Algebra 1 Midterm 1 Solutions

Noah Olander, Anton Wu, and Iris Rosenblum-Sellers

April 1, 2020

1) True or False:
a) For any three sets A, B, C,

$$
A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)
$$

True: $x \in A \backslash(B \cap C) \Longleftrightarrow x \in A$ and $x \notin B \cap C \Longleftrightarrow x \in A$ and $x \notin B$ or $x \notin C \Longleftrightarrow x \in A, x \notin B$ or $x \in A, x \notin C \Longleftrightarrow x \in(A \backslash B) \cup(A \backslash C)$.
b) If H and J are subgroups of a group G, then so is $H \cup J$.

False: For example, take $H=2 \mathbf{Z}$ and $J=3 \mathbf{Z}$, both subgroups of \mathbf{Z}. Then $5=2+3$ but $2,3 \in 2 \mathbf{Z} \cup 3 \mathbf{Z}$ and 5 isn't.
c) $108 \equiv-3(\bmod 37)$

True: $108+3=3 \cdot 37$.
d) Let A, B, C be sets, and let $f: A \rightarrow B$ be injective and $g: B \rightarrow C$ surjective. Then $g \circ f: A \rightarrow C$ is bijective.

False: Take $A=B=\{1,2\}, C=\{1\}$, and let f be the identity and g the unique function $B \rightarrow C$ (i.e. $g(1)=g(2)=1$.
e) Let $f: \mathbf{Z}_{5} \rightarrow \mathbf{Z}_{5}$ be the function which takes $[n]$ to [3n]. Then f is a bijection.

True: It's inverse is the function g which takes $[n]$ to $[2 n]$. Compute $f g([n])=g f([n])=[6 n]=[n]$.
2) a) (i) $41+76 \equiv 12(\bmod 35)$
(ii) $1000000000001^{2} \equiv 1(\bmod 10)$
b) List the elements of \mathbf{Z}_{6} that are not generators.

These are the $[n]$ such that $(6, n) \neq 1$. That is, [0], [2], [3], [4].
3) Which of the following is an equivalence relation? Justify your answer.
a) On the set X of residents of New York City, we say $a \sim b$ if a and b live on the same street.

This is an equivalence relation. We check reflexivity: it is clear that a person lives on the same street as themself. Transitivity: If two people a and b live on the same street, call that street α; then if b lives on the same street as a person c, person c must live on α, so a and c live on the same street as well. Symmetry: let a and b live on α again; we see that b lives on α, and so does a, so $b \sim a$ if $a \sim b$.
b) Let N be an integer. On the set \mathbb{N} of natural numbers, we say $a \sim b$ if $\operatorname{gcd}(a, N)=\operatorname{gcd}(b, N)$.

This is an equivalence relation. We check reflexivitity: it is clear that $\operatorname{gcd}(a, N)=\operatorname{gcd}(a, N)$. Likewise, symmetry: $a \sim b \Rightarrow \operatorname{gcd}(a, N)=\operatorname{gcd}(b, N) \Rightarrow \operatorname{gcd}(b, N)=\operatorname{gcd}(a, N) \Rightarrow b \sim a$. Finally, transitivity: if $\operatorname{gcd}(a, N)=\operatorname{gcd}(b, N)$, and $\operatorname{gcd}(b, N)=\operatorname{gcd}(c, N)$, then by transitivity of equality, we have $\operatorname{gcd}(a, N)=\operatorname{gcd}(c, N)$.
c) On the set \mathbb{C} of complex numbers, we say $a \sim b$ if $a-b$ is the square of an integer.

This is not an equivalence relation because it's not symmetric; if $a=2, b=1$, then we have $a-b=2-1=1=1^{2}$, so $a \sim b$. However, $b-a=1-2=-1$, which is not the square of an integer, so $b \nsim a$.
4) Let G be a group, and let g, h, j be elements of G. Prove carefully that if $j g h j=j h g j$, then g and h commute.

Proof. Let the setup be as given. Then $j g h j=j h g j:=z$. Then since G is a group, let j^{-1} be the inverse of j; the unique element such that $j j^{-1}=j^{-1} j=e$, where e is the identity. $j^{-1} z j^{-1}=j^{-1} z j^{-1}$, since they are equal termwise; i.e. $j^{-1}=j^{-1}, z=z$, so their products are equal since the binary operation given by the product is uniquely valued. Then $z=j g h j=j h g j$, so $j^{-1} j g h j j^{-1}=j^{-1} j h g j j^{-1}$, by the same principle. Then by definition of j^{-1}, we have $j^{-1} j=j j^{-1}=e$, so eghe $=e h g e$. Then by definition of the identity, $e(g h e)=g h e$, and $e(h g e)=h g e$, so $g h e=h g e$. Finally, by definition of the identity, we have $(g h) e=g h,(h g) e=h g$, so $g h=h g$, so they commute.
5)
a) Let \mathbb{R}^{\times}be the group of non-zero real numbers under multiplication. Find a finite subgroup of \mathbb{R}^{\times}that contains more than one element.

A finite subgroup of \mathbb{R}^{\times}containing more than one element is $\langle-1\rangle=\{1,-1\}$; one easily verifies that $\langle-1\rangle$ is closed under multiplication, contains 1 , and contains inverses.
b) Show that the subgroup found in (a) and the subgroup with one element are the only finite subgroups of \mathbb{R}^{\times}.

Suppose $G \neq\{1\},\{1,-1\}$ is another finite subgroup of \mathbb{R}^{\times}. Then $1 \in G$ by the properties of subgroups, and thus G must contain at least one other element $x \neq-1$, to distinguish it from $\{1\}$ and $\{1,-1\}$. But then $x^{n} \neq 1$ for any n (as roots of unity must have absolute value 1), so the cyclic subgroup generated by x is infinite. Since $\langle x\rangle \subseteq G$, we see that G must, too, be infinite, a contradiction.

Hence $\{1\}$ and $\{1,-1\}$ are the only finite subgroups of \mathbb{R}^{\times}.
6) List the sets of cyclic subgroups of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and of $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$.

The cyclic subgroups of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ are

$$
\begin{aligned}
&\langle(0,0)\rangle=\{(0,0)\} \\
&\langle(0,1)\rangle=\langle(0,2)\rangle=\{(0,0),(0,1),(0,2)\} \\
&\langle(1,0)\rangle=\langle(2,0)\rangle=\{(0,0),(1,0),(2,0)\} \\
&\langle(1,1)\rangle=\langle(2,2)\rangle=\{(0,0),(1,1),(2,2)\} \\
&\langle(1,2)\rangle=\langle(2,1)\rangle=\{(0,0),(1,2),(2,1)\}
\end{aligned}
$$

and the cyclic subgroups of $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ are

$$
\begin{aligned}
&\langle(0,0)\rangle=\{(0,0)\} \\
&\langle(0,1)\rangle=\{(0,0),(0,1)\} \\
&\langle(1,0)\rangle=\langle(2,0)\rangle=\{(0,0),(1,0),(2,0)\} \\
&\langle(1,1)\rangle=\langle(2,1)\rangle=\{(0,0),(1,1),(2,0),(0,1),(1,0),(2,1)\}
\end{aligned}
$$

[Observe that $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ is not cyclic, while $\mathbb{Z}_{3} \times \mathbb{Z}_{2}=\langle(1,1)\rangle$ is cyclic.]

