THE JORDAN-HÖLDER THEOREM

1
We have seen examples of chains of normal subgroups:

$$
\begin{equation*}
G=G_{0} \supseteq G_{1} \supseteq G_{2} \supseteq \cdots \supseteq G_{i} \supseteq G_{i+1} \ldots G_{r}=\{e\} \tag{1.1}
\end{equation*}
$$

in which each group G_{i+1} is normal in the preceding group G_{i} (though not necessarily normal in G). Such a series is often called subnormal, and this is the terminology we use. For example, there is the sequence of derived subgroups

$$
G \supseteq D(G)=[G, G] \supseteq D^{2}(G)=[D(G), D(G)] \ldots
$$

which ends with $D^{r}(G)=\{e\}$ if G is a solvable group, in which $D^{i}(G) / D^{i+1}(G)$ is abelian.

At the other extreme, the group G is simple if it contains no proper normal subgroups other than $\{e\}$. A subnormal series such as (??) is called a composition series if each of the quotient groups G_{i} / G_{i+1} is simple; in particular, $G_{i} \neq G_{i+1}$ for all i.

Lemma 1.2. Let G be a finite group. Then G has a composition series.
Proof. We induct on the order of G. We know that a group of order 1 has a composition series. Suppose every group of order less than $|G|$ has a composition series. If G is simple, then we are done. If not, then G has a non-trivial proper normal subgroup N. By induction, N and G / N both have composition series. Say

$$
G / N=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{r}=\{e\} .
$$

is a composition series. By the correspondence principle, each H_{i} corresponds to a subgroup G_{i} containing N, with $H_{i}=G_{i} / N$ for all i. By the Third Isomorphism Theorem,

$$
G_{i} / G_{i+1} \xrightarrow{\sim}\left(G_{i} / N\right) /\left(G_{i+1} / N\right)=H_{i} / H_{i+1}
$$

which is simple. On the other hand, $H_{r}=N$ has a composition series

$$
N=G_{r} \supseteq G_{r+1} \cdots \supseteq G_{N}=\{e\} .
$$

Then

$$
G=G_{0} \supseteq G_{1} \cdots \supseteq N=G_{r} \supseteq G_{r+1} \cdots \supseteq G_{N}=\{e\}
$$

is a composition series for G.

We write the collection of simple factors $\left(J_{\alpha}, m_{\alpha}\right)$ where J_{α} is a simple group and m_{α} is the number of time it appears as a quotient G_{i} / G_{i+1}. We call m_{α} the multiplicity of the simple factor J_{α}. We call it a collection rather than a set, because the same element can appear more than once; sometimes this is called a multiset.

Example 1.3 (Cyclic groups of prime power order). The cyclic group $\mathbb{Z}_{p^{a}}$ has a composition series:

$$
\mathbb{Z}_{p^{a}} \supseteq(p) \supseteq\left(p^{2}\right) \supseteq \cdots \supseteq\left(p^{a-1}\right) \supseteq\{0\}
$$

where (p^{i}) denotes the multiples of p^{i} modulo p^{a}, for any $i \leq a$. We can use the Third Isomorphism Theorem: if $\left\langle p^{i}\right\rangle \subseteq \mathbb{Z}$ is the subgroup of multiples of p^{i} for each i, then the subgroups of $\mathbb{Z}_{p^{a}}$ correspond to subgroups of \mathbb{Z} containing $\left\langle p^{a}\right\rangle$. In particular

$$
\left(p^{i}\right)=\left\langle p^{i}\right\rangle /\left\langle p^{a}\right\rangle \subseteq \mathbb{Z}_{p^{a}} .
$$

Then by the Third Isomorphism Theorem

$$
\left(p^{i}\right) /\left(p^{i+1}\right)=\left(\left\langle p^{i}\right\rangle /\left\langle p^{a}\right\rangle\right) /\left(\left\langle p^{i+1}\right\rangle /\left\langle p^{a}\right\rangle\right) \xrightarrow{\sim}\left\langle p^{i}\right\rangle /\left\langle p^{i+1}\right.
$$

and multiplication by p^{i} is an isomorphism

$$
\mathbb{Z} /\langle p\rangle \xrightarrow{\sim}\left\langle p^{i}\right\rangle /\left\langle p^{i+1}\right\rangle .
$$

So the collection of simple factors of $\mathbb{Z}_{p^{a}}$ is $\left(\mathbb{Z}_{p}, a\right)$ (multiplicity a).
Example 1.4 (Cyclic groups). Let $n \in \mathbb{Z}$. Write $n=\prod_{i} p_{i}^{a_{i}}$ as a product of prime factors. Then the cyclic group \mathbb{Z}_{n} is isomorphic to a product of cyclic groups $\mathbb{Z}_{p_{i}}^{a_{i}}$ and the collection of simple factors of \mathbb{Z}_{n} is the union of the simple factors of all the $\mathbb{Z}_{p_{i}}^{a_{i}}$:

$$
\left(\mathbb{Z}_{p^{i}}, a_{i}\right) .
$$

Example 1.5 (Abelian groups). We know that any abelian group is isomorphic to a direct product of cyclic groups:

$$
\prod_{i} \prod_{j} \mathbb{Z}_{p_{i}}^{a_{i j}}
$$

where the p_{i} are distinct prime numbers and the $a_{i j} j$ are positive integers. The only simple abelian groups are the cyclic groups of prime order. So the collection of simple factors is

$$
\left\{\left(\mathbb{Z}_{p_{i}}, m_{i}=\sum_{j} a_{i j}\right)\right\} .
$$

In other words, $\mathbb{Z}_{p_{i}}$ occurs as a simple factor $a_{i j}$ times in the cyclic group $\mathbb{Z}_{p_{i}{ }_{i}}$, and the total multiplicity is the sum of the multiplicities in the simple factors.

A given finite group G can have more than one composition series. Nevertheless, there is a uniqueness theorem that is analogous to the uniqueness of prime factorization of an integer. First we prove a lemma

Lemma 1.6. Let G be a group with two normal subgroups H and $J, H \neq J$. Suppose G / H and G / J are both simple. Then

$$
G / H \xrightarrow{\sim} J / H \cap J ; G / J \xrightarrow{\sim} H / H \cap J .
$$

Proof. If $H \subseteq J$ then $G / H \supseteq J / H$, and since G / H is simple this implies $J=G$ or $J=H$, both of which are impossible. Thus $G \supseteq H \cdot J \supseteq J$ and since $H \cdot J \neq J$ we must have $G=H \cdot J$.

Now we apply the Second Isomorphism Theorem:

$$
G / H=H \cdot J / H \xrightarrow{\sim} J / H \cap J
$$

The same proof works for G / J.
Theorem 1.7 (Jordan-Hölder Theorem). Let G be a finite group. Suppose G has two composition series:

$$
\begin{gathered}
G=G_{0} \supseteq G_{1} \supseteq G_{2} \supseteq \cdots \supseteq G_{i} \supseteq G_{i+1} \cdots \supseteq G_{r+1}=\{e\} \\
G=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{s+1}=\{e\} .
\end{gathered}
$$

Then $r=s$ and the two collections of quotients

$$
\left\{G_{i} / G_{i+1}\right\},\left\{H_{j} / H_{j+1}\right\}
$$

are equal (not taking order into account).
Proof. This is of course an induction proof. The case $|G|=1$ is trivial. If $r=1$ then G is simple so again we must have $H_{1}=G_{1}$. Now suppose the theorem is known for groups of order $|G|$. We assume r is the minimal length of a composition series for G. Suppose $G_{1}=H_{1}$. Then by induction on $|G|$ the composition series for G_{1} and H_{1} are equivalent, and so we are done. Thus we must assume $G_{1} \neq H_{1}$. Now G / G_{1} is simple, so the only subgroups of G containing G_{1} are G_{1} and G. Since $G_{1} \cdot H_{1}$ is normal in G and contains but is not equal to G_{1}, we have $G=G_{1} \cdot H_{1}$. Let $K_{1}=G_{1} \cap H_{1}$. By the lemma,

$$
G / G_{1} \xrightarrow{\sim} H_{1} / K_{1} ; G / H_{1} \xrightarrow{\sim} G_{1} / K_{1} .
$$

Also $H_{1} \unlhd H_{0}=G_{0}$, the intersection $K_{i}=H_{1} \cap G_{i}$ is normal in each G_{i} as well. Also, $K_{i+1} \unlhd K_{i}$ for each i. So we have a new subnormal series

$$
G=G_{0} \supseteq G_{1} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{r} \supseteq K_{r+1}=\{e\} .
$$

Note that this is of length $r+1$. The image of K_{i} in G_{i} / G_{i+1} is normal and is isomorphic to

$$
K_{i} / K_{i} \cap G_{i+1}=K_{i} /\left(H_{1} \cap G_{i}\right) \cap G_{i+1}=K_{i} / H_{1} \cap G_{i+1}=K_{i} / K_{i+1}
$$

because $G_{i+1} \subset G_{i}$. Since G_{i} / G_{i+1} is simple, we have either $K_{i} / K_{i+1}=$ G_{i} / G_{i+1} or $K_{i}=K_{i+1}$. In particular, every non-trivial term in

$$
G_{1} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{r} \supseteq K_{r+1}=\{e\}
$$

is simple, and thus it must be a composition series when the non-trivial terms are removed. But by induction, every composition series for G_{1} has
length $r-1$ and any two are equivalent. So exactly one quotient K_{j} / K_{j+1} is trivial, and with that removed we have a composition series equivalent to

$$
G_{1} \supseteq G_{2} \supseteq \cdots \supseteq G_{r} \supseteq G_{r+1}=\{e\} .
$$

In particular the two collections

$$
\left\{K_{i} / K_{i+1}, i \neq j, i \geq 1\right\}
$$

and

$$
\left\{G_{i} / G_{i+1}, i \geq 1\right\}
$$

are the same.
On the other hand, we also have two composition series for H_{1} :

$$
H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{s+1}=\{e\}
$$

and

$$
H_{1} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{r} \supseteq K_{r+1}=\{e\}
$$

where we remove the term $K_{j}=K_{j+1}$. Again by induction, these are equivalent, but the first is of length $s-1$ and the second of length $r-1$. Thus $r=s$. And again the two collections

$$
\left\{K_{i} / K_{i+1}, i \neq j, i \geq 1\right\}
$$

and

$$
\left\{H_{i} / H_{i+1}, i \geq 1\right\}
$$

are the same. So for $i \geq 1$, we have

$$
\left\{G_{i} / G_{i+1}, i \geq 1\right\}=\left\{H_{i} / H_{i+1}, i \geq 1\right\}
$$

Finally, we return to the two series

$$
\begin{aligned}
& G \supseteq H_{1} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{r} \supseteq K_{r+1}=\{e\} \\
& G \supseteq G_{1} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{r} \supseteq K_{r+1}=\{e\}
\end{aligned}
$$

(with K_{j} omitted). By the lemma, as we have said, the two unordered pairs

$$
\left(G / H_{1}, H_{1} / K_{1}\right) ;\left(G / G_{1}, G_{1} / K_{1}\right)
$$

are equal. Moreover, the remaining terms are equal, so we are done.

