Algebra 1 Midterm 1 Solutions

Noah Olander, Anton Wu, and Iris Rosenblum-Sellers

April 1, 2020

1) True or False:

a) For any three sets A, B, C,

$$A \smallsetminus (B \cap C) = (A \smallsetminus B) \cup (A \smallsetminus C)$$

True: $x \in A \setminus (B \cap C) \iff x \in A$ and $x \notin B \cap C \iff x \in A$ and $x \notin B$ or $x \notin C \iff x \in A, x \notin B$ or $x \in A, x \in A, x \in A$ or $x \in A, x \in A, x \in A$ or $x \in A, x \in A, x \in A$ or $x \in A, x \in A, x \in A, x \in A$ or $x \in A, x \in A, x \in A, x \in A, x \in A$ or $x \in A, x \in A$

b) If H and J are subgroups of a group G, then so is $H \cup J$.

False: For example, take $H = 2\mathbf{Z}$ and $J = 3\mathbf{Z}$, both subgroups of \mathbf{Z} . Then 5 = 2 + 3 but $2, 3 \in 2\mathbf{Z} \cup 3\mathbf{Z}$ and 5 isn't.

c) $108 \equiv -3 \pmod{37}$

True: $108 + 3 = 3 \cdot 37$.

d) Let A, B, C be sets, and let $f : A \to B$ be injective and $g : B \to C$ surjective. Then $g \circ f : A \to C$ is bijective. False: Take $A = B = \{1, 2\}, C = \{1\}$, and let f be the identity and g the unique function $B \to C$ (i.e. g(1) = g(2) = 1. e) Let $f : \mathbb{Z}_5 \to \mathbb{Z}_5$ be the function which takes [n] to [3n]. Then f is a bijection.

True: It's inverse is the function g which takes [n] to [2n]. Compute fg([n]) = gf([n]) = [6n] = [n].

2) a) (i) 41 + 76 ≡ 12 (mod 35)
(ii) 100000000001² ≡ 1 (mod 10)

b) List the elements of \mathbb{Z}_6 that are *not* generators. These are the [n] such that $(6, n) \neq 1$. That is, [0], [2], [3], [4].

3) Which of the following is an equivalence relation? Justify your answer.

a) On the set X of residents of New York City, we say $a \sim b$ if a and b live on the same street.

This is an equivalence relation. We check reflexivity: it is clear that a person lives on the same street as themself. Transitivity: If two people a and b live on the same street, call that street α ; then if b lives on the same street as a person c, person c must live on α , so a and c live on the same street as well. Symmetry: let a and b live on α again; we see that b lives on α , and so does a, so $b \sim a$ if $a \sim b$.

b) Let N be an integer. On the set N of natural numbers, we say $a \sim b$ if gcd(a, N) = gcd(b, N).

This is an equivalence relation. We check reflexivitity: it is clear that gcd(a, N) = gcd(a, N). Likewise, symmetry: $a \sim b \Rightarrow gcd(a, N) = gcd(b, N) \Rightarrow gcd(b, N) = gcd(a, N) \Rightarrow b \sim a$. Finally, transitivity: if gcd(a, N) = gcd(b, N), and gcd(b, N) = gcd(c, N), then by transitivity of equality, we have gcd(a, N) = gcd(c, N).

c) On the set \mathbb{C} of complex numbers, we say $a \sim b$ if a - b is the square of an integer.

This is not an equivalence relation because it's not symmetric; if a = 2, b = 1, then we have $a - b = 2 - 1 = 1 = 1^2$, so $a \sim b$. However, b - a = 1 - 2 = -1, which is not the square of an integer, so $b \neq a$.

4) Let G be a group, and let g, h, j be elements of G. Prove carefully that if jghj = jhgj, then g and h commute.

Proof. Let the setup be as given. Then jghj = jhgj := z. Then since G is a group, let j^{-1} be the inverse of j; the unique element such that $jj^{-1} = j^{-1}j = e$, where e is the identity. $j^{-1}zj^{-1} = j^{-1}zj^{-1}$, since they are equal termwise; i.e. $j^{-1} = j^{-1}, z = z$, so their products are equal since the binary operation given by the product is uniquely valued. Then z = jghj = jhgj, so $j^{-1}jghjj^{-1} = j^{-1}jhgjj^{-1}$, by the same principle. Then by definition of j^{-1} , we have $j^{-1}j = jj^{-1} = e$, so eghe = ehge. Then by definition of the identity, e(ghe) = ghe, and e(hge) = hge, so ghe = hge. Finally, by definition of the identity, we have (gh)e = gh, (hg)e = hg, so gh = hg, so they commute.

5)

a) Let \mathbb{R}^{\times} be the group of non-zero real numbers under multiplication. Find a finite subgroup of \mathbb{R}^{\times} that contains more than one element.

A finite subgroup of \mathbb{R}^{\times} containing more than one element is $\langle -1 \rangle = \{1, -1\}$; one easily verifies that $\langle -1 \rangle$ is closed under multiplication, contains 1, and contains inverses.

b) Show that the subgroup found in (a) and the subgroup with one element are the only finite subgroups of \mathbb{R}^{\times} .

Suppose $G \neq \{1\}$, $\{1, -1\}$ is another finite subgroup of \mathbb{R}^{\times} . Then $1 \in G$ by the properties of subgroups, and thus G must contain at least one other element $x \neq -1$, to distinguish it from $\{1\}$ and $\{1, -1\}$. But then $x^n \neq 1$ for any n (as roots of unity must have absolute value 1), so the cyclic subgroup generated by x is infinite. Since $\langle x \rangle \subseteq G$, we see that G must, too, be infinite, a contradiction.

Hence $\{1\}$ and $\{1, -1\}$ are the only finite subgroups of \mathbb{R}^{\times} .

6) List the sets of cyclic subgroups of $\mathbb{Z}_3 \times \mathbb{Z}_3$ and of $\mathbb{Z}_3 \times \mathbb{Z}_2$.

The cyclic subgroups of $\mathbb{Z}_3 \times \mathbb{Z}_3$ are

$$\langle (0, 0) \rangle = \{ (0, 0) \}$$

$$\langle (0, 1) \rangle = \langle (0, 2) \rangle = \{ (0, 0), (0, 1), (0, 2) \}$$

$$\langle (1, 0) \rangle = \langle (2, 0) \rangle = \{ (0, 0), (1, 0), (2, 0) \}$$

$$\langle (1, 1) \rangle = \langle (2, 2) \rangle = \{ (0, 0), (1, 1), (2, 2) \}$$

$$\langle (1, 2) \rangle = \langle (2, 1) \rangle = \{ (0, 0), (1, 2), (2, 1) \}$$

and the cyclic subgroups of $\mathbb{Z}_3 \times \mathbb{Z}_2$ are

$$\langle (0, 0) \rangle = \{ (0, 0) \}$$

$$\langle (0, 1) \rangle = \{ (0, 0), (0, 1) \}$$

$$\langle (1, 0) \rangle = \langle (2, 0) \rangle = \{ (0, 0), (1, 0), (2, 0) \}$$

$$\langle (1, 1) \rangle = \langle (2, 1) \rangle = \{ (0, 0), (1, 1), (2, 0), (0, 1), (1, 0), (2, 1) \}$$

[Observe that $\mathbb{Z}_3 \times \mathbb{Z}_3$ is not cyclic, while $\mathbb{Z}_3 \times \mathbb{Z}_2 = \langle (1, 1) \rangle$ is cyclic.]