-1) & \sigma(n)
\end{array}\right)
$$

by

$$
\tau=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
\tau(1) & \tau(2) & \ldots & \tau(n-1) & \tau(n)
\end{array}\right) .
$$

The matrix notation does not help; how would you multiply two $2 \times n$ matrices with the same top row? There are some shortcuts - for example,
see the top of p. 28 of Howie's notes - but the simplest way to answer the question is to illustrate it with an example. Suppose $n=4$,

$$
\begin{aligned}
\sigma & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right) \\
\tau & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right)
\end{aligned}
$$

We compute: $\sigma \cdot \tau(1)=\sigma(\tau(1))=\sigma(4)=3$. Similarly, $\sigma \cdot \tau(2)=\sigma(1)=2$; $\sigma \cdot \tau(3)=\sigma(3)=1$; and $\sigma \cdot \tau(4)=\sigma(2)=4$. Thus

$$
\sigma \cdot \tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)
$$

Multiplication is not more obvious in cycle notation. We have

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 4 & 3
\end{array}\right) ; \tau=\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right)
$$

and

$$
\sigma \cdot \tau=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(=\left(\begin{array}{ll}
1 & 3
\end{array}\right)(2)(4)\right)
$$

Howie's notes also suggests a shortcut for computing σ^{-1} on p. 28. Here the cycle notation can be more helpful.

4. Conjugacy classes

We can define an equivalence relation \sim on S_{n} : two permutations $\sigma, \sigma^{\prime} \in$ S_{n} satisfy $\sigma \sim \sigma^{\prime}$ if and only if their cycle

Theorem 4.1. Suppose $\sigma, \sigma^{\prime} \in S_{n}$ both have cycle decompositions with partition $n=n_{1}+n_{2}+\cdots+n_{r}$. Then there exists $\lambda \in S_{n}$ such that

$$
\sigma^{\prime}=\lambda \sigma \lambda^{-1}
$$

Thus S_{n} has a partition according to the shape of the cycle decomposition.
Proof. Say $X=\{1, \ldots, n\}$ as before. We write $X=\coprod_{i} X^{i}=\coprod_{i} Y^{i}$ where the X^{i} are the orbits of σ and the Y^{i} are the orbits of σ^{\prime}. We can order the partitions so that $\left|X^{i}\right|=\left|Y^{i}\right|=n_{i}$ for each i. We define λ_{1} to be any element of S_{n} such that $\lambda_{1}\left(X^{i}\right)=Y^{i}$ for every i. (For example, if $n=5$ and we have

$$
X^{1}=\{1,3,4\}, X^{2}=\{2,5\} ; Y^{1}=\{1,2,5\}, Y^{2}=\{3,4\}
$$

then we can let

$$
\left.\lambda_{0}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 2 & 5 & 4
\end{array}\right) .\right)
$$

Then for all i,

$$
\lambda_{0} \sigma \lambda_{0}^{-1}\left(Y^{i}\right)=\lambda_{0} \circ \sigma\left(X^{i}\right)=\lambda_{0}\left(X^{i}\right)=Y^{i}
$$

Replacing σ by $\lambda_{0} \sigma \lambda_{0}^{-1}$, it follows that we can assume $X^{i}=Y^{i}$ for all i.

We write $\sigma=\prod_{i} \sigma_{i}, \sigma^{\prime}=\prod_{i} \sigma_{i}^{\prime}$, where each $\sigma_{i}, \sigma_{i}^{\prime}$ is a cycle whose orbit is X^{i}. Now for each i, it suffices to find λ_{i} such that

$$
\lambda_{i} \sigma_{i} \lambda_{i}^{-1}=\sigma_{i}^{\prime}
$$

In other words, we may replace X by each X^{i} separately, or (by induction) we may assume $X=X^{i}$ and σ and σ^{\prime} are n-cycles. We carry out the first in order to show the computation in detail.

So suppose

$$
\sigma_{i}=\left(a_{1}(i), a_{2}(i), \ldots, a_{n_{i}}(i)\right) ; \sigma^{\prime}=\left(a_{1}^{\prime}(i), a_{2}^{\prime}(i), \ldots, a_{n_{i}}^{\prime}(i)\right)
$$

In other words, $\sigma\left(a_{j}(i)\right)=a_{j+1}(i), \sigma^{\prime}\left(a_{j}^{\prime}(i)\right)=a_{j+1}^{\prime}(i)$, and $\sigma\left(a_{n_{i}}(i)\right)=$ $a_{1}(i)$. Define λ_{i} to be the permutation

$$
\lambda_{i}\left(a_{j}(i)\right)=a_{j}^{\prime}(i), j=1, \ldots, n_{i}
$$

Then

$$
\lambda_{i} \sigma_{i} \lambda_{i}^{-1}\left(a_{j}^{\prime}(i)\right)=\lambda \circ \sigma\left(a_{j}(i)\right)=\lambda\left(a_{j+1}(i)\right)=a_{j+1}^{\prime}(i)
$$

It follows that $\lambda_{i} \sigma_{i} \lambda_{i}^{-1}=\sigma_{i}^{\prime}$ for each i.
Now setting

$$
\lambda=\prod_{i} \lambda_{i} \cdot \lambda_{0}
$$

we verify easily that

$$
\lambda \sigma \lambda^{-1}=\sigma^{\prime}
$$

5. Transpositions

A transposition in S_{n} is a cycle of the form $\tau_{i j}=\left(\begin{array}{ll}i & j\end{array}\right)$ where $1 \leq i \neq$ $j \leq n$. In other words, $\tau_{i j}$ exchanges i and j and leaves the other numbers unchanged. Then obviously $\tau_{i j} \cdot \tau_{i j}$ is the identity element e.

We will see later in the course that every $\sigma \in S_{n}$ can be written as a product of transpositions. This product expression is not unique - for example, the identity element e can be written $\tau_{i j} \cdot \tau_{i j} \cdot \tau_{i j} \cdot \tau_{i j}$ and in infinitely many other ways - it suffices to keep adding pairs of $\tau_{i j}$. What is unique, however, is the sign of σ.
Theorem 5.1. If σ can be written in one way as a product of an even number of transpositions, then every such expression for σ has an even number of transpositions.

It follows that if σ can be written in one way as an odd number of transpositions then every such expression for σ has an odd number of transpositions. We define the sign of σ, denoted $\operatorname{sgn}(\sigma)$ to be 1 if it can be written as a product of an even number of transpositions, and -1 if it can be written as a product of an odd number of transpositions. In particular $\operatorname{sgn}\left(\tau_{i j}\right)=-1$ for any $i \neq j$.

We say $\tau_{i j}$ is an adjacent transposition if $j=i+1$. It can be shown that every $\sigma \in S_{n}$ can be written as a product of adjacent transpositions.

The length of σ is then the shortest expression of σ as a product of adjacent transpositions. We will not be discussing length in this course.

6. Parting SugGestion

The site https://www.wolframalpha.com/examples/mathematics/discrete-mathematics/ combinatorics/permutations/ has many examples.

