GRouractions

GROUP ACTIONS
Before "MODERN ALGEBMA," groups were collections of invertible transformations.
Permutations permute (some finite set)
invertible linear transformations more rectors in a vector space
Galois groups (next term) exchange roots of a polynomial.
The general notion underlying these examples is that of a group action.

Definition A_{n} action of the group G on the set X is a map $a: G \times x \rightarrow X \quad(g, x) H g \cdot x$ where $=g(x)$

$$
\begin{aligned}
& \text { 1. } e \cdot x=x \quad \forall x \in X \\
& \text { 2. }\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2} x\right) \quad \forall g_{1}, g_{2} \in G
\end{aligned}
$$

$$
x \in X
$$

Example, $G=S_{n}, X=\{(, \ldots, n\}$. The elements of S_{n} are determined by their action (permutation) of X

Example: $G=G L(2$, ,er $)$ (invertible matrices)

$$
\begin{aligned}
& x=\mathbb{R}^{2} \quad g=\left(\begin{array}{ll}
a & b \\
c d
\end{array}\right) \quad x=\binom{x}{y} \\
& g x=\binom{a x+b y}{c x+d y} \quad e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left(g_{1} g_{2}\right) x=g_{1}\left(g_{2} x\right) \text { by associativity of }
\end{aligned}
$$ matins multiplication.

Example: G any group, $x=N \leqslant G$ $a(g n)=g \lg ^{-2}$ conjugation action. $N=G$ is especially important

EXAMPLE: RUBIK'S CUBE
Each of the six faces cande notated $90^{\circ}, 180^{\circ}, 270^{\circ}$, on 360° (the cdentty) The group of transformations of the Rubies cube is genented by 690° rotations, each of order 4.

The group of transformations of Rubik's cube has order

$$
\begin{aligned}
& 43,252,003,274,489,856,000 \\
& =2^{27} 3^{14} 5^{3} \cdot 7^{2} \cdot 11
\end{aligned}
$$

It IS a SEMIDIRERT PROBUCT

$$
\left(\mathbb{R}_{3}^{7} \times \mathbb{R}_{2}^{11}\right) \rtimes\left(\left(A_{0} \times A_{12}\right) \not \mathbb{R}_{2}\right)
$$

AND it AGTS BY PER MUTING Two SUBSETS OF THE 26 BLOCKS:

- TE 8 CORNERS HENCE A_{8}
- THE 12 EDGES and A_{12}

THE 6 CENTERS OF EACH FACE
DON'T MOVE
cant permute two CORNUS LIAM DIE - trans alone.

Definition Let G act on X. Let $x, y \in X$
Say $x w_{a y}$ if $\exists g \in G, g x=y$
$\frac{\text { Proposition }}{\text { relation }}$ The relation v_{a} is an equivalence relation.
Proof: Reflexive: $\forall x \in X \quad e x=x$ Symmetric If $g x=y$, then $y=g^{-2} x$
Transitive if $g x=y, h y=z$, then

$$
\left(h g \mid x=h(g x)=h y=z \Rightarrow x v_{G} z\right.
$$

The equivalence classes for v_{a} are called orbits. The orbit containing $x_{\in} X$ is wintten θ_{x}.
Example $G=G L(2, \pi) \quad X=\mathbb{R}^{2}$ Two orbits
$\left.2\binom{0}{0}\right\}$ and every thing else.
Example: $G=X$ acting on itself by conjugation. The orbits are conjugacy clauses
Definition: The action of G on X is transitive if it has only one orbit
Example: S_{n} acting on $(x,-, n)$ is transitive

Definition: Let G acton X. The stabilizer subgroup of x, denoted G_{x}, is the set

$$
G_{x}=\{g \in G \lg x=x\} .
$$

Lemma: This is a subgroup.
Proof: Exercise.
Challenge 2 . Let $G=S_{n}, X=\{1, \ldots, 1\}$.
what is $G_{n}=$ the stabilizer of the element n ?
Challenge 2. Let $G=G(C 2, \pi), V=\pi^{2}$, $v=\binom{1}{0}$. Determine the stabilizer subgroup a_{r}.

Theorem: Let G be a finite group acting on a set X. Then

$$
\left|\vartheta_{x}\right|=|G| /\left|\sigma_{x}\right|
$$

Proof: We know that $|a| / w_{x} \mid$ is he number of corsets of G_{x} in $a_{\text {, we de the a bijection }}$ $\alpha \cdot G / G_{x} \longrightarrow \theta_{x}$. To any $g \in G$ we let $\alpha\left(g G_{x}\right)=g(x)$.

1. α is well defined. If $g G_{x}=g^{\prime} G_{x}$ then $\exists h \in G_{x}, g^{\prime}=g h$. But $(g h)_{x}=g(h x)=g(x)$ because $h \in G_{x}$
2. α is surjective. if $y \in \theta_{x}$ then $\exists g \in G, g x=y$, Then $y=\alpha C_{g} G_{x} l$.
$3, \alpha$ vinjective. Suppose

$$
\alpha\left(g G_{x}\right)=\alpha\left(h G_{x}\right) \Rightarrow g(x)=h(x) .
$$

Then $\left(h^{-2} g\right)(x)=h^{-2}(h(x))=x$

$$
\text { so } h^{-2} g \in G_{x} \Rightarrow g G_{x}=h G_{x} .
$$

Thus

$$
|G| /\left|\sigma_{x}\right|=\left|\sigma / G_{x}\right|=\left|\sigma_{x}\right| .
$$

G acting on X.

$$
X_{a}=\{x \in X \lg (x)=x \quad \forall g \in G\}
$$

= set of orbits consisting of a single element.

$$
\begin{aligned}
& x=G, \quad g(h)=g h g^{-2} \text { conjugation } \\
& X_{G}=\left\{h \in G-x \mid g h g^{-2}=h \forall g \in G\right\} \\
& g^{h} g^{-2}=h \Leftrightarrow g h=h g \forall g \in G \quad x_{G}=Z_{G}
\end{aligned}
$$

Conjugation. $G=X$.

$$
g(h)=g h g^{-2}
$$

What is G_{e} ? Cstabilizer)
What is Q_{e} ? $g e g^{-r}=g g^{\prime 2}=e$

$$
\left.\begin{array}{ll}
\left|\theta_{e}\right|=1 . & G_{e}=G \\
g e g^{-2}=e & \forall g \in G .
\end{array} \right\rvert\, \begin{aligned}
& |G| G_{e}\left|=\left|\theta_{e}\right|\right. \\
& 1
\end{aligned}
$$

Another action of G on $a \quad X=G$ $G \times G \rightarrow G \quad g(h)=g \cdot h$.
what are the orbits?
Answer: the action is transitive:

$$
g(e)=g \cdot e=g \Rightarrow e v_{a} g \forall_{g}
$$

so the orbit $\theta_{e}=G \quad \mid g(e)=e$

$$
\begin{aligned}
G_{e} & =\text { stabilizer of e } \quad|\quad| \quad{ }^{\prime \prime} \\
& =\operatorname{se} \quad|G|\left|G_{e}\right|=\left|\theta_{e}\right|=|a|
\end{aligned}
$$

Covollany (the orbit equation). Suppose a is a finite group acting on a finite set X_{1} Then orbits $=$ fired point io $\cup\left\{\theta_{x_{1}, \ldots} \theta_{x_{n}}\right\}$
$|x|=\left|x_{a}\right|+\sum_{i=1}^{n}\left[a: G_{x_{e}}\right]$, where $\left.x_{a}>d x \in X \mid g x=x \quad \forall g \in G\right)$ is the $\frac{\text { fred point }}{\text { set of } a}$ and $\left\langle x_{n}\right\}$ are representatives of distinct orbits that are not fixed points. $i=h$..n. Example: $X=a$, with conjugation. Then $X_{a}=Z(a)$ is the center of a.

Proof of the orbit equation:
nous
$X=$ fred points [l orbits that are not fred points
In each orbit on the right choose an clement x_{n}.

$$
x=x_{G}\left\|\theta_{x_{1}}\right\| \theta_{x_{2}}\|-\| \theta_{x_{n}}
$$ fixed points

$$
|x|=\left|x_{a}\right|+\left|\theta_{x_{1}}\right|+\ldots+\left|\theta_{x_{n}}\right|
$$

$$
\begin{aligned}
& |x|=\left|x_{a}\right|+\sum_{i=1}^{n}\left|\theta_{x_{i}}\right| \\
& \text { But }\left|\theta_{x_{i}}\right|=|G|| | G_{x_{i}} \mid=\left[G i G_{x_{i}}\right] \\
& \delta o \\
& |x|=\left|x_{a}\right|+\sum_{i=1}^{n}\left[G_{1} G_{x_{i}}\right]
\end{aligned}
$$

Conjugation acton next time.

Proof: $\quad h \in X_{G} \Leftrightarrow \forall g \in G \quad g^{h} g^{-2}=h$

$$
\Leftrightarrow \quad \forall g \in G \quad g h=h g \Leftrightarrow h \in Z(a) \text {. }
$$

Moreover for any $h \in G$, the stebilizea

$$
\begin{aligned}
C_{h} & =\{g \in G \mid g h g-2=h\} \quad \text { the Centralizer } \\
=C_{h} & =\{g \in G \mid g h=h g\} \quad \text { of } h
\end{aligned}
$$

The orbit equation in this case is called the class equation

$$
|G|=|z(G)|+\sum_{h_{i}}\left[G: c_{h_{i}}\right]
$$

$$
|G|=|z(a)|+\sum_{h_{i}}\left[G!C_{h_{i}}\right]
$$

Example: In $G=S_{n}, n>2$, we know $Z\left(S_{n}\right)=$ hes and the conjugacy classes are in bijection with The partitions of n Cycle lengths). Judson says this Is (almost) an NP complete problem.

Theorem: Let G be a p-group where per aprine
Then $|z(a)| \geqslant p$.
Proof: We have

$$
|G|=|z(G)|+\sum_{n_{i}}\left[G: c_{n_{i}}\right] .
$$

Each $C_{h_{i}}$ is a subgroup of G, hence is a p-group. And $|G| \equiv o(p),\left|G_{h_{i}}\right|<|G|$ $\Rightarrow p \mid\left[G!C_{h_{n}}\right]$, pllal. Thus pl|z(G)l.

Corollary: Let $|a|=p^{2}$ for some p.
Then G is a melian.
proof: We know $|z(G)| \geqslant$ p. Let $h \in G, h \notin Z(G)$. Then the group it generated by h and $Z(G)$ is of order $>p$ but divides $p^{2} \Rightarrow H=G$. But h commutes with z(a) so It is an abelian group \Rightarrow Gisabelian.

