GU4041: Intro to Modern Algebra I

Professor Michael Harris
Solutions by Noah Olander, Anton Wu, and Iris Rosenblum-Sellers
\section*{Midterm 2}

1) True or False? If false, provide a counterexample; if true, provide an explanation. The explanation can be brief, but it is not enough to say that the statement was explained in the course.
a) Any finite group of order $p q$, where $p<q$ are each prime, is abelian.

This is false; as a counterexample, take S_{3}, which has order $6=(2)(3)$. This is a nonabelian group; $(12)(23)=(123) \neq(132)=(23)(12)$. With a particular constraint on the values of p and q , this does hold; in particular, q cannot be equivalent to $1 \bmod \mathrm{p}$.
b) Suppose H and J are two subgroups of a group G. Then $H J \subseteq G$ is a subgroup and

$$
H / H \cap J \cong H J / J
$$

This is false; again let $G=S_{3}$. Let $H=<(12)>=\{e,(12)\}, K=<(23)>=\{e,(23)\}$. Then $H K=\{(e)(e),(e)(23),(12)(e),(12)(23)\}=\{e,(23),(12),(123)\}$. This is not a subgroup, by Lagrange's theorem, since it has order 4 . With an appropriate normality condition, this is the second isomorphism theorem.
2)
a) Write down the cycle decompositions of the following products of permutations:

$$
\begin{aligned}
& \text { i) } \left.\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 1 & 3 & 5
\end{array}\right) \cdot\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 3 & 4 & 5
\end{array}\right)^{2} \\
& (1243)(12)^{2}=(1243)(12)(12)=(1243) \\
& \text { ii) }\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 1 & 4 & 5
\end{array}\right) \cdot\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 3 & 1 & 4
\end{array}\right)^{2} \\
& \\
& (123)(1254)^{2}=(123)(1254)(1254)=(15243)
\end{aligned}
$$

b) Write each of the following permutations

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 1 & 3 & 5
\end{array}\right),\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 1 & 4 & 5
\end{array}\right)
$$

As a product of transpositions in S_{5}, and determine which belong to the alternating group A_{5}.

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 1 & 3 & 5
\end{array}\right)=(1243)=(13)(14)(12) ;\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 1 & 4 & 5
\end{array}\right)=(123)=(13)(12)
$$

So the latter one belongs to A_{5}, but the former does not.
3) Find a non-abelian group G with two distinct normal subgroups H, K of index 2 . Show that $H \cap K$ is a normal subgroup of G and that $G / H \cap K$ is an abelian group that is not cyclic.

The fact that $H \cap K$ is normal in G is true in general for normal subgroups H, K of G : We know $H \cap K$ is a subgroup, and if $x \in H \cap K, g \in G$ then $g x g^{-1} \in H$ since H is normal, and likewise for K. Thus $g x g^{-1} \in H \cap K$ and $H \cap K$ is normal.

Now we have $H \notin K$, since otherwise we'd have $[G: H]=[G: K][K: H]>[G: K]=2$. Choose $h \in H \backslash K$. Then we have $G=K \amalg h K$ since $[G: K]=2$. This implies in particular that $G=H K$. Then by the second isomorphism theorem,

$$
G / K=H K / K \cong H / H \cap K,
$$

so $[H: H \cap K]=2$. Thus $[G: H \cap K]=[G: H][H: H \cap K]=4$. But any group of order 4 is abelian, so we see that $G / H \cap K$ is abelian. To see that it is not cyclic, we can produce two distinct subgroups of order 2 . We've already seen that $H / H \cap K$ is one, and by symmetry, $K / H \cap K$ is another. These are distinct since, for instance, we have

$$
(H / H \cap K) \cdot(K / H \cap K)=G / H \cap K,
$$

since $H K=G$, whereas if they were equal their product would be a group of order 2 , not 4 .
4) For any integer $n>0$ let $A(n)$ denote the number of non-isomorphic abelian groups of order n. Consider the numbers $A(28), A(5), A(33), A(9), A(32)$. Which is largest? Which is smallest? Are any two equal? Explain.

By the fundamental theorem on finite abelian groups, the rules for computing $A(n)$ for an integer n with prime factorization $p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ are: (a) $A(n)=A\left(p_{1}^{e_{1}}\right) \times \cdots \times A\left(p_{k}^{e_{k}}\right)$, and (b) for a prime $p, A\left(p^{e}\right)$ is the number of ways of writing e as a sum of positive integers. We have $28=2^{2} \cdot 7,5=5,33=3 \cdot 11,9=3^{2}, 32=2^{5}$, thus $A(5)=1=A(33)<$ $A(9)=2=A(28)<A(32)=7$.
5) Let G be a finite group and $H \unlhd G$ and $K \unlhd G$. Suppose that $H \cap K=\{1\}$. Show that $|G| \leq[G: H][G: K]$ by constructing an injective homomorphism from G to a group of order $[G: H][G: K]$. When do we have equality?

Let $\alpha: G \rightarrow G / H$ and $\beta: G \rightarrow G / K$ be the natural maps. Note that $|G / H|=[G: H]$ and $|G / K|=[G: K]$. We know that α is a homomorphism since $\alpha\left(g_{1}\right) \alpha\left(g_{2}\right)=\left(g_{1} H\right)\left(g_{2} H\right)=g_{1} g_{2} H=\alpha\left(g_{1} g_{2}\right)$, and similarly for β. Then $(\alpha \times \beta): G \rightarrow(G / H) \times(G / K)$ is a homomorphism, and $(G / H) \times(G / K)$ is a group of order $[G: H][G: K]$. To see that $\operatorname{ker}(\alpha \times \beta)=\{1\}$, we observe that α maps g to the identity coset in G / H iff $g \in H$, and β maps g to the identity coset in G / K iff $g \in K$; thus, $(\alpha \times \beta)(g)=(H, K)$ iff $g \in(H \cap K)=\{1\}$.
Hence $(\alpha \times \beta): G \rightarrow(G / H) \times(G / K)$ is injective, so $|G| \leq|(G / H) \times(G / K)|=[G: H][G: K]$.
Equality holds iff $(\alpha \times \beta)$ is bijective. Since the given conditions imply that $(\alpha \times \beta)$ is injective, we need to find an additional condition which implies that $(\alpha \times \beta)$ is surjective.
We claim that $(\alpha \times \beta)$ is surjective if $G=H K$. For any element $(a H, b K) \in(G / H) \times(G / K)$, we want to find $s \in G$ with $(\alpha \times \beta)(s)=(a H, b K)$. We can write $a^{-1} b=h k$ for $h \in H$ and $k \in K$ (since $G=H K$); letting $s:=a h=b k^{-1} \in G$, we find $\alpha(s)=s H=a h H=a H$ and $\beta(s)=s K=b k^{-1} K=b K$, so $(\alpha \times \beta)(s)=(a H, b K)$. Hence $(\alpha \times \beta)$ is surjective. [Conversely, suppose $(\alpha \times \beta)$ is surjective; is it then true that $G=H K$? Yes. For any element $g \in G$, we can find
$s \in G$ such that $(\alpha \times \beta)(s)=(g H, K)$ (since $(\alpha \times \beta)$ is surjective). Then $g s^{-1} \in H$ and $s \in K$, with $\left(g s^{-1}\right) s=g$.] Hence under the given conditions, $|G|=[G: H][G: K]$ iff $(\alpha \times \beta)$ is surjective, which occurs precisely when $G=H K$.
6) Construct two non-isomorphic non-abelian groups of order 192, each of which contains a normal abelian subgroup of order 8. [Hint: at least one of them can be a direct product of smaller groups.]

Consider $G_{1}=\mathbb{Z}_{8} \times S_{4}$ and $G_{2}=D_{2.96}:=\left\langle r, s \mid r^{96}=s^{2}=1, r s=s r^{-1}\right\rangle$.

For G_{1}, we have:

- The order of G_{1} is $\left|G_{1}\right|=\left|\mathbb{Z}_{8} \times S_{4}\right|=\left|\mathbb{Z}_{8}\right|\left|S_{4}\right|=8 \cdot 24=192$.
- G_{1} is non-abelian: e.g., $([0],(12)) \cdot([0],(23))=([0],(123)) \neq([0],(132))=([0],(23)) \cdot([0],(12))$.
- G_{1} contains a normal abelian subgroup of order 8: Define the subgroup $H_{1}:=\mathbb{Z}_{8} \times\{\mathrm{id}\} \subseteq G_{1}$; clearly $\left|H_{1}\right|=8$. For any $(a, \sigma) \in G_{1}$ and $(b, \mathrm{id}) \in H_{1}$, we have $(a, \sigma) \cdot(b, \mathrm{id})=(a+b, \sigma)=(b+a, \sigma)=(b, \mathrm{id}) \cdot(a, \sigma)$; that is, the elements of H_{1} commute with every element in G_{1}. This certainly implies that H_{1} is a normal subgroup of G_{1}.

For G_{2} (the group of symmetries of a 96 -gon), we have:

- The order of G_{2} is $\left|G_{2}\right|=\left|D_{2 \cdot 96}\right|=2 \cdot 96=192$.
- G_{2} is non-abelian: e.g., $r s=s r^{-1} \neq s r$ by definition.
- G_{2} contains a normal abelian subgroup of order 8: Define the cyclic subgroup $H_{2}:=\left\langle r^{12}\right\rangle \subseteq G_{2}$; clearly $\left|H_{2}\right|=8$. For any $r^{12 i} \in H_{2}$, we have $r^{j} r^{12 i}\left(r^{j}\right)^{-1}=r^{12 i} \in H_{2}$ and $\left(s r^{j}\right) r^{12 i}\left(s r^{j}\right)^{-1}=s r^{j} r^{12 i}\left(r^{j}\right)^{-1} s=s r^{12 i} s=r^{-12 i} \in H_{2}$. Hence $g h g^{-1} \in H_{2}$ for all $g \in G_{2}$ and $h \in H_{2}$, which means H_{2} is a normal subgroup of G_{2}.

Finally, we observe that $r \in G_{2}$ has order 96 , while $([1],(123)) \in G_{1}$ has order $\operatorname{lcm}(8,3)=24$ and no element in G_{1} has greater order. This shows that G_{1} is not isomorphic to G_{2}.
[Note: There are many other possible answers: $\mathbb{Z}_{8} \times D_{2.12}, \mathbb{Z}_{8} \times \mathbb{Z}_{4} \times S_{3}, \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times Q_{8}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times A_{4}, \ldots$]

Midterm 2 Solutions

nolander

April 2020

1 Introduction

3. Find a non-abelian group G with two distinct normal subgroups H, K of index 2. Show that $H \cap K$ is a normal subgroup of G and that $G / H \cap K$ is an abelian group that is not cyclic.

The fact that $H \cap K$ is normal in G is true in general for normal subgroups H, K of G : We know $H \cap K$ is a subgroup, and if $x \in H \cap K, g \in G$ then $g x g^{-1} \in H$ since H is normal, and likewise for K. Thus $g x g^{-1} \in H \cap K$ and $H \cap K$ is normal.

Now we have $H \not \subset K$, since otherwise we'd have $[G: H]=[G: K][K: H]>[G$: $K]=2$. Choose $h \in H \backslash K$. Then we have $G=K \coprod h K$ since $[G: K]=2$. This implies in particular that $G=H K$. Then by the second isomorphism theorem,

$$
G / K=H K / K \cong H / H \cap K,
$$

so $[H: H \cap K]=2$. Thus $[G: H \cap K]=[G: H][H: H \cap K]=4$. But any group of order 4 is abelian, so we see that $G / H \cap K$ is abelian. To see that it is not cyclic, we can produce two distinct subgroups of order 2 . We've already seen that $H / H \cap K$ is one, and by symmetry, $K / H \cap K$ is another. These are distinct since, for instance, we have

$$
(H / H \cap K) \cdot(K / H \cap K)=G / H \cap K
$$

since $H K=G$, whereas if they were equal their product would be a group of order 2 , not 4 .

An example where this occurs is the quaternion group Q_{8}. The subgroups $\langle i\rangle,\langle j\rangle,\langle k\rangle$ are all distinct subgroups of index 2.
4. For any integer $n>0$ let $A(n)$ denote the number of non-isomorphic abelian groups of order n. Consider the numbers $A(28), A(5), A(33), A(9), A(32)$. Which is largest? Which is smallest? Are any two equal? Explain.

By the fundamental theorem on finite abelian groups, the rules for computing $A(n)$ for an integer n with prime factorization $p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ are: (a) $A(n)=$ $A\left(p_{1}^{e_{1}}\right) \times \cdots \times A\left(p_{k}^{e_{k}}\right)$, and (b) for a prime $p, A\left(p^{e}\right)$ is the number of ways of writing e as a sum of positive integers. We have $28=2^{2} \cdot 7,5=5,33=3 \cdot 11,9=$ $3^{2}, 32=2^{5}$, thus $A(5)=1=A(33)<A(9)=2=A(28)<A(32)=7$.

